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Abstract .  Its well known that the Schwarz alternating method proved 
to be feasible and powerful approach to solve elliptic or parabolic PDEs 
over multi overlapped sub domains . Recently Schwarz method proved to 
be very effective method when embedded within a well established so- 
lution methods such as monotone iterative method( or the method of 
lower and upper solution method). In this work we present the proofs of 
convergence of additive and multiplicative Schwarz alternating method 
for non linear parabolic equation where the reaction function involves a 
time delay function. 

1 I n t r o d u c t i o n  

In several applications its useful and even essential to decompose the domain of 
the PDE into several subdomains overlapped and non overlapped. The concept 
of decomposing the domain has been utilized in connections with the numerical 
approximation of the problem and the parallel processing algorithms. The ear- 
liest known domain decomposition method was presented by H.A. Schwarz in 
1870. 

The classical alternating Schwarz method have been utilized efficiently to 
solve the PDE over several subdomains and then the method has gained its 
popularity specially after the developments of the parallel computer architecture. 

Recently the method of lower and upper solution and its associated mono- 
tone iterative method have been considered to develop analytical and numerical 
solution algorithms. The method has found to be a powerful tool for treatment 
of several type of PDEs like elliptic, time dependent parabolic problem see Pao 
[7,8], and time dependent parabolic problem which involves time delay reac- 
tion function see the ’works by X-Lu [2, 3](The method is also called monotone 
iterative method). 

On the other hand the method of lower and upper solution has also been 
considered with the use of the Schwarz iterative method see Lui [4]-[6], Lui 
studied the use of the monotone type of iterative methods in solving non linear 
Elliptic[4], and Parabolic equations with Schwarz methods [6]. 
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The solution of the time delay problem by the lower and upper solution 
method and its associated monotone iterative method also has been studied 
numerically and analytically by Feng and Lu [1], and Lu [2, 3] and the references 
in Pao [7]. 

In Pao [7] presented a comprehensive study and complete bibliography for 
the monotone iterative method and the application for the time delay problem. 

This article is an extension of the analysis by Lui [6] to study the Schwarz 
method with monotone iteration to solve the time dependent parabolic prob- 
lem where the reaction function involves a time delay function such that  the 
considered type of problem will fulfill the analysis by the monotone method see 
[7]. 

In section 3 we present some preliminaries notations and the definition of the 
model problem and in section 4 we present the proof for the multiplicative and 
the additive Schwarz method when the reaction function involves a monotone 
non decreasing time delay function. In section 5 we present the proofs of the 
Schwarz methods when the reaction function involves a monotone non increasing 
time delay function and the conclusion in section 6. 

2 P r e l i m i n a r i e s  

Consider the following type of parabolic boundary value problem where the 
reaction function involves a time delay function given by 

ut - A u  -- f ( t ,  x, u(t, x)) + g(t, x, u(t  - r, x)) on D - [0, T] x Y2, (1) 

with 
u ( t , x ) -  h on S, and u ( t , x ) -  rlo(t,x) on D(_r), 

and D(_~) - I - r ,  0] x J2 where g? is assumed to be a bounded domain in R N. We 
assume that  f, g are HSlder continuous and rl0(t, x) is also HSlder continuous on 
D(_~). We also assume that  g? is decomposed into m, rn _> 2, subdomains with 
smooth boundaries such that  g ? -  /f-~l I..J J’~2 I, .J . . .  I,.J /~rn. 
We are interested in the solution of the parabolic PDE (1) for the time interval 
I - r ,  T] for some fixed positive T. 

In this area a couple of well known examples of the equation (1) are the model 
problems known as the diffusive logistics equation and Fisher’s diffusive equation 
in population genetics [7]. Define Di = (0, T) x J2i, S = (0, T) x 0J2, S~ = 
(0, T) x J2i, D ( _ r ) -  [ - r ,  0] x J2, and Di,(_r) - [ - r ,  0] x J2i. 

Let X denote the space of functions in C(ET) ,  ET = [ - r ,T]  x J2, which 
are continuously differentiable in time and twice differentiable in J2, and we are 
interested in the solutions of PDE’s in this space. The pair of functions (u, g) is 
said to be ordered if u < g in ET. 

Let A be the sector of smooth functions defined by 

. 4 -  {uC X "u < u _<gon D}. 
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In addition suppose there exist some non negative continuous functions c, and 
defined on D by 

c(t, x) - s u p { - f u ( t ,  x, u); u_ _< ~}, and 
-d(t,x) - sup{ fu( t ,x ,  u);u_ _< g} 

such that 

c ( u - v )  <_ ( f ( t , x , u ) + g ( t , x , u ( t - r , x ) ) ) - ( f ( t , x , v ) + g ( t , x , v ( t - r , x ) ) )  <_-5(u-v) 

for any v _< u E A. 
The function g in (1) is either a monotone nondecreasing or monotone non- 

increasing function in ~ for ~ in the sector of upper and lower solutions [7]. An 
essential theorems in this study are the following maximum principles theorems 

T h e o r e m  1 ( M a x i m u m  Pr inc ip l e  T h e o r e m ) .  Let w E X satisfy 

w t - A w + c > O  on D , w _ > 0  o n S ,  and w(0, x) >_0 on g?. 

T h e n w > O  on D. 

In cases when the functions are less smooth or the domain is with non smooth 
boundary a generalized maximum principle theorem is also required see [6], given 
by the following generalized form. 

T h e o r e m  2 ( G e n e r a l i z e d  M a x i m u m  Pr inc ip l e ) .  Suppose_ ~ is an open set 
in R N and ~ T  - -  ( - r ,  T) x ~, let w r H 1 ( - r ,  T; H i (~P) M C(O)) and satisfy 

/ (Vw.KTr + wtr +__cwr >_ 0, for non negative r E H i ( - r ,  T; H i (~/’) M C(~))  
T 

and w(O) > 0 on ~. Then w > 0 on ~T. 

The study in this article is divided into two parts, the first part section 4 
is dealing with the case when g is a monotone nonincreasing function and the 
second part section 5 is dealing with the case when g is a monotone nondecreasing 

function. 

3 M o n o t o n e  N o n i n c r e a s i n g  F u n c t i o n  

This section investigate the application of Schwarz methods to the parabolic 
PDEs (1), where the reaction function involves a monotone nonincreasing time 
delay function g(t,x,  u ( t -  r,x)).  In this case the generated sequence of lower 
and upper solutions are coupled pair of sequence and are defined as follows. 

Def in i t i on  1. Let g(.u) be a monotone nonincreasing in ~7. Then a pair of func- 
tion u ,~  E X are called coupled upper and lower solutions of PDE (1), i/ 

> u in X ,  and they satisfy the inequalities; 

~, - ~ > f (~ )  + g ( ~ ( t -  ~)) ~nd 
~ - ~ < f (~ )  + g(~(t  - ~)) i~ DT 

with u < h < ~ on S, and u < Uo(t,x) <_ ~ on D(_r). 

1139Monotone Iterative Methods and Schwarz Methods



1140 D.S. Daoud 

For a given pair of coupled upper and lower solutions g, u and using g(0) = 
g, and u_ (~ - u we construct two sequences of {g(k),u_u_(k)} from the following 

iterative process 

_(k)ut _ A~U (k) -}- _C ~(k)  _ _C ~ ( k - 1 )  + f(~(k-1)) + g(u(k-1)) (2) 
lt~ k) - -  A U  (k) -~- C It (k) - -  C I t ( k - l )  -t- f(u (k-l)) -t- g(~(k-1)) 

subject to the following boundary and initial conditions 

~(k) _ h, u_ (k) - h on S, ~(k) _ r/0(t,x), and u_ (k) - ~ 0 ( t , x )  on D(_~). 

The generated sequence of pair of solutions {u_ (k), ~(k)} are well defined and 
monotone. Furthermore the generated sequences convergence monotically to the 
unique solution of (1) when gu __ 0 (Theorem 8.2 in [7]). 

For the above definition of sequences of pair of solutions corresponding to the 
monotone nonincreasing function g we present the convergence of sequence(pair) 
of solutions generated from the Multiplicative Schwarz method by the following 
theorem; 

T h e o r e m  3. Let  ~(0) _ ~(-1/2) _ ~ and u (~ - u_ (-1/2) - u on -D, with u U_ - 

h, and ~ -  h on S, and ~ - u _ - 7 ] o  on D(_~) .  
The Schwarz  sequence fo r  n >_ O, is defined by 

(Or - -  A n t- _c) ~ ( n + l / 2 )  __ f(~(n-1/2)) + c__ ~ ( n - 1 / 2 )  Jr- g(lt (n-1/2)) 

( 0  t - -  A n L- __C) u__. (n - i - I /2 )  - -  f ( u  (n-l /2))  "n t- C It ( n - l / 2 )  "n t- g(~(n-1/2))  

with 
~ ( n + l / 2 )  _ ~ ( n )  ~(n+l/2) = rl ~ o n  Dl,(-r), 
u ( n + l / 2 )  __ l t ( n  ) o n  S 1 ,  and u ( n + l / 2 )  __ 7]0 

and 

on D1, 

(3) 

(Or - A + c) ~(n+l)  _ f ( ~ ( n ) )  + c ~(n) + g(u_(n)) 

(Or - Zl + c__) u_ (n+l) - f (u_ (n)) + c u (n) + g(~(n)) 

on D2, 

(4) 

~ ( n + l )  _ ~ ( n + 1 / 2 )  ~(n+l) _ rl ~ o n  D2,(-r).  
u ( n + l )  __ U ( n + l / 2 )  o n  $2, and i t ( n + 1  ) __ ?~0 

Here u_U_ (n+i/2) and ~(n+1/2) are defined as u_U_ (’~) and ~(n) on D \ D 1  respectively,  
and u (n+l) and ~(n+i) are defined as u (n+1/2) and ~(n+l/2) on D \ D 2 ,  respec- 
tively. Then  u (n+i/2) ~ u and ~(n+i/2) ~ u on Di  , i -  1,2, where u is the 

solu t ion  of  (1) in A .  

Proof. To show the convergence of the lower and upper solution sequence to the 
solution u on Di, we start  to prove that  the pair of coupled lower and upper 
sequence is monotone i.e. to show that  
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it < U ( n - l / 2 )  < It (n) < I t ( n - k l / 2 ) ~  ~ (n+ l /2 )  ~ ~ ( n ) ~  ~(n--1/2) ~ ~ on D, (5) 

For n - 0, consider the sequence on D1 for ~(1/2) and the upper solution g(o) 

( (~t-  A n a _e)~ (1/2) - -  f(~(0)) + c~(O) + g ( u _ ( o ) )  

(o~ - a + _~)~(o) > f(~(o)) + ~ ( o )  + g(~_(o)) (6) 

On subtraction of the above two results we obtain 

((~t -- A - [ -c) (~  (0) - -~ (1 /2 ) )  k 0. 

Since g(o) _ g(1/2) _ 0 on  S1, and g(o) _ ~(1/2) _ ~(o) _ rJo(t,x) >_ 0 on Dl,(_r), 

which implies that  g(o) _ 70(0, x) >_ 0 on J2. 
Then by the maximum principle theorem 1 we conclude that  g(o) _> g(1/2) on 
D1, which also hold on D. 
For the lower solution the proof is similar to the above and it follows by reversing 
the second inequality in(6), concluding that  u_ (~ _< u_ (1/2) . To proceed in the proof 
of (5) it requires the proof of the following pair of couple of inequalities 

~(n+1/2)  < ~(n--1/2) 
u ( n _ l / 2 )  < u (n+ l /2 )  (7) 

m 

on D1, and on D2 the following inequalities 

~(n-4-1) < ~(n) 
u(~) < -  u(~+l)" (8) 

On the subdomain D1 for n - 0 and for both of the inequalities in (7) they 
follows from the definition. 

On D2 for n - 0 consider the defining equation of ~(1) 

(0t -- A -[-_C)~ (1) -- C_U (0) -~- f(~(o) + g(u_(o)), 

and the equation for ~(o) 

(o~ - a + c)~(o) > c5(~ + f(~(o)) + g(u_(o)). 

From the subtraction the above relations we obtain; 

( 0 t -  A n t- _c)(~ (0) - -~ (1 ) )  ~ 0 

on D2 with ~(o) _ ~(1) _ 0 on $2, and ~(o) _ ~(1) ~ 0 on D2,(-r), then by the 

. maximum principle theorem it follows that  ~(o) _> ~(1). 
For the lower solution sequence over D2 it follows similarly by considering 

the defining equations for u (1) and the equation for the lower solution sequence 
u(O). 
m 
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Assume tha t  the inequalities (7,8) are holds for n, to prove they holds for n 
replaced by (n + 1), and we firstly consider the case of (7). 

Consider (3) for ~(n+3/2), and ~(~+~/e) 

(Or -- A + c)~(n+3/2) = f (~(n+l/2))  + C_~(n+l/2) + g(u_(n+l/2)) 
( 0  t -- A -+- _C)~ ( n + l / 2 )  ---- f(~(n-1/2)) + _c~(n-1 /2)  _+_ g(u(n-1/2)). 

On subt rac t ion  the above equalities with the considerat ion of the definition 
of c, gu < 0 and the induction assumption,  it follows that ;  

- + _ _ 

(fu + _C)(~(n-1 /2)  -- ~ ( n + 1 / 2 ) )  _ gu(~(n+l/2) _ u ( n - - 1 / 2 ) )  > 0, 

Since ~(n+3/2) _ ~(n+l) on $1, ~(n+l) _ < ~(~) by induct ion hypothesis  and 
~(n) _ ~(n+l/2) on S1, then it follows tha t  (~(n+1/2) _ ~(n+3/2)) >_ 0 on S1, and 
(~(n+1/2) _ ~(~+3/2)) _ 0 on DI,(_~). 

Therefore by the m a x i m u m  principle theorem 1 it follows tha t  ~(n+1/2) _ 
~(n+3/2) _> 0 on D1 concluding tha t  ~(n+l/2) _> ~(n+3/2) on D1. 
To prove u__ (n+1/2) < u (~+3/2). Consider (3) for u_ (~+1/2) and u_ (n+3/2) 

(0t -- A~ + _C)U (n+3/2) -- f(u(n+l/2) + C U (n+l/2) + g(~(n+l/2)) 
(Or -- A + c)u_ (n+~/2) - f ( u  (n-~/2) + c u (n-1/2) + g(~(n-1/2)), 

by subt rac t ing  the above two equations we obtain  

( 0  t -- /~ + _C)(et (n+3 /2 )  -- ? . t (n+l /2) )  --  

(fu + _C)(~ ( n + l / 2 )  -- ~ ( n - - 1 / 2 ) )  _ gu(~(n--1/2) _ ~ ( n + l / 2 ) )  __~ 0. 

The  last inequali ty follows from the induction assumptions,  the definition of c, 

and gu < 0. 
Since u (n+3/2) - u (n+l) on S1, u (~+~) > u (n) by induct ion hypothesis  , and 

u_(n) - u (n+~/2) on S1, then u (n+3/e) -u_U_ (n+l/e) >_ 0 on S1, and u (n+3/e) - 
u (n+1/2) - 0 on D~,(_r), then it follows tha t  u (n+3/e) - u (n+~/2) - 0 on D~. By 

the m a x i m u m  principle theorem 1 implies tha t  u (n+3/e) - u  (n+~/e) _> 0 on D1, 
and then concluding tha t  u (’~+3/e) _> u (n+1/2) on D~. 

Similarly we could prove the inequalities (8) for De when n replaced by n + 1. 
Then  assume (5)is hold for n and to prove it is t rue  for n replaced by n + 1. 
On D1 \ D2 we have u_ (~+1) - u (n+l/e) on $2 by definition and on D1 N De 

subt rac t  the defining equations for u (~+~/e) and u (n+l) to obta in  

(Ot--A+C_)(~(n+X)--u(n+l/2)) - - ( fu+C)(~(n)--~(n-1/2))- -gu(’u(n-1/2)--~ (n)) ~ O. 

The above inequali ty hold by the definition of _c, g~ _< 0, and the induct ion 
hypothesis.  In  case t h a t  D1 N D2 is not smooth  we can mult iply the above 
inequali ty by anon negative function r ~ H I ( - r , T ; H ~ ( D 1  ~ De)) and integrate  
by par ts  to obtain  

fD (u(n+l)-~(n+l/2))tr162162 ~ O. 
1 ~D2 
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On $ 1  r"l De we have ~(n-+- l )  > U n _ _  ? . t ( n + l / 2 )  by (7), and by the definition, 
and on Se N D1 we have u_ (n+x) - u_U_ (’~+l/e). Hence u_ (n+l) - u_ (n+~/e) >_ 0 on 
D N ( S I  USe), a n d a l s o  by definition u_(n+l) (t, x) - u_(n+l/e) (t, x) - 0 on Dl , ( - r )  N 

D2,(-r)  (i.e. u_(n+l)(0, x) - u_(n+lle) (O, x) - 0 on ~21 n/22). 
By the generalized m a x i m u m  principle theorem 2 we conclude tha t  u_ (~+1) 

u_ (n+l/e) on D1 N De. On De \ D1 we have u_ (n+l/e) - u_ (n) < u (~+1), then we 
have u (~+1) > u (~+l/e) on D. 

Following the same way we can prove tha t  ~(~+3/e) _< ~(n+l) on D.  
We proved tha t  the sequence of solutions are bounded above and below there- 

fore the limits are well defined and exist on D, given by; 

lim u (n+l/e) = lim g ( ~ + l / e ) =  ul ,  and lim u (~) - lim g ( ~ ) - u e .  
n- - -+  (X) n - - -+  O 0  n- - -+  O~  n - - -+  (X) 

Then  by theorem 8.2 in Pao [7] it follows tha t  Ul and u2 satisfies the P D E  on 
D1 and on D2 respectively and its easily to conclude tha t  Ul - u2 on D, and 
tha t  is completes the proof of the theorem. 

The monotone  non increasing addit ive Schwarz me thod  leads to the following 
convergence proper ty  of the pair coupled lower and upper  solution sequence, 
given by the following theorem. 

T h e o r e m  4. Letu_ ( ~  ul ~  a n d S ( ~  ~ I 0 ) _ ~  on-D, f o r i - l , . . . , r n  
with u _ -  h, and ~ -  h on S. The additive Schwarz sequence for the pair of 
coupled upper and lower solutions (n >_ 1) is defined by; 

( n - - l )  ( ~ I n - 1 )  
(at - ~ + c)u_l ~) - f(u__l ~-1)) + _c u__ i + g ) 

(at- A + -c) =(~)~i - f (Ul n- l )  ) -{- _C ~(n--1).~i -~- g (~I n- l )  ) 

subject to; 

on Si , and 

~( n) _ u ( n - 1 )  a n d  = ( n )  _ ~ ( n - 1 )  
i - -  ’ ( t i  

u_(n)(t x) ~0(t ,x)  and :(n) (t, x) ~0(t ,x)  i ’ - -  ’ ’tti - -  

on Di, 

(9) 

on Di,(-r). 
Here ~ (n) _ u(n_l) and =(n) _ ~(n-1) on -D \ Di, and ~-i - -  ' ’t~i 

u_ (n) (t, x) - max(u_l n) (t, x)}, and (10) 

~(n) (t, x) - m!n{~l n) (t, x)}, for(t, x) e D.  (11) 

u(n) =(n) m where u is the solution of (1) i ~ u ,  and ~i - ~ u ,  o n D i ,  i - i , . . . ,  
in A. 
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The proof of theorem 4 relies on few lemmas, we will presents the required 
lemmas with their proofs firstly and the proof of theorem 4 will be presented 
afterwards. 

L e m m a  1. Let g be a monotone nonincreasing function given by definition 1 
and let {u_n,g ~} be a sequence of lower and upper solution satisfying u_ ~ <_ 
u__~+l _< gn+i _< g~ on Di C D. If  condition (10) in theorem ~ holds and if 
the following PDE 

(Ot - ~ + c_)h (n) - f(u_ (n-i)) + c u (n-l) n t- g ( ~ ( n - - 1 ) )  (12) 

holds on Di, and subject to 

h (~) - u_ (n) on Si, and h (~) (t, x) - rl0(t, x) on Di,(_~), forn > O. 

such that U ( - 1 )  - -  U (0) �9 Ther~ 

h (n+l) > h (n) on Di, (13) 

and 
h (n) > u (~) on Di,(_~). (14) 

L e m m a  2. Let g be a monotone nonincreasing function given by definition 1 
and let {u_~,g ~} be a sequence of lower and upper solution satisfying u_ ~ <_ 
u_n+l _< g~+i _< gn on Di C D. If  condition (11) in theorem ~ holds and if 
the following PDE 

(Or - A + _c)h (~) - f(g(n-1))  + ~ ~(~-1) + g(u_(n-1)) (15) 

holds on Di, and subject to 

h(n) - g ( ~ )  on Si, and h(~)(t, x) - T 0 ( t ,  x) on Di,(_r), forn > 0. 

such that g(-1) _ g(0). Thed 

~(~+1) > ~(~) 
on Di, (16) 

and 
~(n) > g(n) on Di,(_r). (17) 

The other necessary lemma for the proof of theorem 4 is the following lemma. 

L e m m a  3. Let the hypothesis in theorem ~ hold. Then over each subdomain 
Di C D the following integrals satisfied, 
1- 

/D VU__.(n),vr -Jr- U_.~n)r Jr- C____U.U(n)r ~ ( f _  I(U__ ( n - l ) )  -}- C ~t ( n - l )  -~- g ( ~ ( n - - 1 ) ) ) r  (18) 
i J]-)i  

1144 D.S. Daoud



Monotone Iterative Methods and Schwarz Methods 1145 

for all nonnegative r e HI( -r ,T;HI([2 i ) ) .  
2- 

f VU(n).Vr -F ~n) r  + C ~(n)r _~ f _  (/(~(n--1)) JI- C_~ (n-l) H- g(~__(n--1)))r (19) 
J D  i dl_)i  

for all non negative r E HI(-r ,T;H~(f2 i )  NC(f2)). 

In the following we will present the proof of theorem 4. 

Proof. For the proof of theorem 4, it requires to justify the following monotone  
propert ies  of the coupled pair of lower and upper  solution, 

tt < tt i ~ (n) --< ~-i ~ (n+l )  --~ =(~+~)ai - < =(n)ai _< g on Di,  (20) 

u < u (n) < u (~+1) _< g(~+l)_< g(~) _< g on D,  (21) 

and 
tt(n) ~/ ?-ti(n+l) _~ =.(n+l)ai _< g(~) on D.  (22) 

The proof of (20, 21) is by induct ion and it is easy to show tha t  they holds 
for n - 0 which follows from the definition. 

Assume tha t  (20,21) are holds for n, to prove they are t rue  for n replaced by 
n + 1, firstly is to show tha t  (20) satisfies the following inequalit ies 

~ (~+1) < ~  (~+2) =(n+2)  I~+~) 
u < ai - ~-i -< ~i <- ~ -< ~ on Di. 

Consider the i terat ion given by (9) for"a i(~+1) and ~-i~ (,~+2) , respectively 

(at /Ai -t- _C_C)U__I n+l) f ,  (n) o (n) ,-(~) 
- - ~u__~ ) + c . . _ ~  + g t u ~  ) 

, (n+l) ~ (n+l) ,_(n+l) 
(a~ - ~ + ~)~_I ~+~) - f~_~ ) +_~ ~ + g ~  ) 

On subt rac t ion  of the above equations we have 

(at /Ii-F _C)(ttl n+2) ~ (n+l) ~ (n+l) - - ~  ) - ( _ ~ + L ) ( ~  o (~)  , _ ( n )  
- ~ i  ) - g ~ i u i  

=(n+i) 
- ~ i  ) > 0 .  

The above follows from induction assumpt ion  and gu <__ 0. 
Since (u-I n+2) -~-i~ (n+l) ) -  (u (n+l)_ -_u (n) ) > 0 o n _  Si and also we have (u__l n+2) 

~__(n+l) 
i ) - 0 on Di,(-r). 

( ( n + 2 )  o (n+l )  Then  ,u_ i - ~ - i  ) - 0 on ~2i, and then by the m a x i m u m  principle 
(n+2) ~ (n+l) (uln+2) > . (n+l) Di). theorem concluding tha t  .a i -~ - i  _> 0 on Di ~i on 

=(~+~) =(n+2) - -  
Similarly we can prove a i -> ~i on Di, then (20) holds for any n. 

To prove (21) for n replaced by n + 1, and (t,x) E D. For the lower solution 

sequence there  exist an integer i, 1 _< i _< m such tha t  u_(~+x)(t, x) - ~-i~ (~+1) <__ 

i -<-  -< �9 
The above inequalities follows by definition of u (n+l) and the upper  and lower 
solution. For the upper  solution sequence, there exist an integer k, 1 _< k __ m 
such tha t  

~ ( n + l )  __ _(n+l)uk ~__ _(n+2)Uk ~ ~ ( n + l )  . 
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Therefore 
U < U (n) ~__ it (n+l) __~ ~(n+l)  __ ~(n) _~ ~, on D. 

The proof of inequality(22) is by induction as well. For n - 0, the inequality 
follows from the definition. Assume (22) holds with n replaced by ( n -  1), i.e. 

?.t(n--1) <" tti/(n) _< =:(n)ui _< ~(n-i) on D. 

~--r(n-F 1) ~(n) To prove it holds for n, i.e. it(n) --< ~i ~ (nWm) --< ~i --< . Consider the first 

inequality of lemma 3 given by; 

/D Vt t (n)’vr162162 <- ( /D f( i t (n-1))  +C U(n-1) + g(~(n-1)) )r  (23) 
i i 

for all nonnegative r E H I ( - r , T ; H I ( D i ) ) .  
(n+l) 

Next multiply the defining equation for ~-i , by a nonnegative function 
r E HI(-r ,T;H~(T2i))  to obtain 

/D  ,, (n+l) ~ ( n + l ) / ~ 2  ,, (n) o ( n ) ( ~ - I n ) ) ) ( ~  ~7ttln+l).vr -F ~iti )re + C ~-i r - (f(u-i ) + c ~i + g 
i i 

Subtract  (23) from the last equation to obtain; 

fDi \7(itl n+l) -- it(n)).~i~,7r -F (itl n+l) -- it(n))tr "F _.C(itl n+l) -- i t(n))r 
fD, ((fu + c_E)" (n) 1) __ (~I n) ~_, - ~_(~- ) ~u - ~(~-~)))r >_ 0 

The last inequality follows from the induction assumption, the definition of _c, 

and g~ _< O. 
. (n+l) (n) O, (~+1) _ u(~) and on Di (-~) we have _u i - u  - On Si we have ~-i - - , , - 

o (n+l) > u(~) on ~ and therefore by the generalized maximum principle we get ~-i 
of course this inequality is also hold on D. 

=(~+i) To prove g(~) _> a i we consider the second inequality of lemma 3 given 

b y ;  

/ D  v ~ ( n ) . v r  _+_ ~ n ) r  _+. _.c~(n)r ~_ f _  f ( ~ ( n - 1 ) )  -1 L c~(n-1)  -F g(tt  ( n - l ) )  (24) 
i JJ-)i 

for all nonnegative r E gl ( - r ,T ;H~([2 i ) ) .  
Next multiply the defining equation for ~I n+l), by anon negative function 

r E g l ( - r , T ;  H~(I-2i)) to obtain 

V~In+l) .Vr  + Lui )tO + cui r - (f(ui ) + cui + gLui ))r 
i i 

Subtract  the last equation from (24), we obtain 

.=-:. (n+l) fD, v(~(n) =(~+1) (~(~) =(~+~))~r +_~(~(~) _ ~ )r > -.,~ ) . r e +  -.,~ 
fD, ((f~ + c)(~(~-1) - = ( ~ )  (u--(n-l) ~ (~) ~ ) - g ~  - ~  ) ) r  
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The  above inequali ty follows from induction assumption,  the definition of _c, and 

gu < 0 Since =(n+l) _ g(~) on Si, and =(n+l) _ g(~) _ 0 on Di,(_r) therefore by - -  ~ i  t~ i  

the generalized m a x i m u m  principle theorem 1 we obtain  

=(n+i) 
u(~) -> ~i , 

m 

on Di and its also holds on D. 

4 M o n o t o n e  N o n  D e c r e a s i n g  F u n c t i o n  

D e f i n i t i o n  2. Let g(., rl) be a mono tone  non decreasing func t ion  in r/. A func-  
tion u C X is called a lower solution of (1), i f  it satisfies the inequality 

u_ t - Au_u_ - f (t, x, u_u_) - g(t,  x, u_(t - r, x))  <_ 0 on D,  (25) 

u < h on S,  and u(O,x)  <_ ~0(t ,x)  on D(_r) .  Similarly  ~ is called an upper 

solution if  it satisfies the reversed inequalities in(25).  

For a given pair of ordered upper  and lower solutions with u (~ - g and u (~ - u_ 
as two independent  initial i terates for the lower and upper  sequences and the 
respective sequences from the i terat ion process is given by 

~tr~--AUn-t-C~t n --_.C?_t (rt-1) + f ( t , x , u ( n - 1 ) ) + g ( t , x , u ( n - 1 ) ( t - r , x ) )  onD,  (26) 

with 
u n - h ,  o n S ,  and u n - T l o ( t , x )  o n D _ r ,  

to produce the independent  monotone  sequences denoted by {~(~)}, and {u (n) }, 
respectively. The  functions f and g are HSlder continuous functions,  and gv _> 0, 

for ?7 C< u, ~ > c  .4. 
The  following theorem present the convergence of a mult ipl icat ive Schwarz 

sequences for the P DE (1) over two subdomains .  

T h e o r e m  5. Let u (~ - u (-1/2) - u on -D, with u - h on S.  Def ine the Schwarz  

sequence for  (n >_ O) as follows ; 

(0~ - ~ + ~)~(~+1/~) _ ~ ( ~ - 1 / ~ )  + f(~(~-~/~)) + g(~(~-~/~)(t - ~)) on D~, 
u (n+1/2) = u (n) on $1 

u (n+1/2) = ?]o(t, x) on Dl , ( - r )  

and 
(Or - A + _c)u (n+l) - cu (~) + f ( u  (~)) + g(u(n)( t  - r)) on D2 
U (n-t-l) ~-~ U ( n + l / 2 )  o n  $2  

u ( n + l )  - -  r/0(t, X) o n  D 2 , ( _ r )  

Here U (nnt-1/2) is defined as u (n) on -D\D1 and U (n+l)  is defined as  U (n+l/2) on 

D \ D s .  
Then u (~+i/2) ~ u on Di,  i - 1,2 where u is the solution of (1) in A 
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The proof outlines of theorem 5 is similar to the proof given by Lui [6] in the 
case of parabolic equation without t ime delay. 

The other type of Schwarz iterative method to consider is the additive type of 
Schwarz iterative method  which posses high parallelism than  the multiplicative 
type. The following theorem presents the general case for m-subdomains.  

io  ) m . .  - h o n  S T h e o r e m  6. Let  u (~ - u - u__ on D,  for i - 1, . , r n  with u_ 

Define the additive Schwarz  sequence by (n >_ 1) 

(Or A +_c) ~ (n) _ f (u ln-1) )  + culn-1)  + g(uln-1))  on Di n "(~i 

subject to 

In) (n-i) o (n) ( t , )  on Di i -  1 u - u on Si - rio x �9 ~ ’(t i , ( - - r )  ~ ~ . . . ~ m .  

Here, ~ (n) is defined as u (n-z) on -D \ -Di and 
( t  i 

I (t, x), (t, x) e u (n)(t x ) -  max u. 
l < i < m  

Then ~ (n) u i --+ u on Di ,  i - 1 , . . .  , m ,  where u is the solut ion of (1) in A .  

5 C o n c l u s i o n  

In this work we studied the applicability of the monotone  iterative me thod  and 
for the parabolic equation with reaction function involves a t ime delay function 
and we proved the convergence of the generated sequence of approximat ions  to 

the exact solution. 
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