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Abstract. We report on the performance of the explicitly correlated second
order perturbation theory with frozen Gaussian-type geminals. Components in
the Hylleraas energy functional are analyzed using the ansatz based on the s-
and p-wave cusp conditions for singlet and triplet pairs. It is shown that
calculated correlation energies are improved substantially by the introduction of
the frozen geminals.

1   Introduction

In calculations with correlated methods, the basis set convergence is crucial for the
predictions of reliable energetics and properties. It has been shown that enormous
basis functions are required to achieve the chemical accuracy. This is the direct
consequence of the inability of describing the Coulomb cusp[1] with one-electronic
basis. To ameliorate this feature, various alternatives incorporating explicitly
correlated functions have been proposed. The Gaussian-type geminals (GTGs)[2,3,4]
have been used in many places. Especially, Szalewicz and coworkers introduced a
novel alternative in the Hylleraas functional with the requirement of at most 3-
electron integrals[5]. Although Gaussian-type functions never become exact for the
cusp condition, the methods have shown the efficiency predicting correlation energy
to an accuracy of 1µEh, as demonstrated by Cencek and Rychlewski[6] This situation
is comprehensible by evaluating the motion of pair-electrons in the three-dimension
space, i.e. the gain from the cusp around a fixed electron scales as 2

124 rπ , vanishing at

12 0r = .

The R12 methods [7,8,9,10] developed by Kutzelnigg and coworkers utilize the
linear 12r  behavior with systematic approximations using the resolution of identity

(RI) for bypassing the explicit treatment of 3- and 4-electron integrals. A large basis
set is, however, required to guarantee the accuracy of RI with the non-vanishing
ansatz. The long-range nature of the linear 12r  behavior also makes a scalable

treatment less straightforward. As a compromise between GTG and R12, Persson and
Taylor proposed a method which fits the linear 12r  behavior with GTG to avoid the

nonlinear optimization[11]. The method aims at calculations of modest accuracy in
comparison with the previous GTG theories, i.e. sub-mEh accuracy for valence
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correlations within the framework of the second order many-body perturbation theory
(MBPT2).

All of the above methods use explicitly correlated functions with orthogonal
projectors and the Hylleraas energy functional. The transcorrelated method [12,13] of
Boys and Handy is on the basis of a correlation factor independent of pairs. The
similarity transformed Hamiltonian includes at most three-body effective interactions.
Recently, we developed a new transcorrelated method with frozen GTG especially for
pair-wise short-range collisions [14,15]. The method does not require any
optimization of the correlation factor making use of the cusp condition. Instead, the
long-range correlations are dealt with in terms of the usual configuration interaction
(CI)-type expansion. In this paper, we study the second order Hylleraas energy
functional of frozen GTG. When the geminals are universal for correlated pairs, the
component of the kinetic energy operator is closely related to the transcorrelated
Hamiltonian through the virial theorem. The effect of the p-wave cusp condition is
also examined for triplet pairs. Numerical results are given in Sec. 3. and the
conclusion is depicted in Sec. 4.

2   MBPT2 with Frozen GTG

Henceforward, we denote orthonormalized occupied and general orbitals in a given
basis set as ij�  and pq�  respectively. In the GTG method, the second order energy

is expressed as a sum of the usual MBPT2 energy and a correction in the Hylleraas
energy functional outside the Hilbert space spanned by the given basis set,

(2) (2) (2) (2) (2) (2)2V V N ZE E E E E E= + ∆ = − ∆ + ∆ , (1)

(2) ( , ) 2 ( , ) ( ) * * ( , )
12 1 2 1 2 12( ) { } ( ) { }S M S M L S M

N ij
SM i j

E c ij K Q Q Q Q f ij
≥

∆ = −∑∑ , (2)

(2) ( , ) ( , ) 1 * * ( , )
12 1 2 1 2 12{ } ( ) { }S M S M S M

Z ij
SM i j

E c ij r Q Q Q Q f ij−

≥

∆ = −∑∑ , (3)

where *
nQ  and nQ  are one-electron projectors in the virtual spaces for the complete

and given basis sets, respectively, ( , ){ } S Mij  denotes the spin-adapted antisymmetrized

pair functions, ( , )S M
ijc  are variational parameters, and the operator, ( )

12
LK , is an anti-

hermite single commutator between the explicitly correlated geminal, 12f , and the

kinetic energy operator,

( ) 2
12 1 2 12 1 12 1 12 1 2[ , ] ( ) ( ) ( )LK T T f f f= + = − ∇ − ∇ ⋅ ∇ − ∇ , (4)

12f  is expanded as a linear combination of spherically symmetric GTGs. The

quantum numbers of the pair functions take the values, ( , )S M = (0,0),  (1,0),

(1, 1)±  for i j≠  and ( , ) (0,0)S M =  for i j= . The commutator involving the

exchange operator is neglected in this particular work as in the MP2-R12/A ap-
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proximation[9]. All three energy corrections become identical, (2) (2) (2)
V N ZE E E∆ = ∆ = ∆ ,

when the geminal is exact outside the orbital space,

* * ( , ) ( ) 1 ( , )
1 2 1 2 12 12( )( ) { } 0,S M L S M

ijQ Q Q Q c K r ij ijSM−− + = ∀ . (5)

Thus the ratio,

(2) (2)/Z NE Eχ = ∆ ∆ , (6)

which becomes unity in the above condition, is a good measure to indicate the
appropriateness of geminals. It is possible to think of the connection between (2)

VE∆
and (2)

NE∆  as the virial theorem for the cusp condition. When ( , )S M
ijc  are coincident for

all pairs, (2)
NE∆  is directly obtained from the order-by-order expansion of the

Schrödinger equation for the transcorrelated Hamiltonian [14]. In the transcorrelated
method, the first order cusp condition in 12f  is renormalized to infinite order in the

similarity transformed Hamiltonian.
According to the analytical resolution,

* *
1 2 1 2 1 21Q Q P P PP= − − + , (7)

the functional is divided as

(2) (2) (2) (2) (2)
1 2 1 2 1 2[1] [ ] [ ] [ ]N N N N NE E E P P E PP E Q Q∆ = ∆ − ∆ + + ∆ − ∆ , (8)

(2) ( , ) 2 ( , ) ( ) ( , )
12 12[ ] ( ) { } { }S M S M L S M

N ij
SM i j

E O c ij K Of ij
≥

∆ = ∑∑ , (9)

and a similar expression for (2)
ZE∆ . The component, (2)[1]NE∆ , can be rewritten in the

commutator form leading to the operator, ( )
12

QK , which appears in the transcorrelated

method,

(2) ( , ) 2 ( , ) ( ) ( , )
12[1] ( ) { } { }S M S M Q S M

N ij
SM i j

E c ij K ij
≥

∆ = ∑∑ , (10)

( ) ( )
12 12 12 1 12 1 12

1
[ , ] ( ) ( )

2
Q LK K f f f= = − ∇ ⋅ ∇ .

(11)

The term with single projectors reduces to 3-electron integrals and is approximated
using RI of Kutzelnigg and Klopper[8], in the spin orbital basis as,

( ) ( )
12 1 12 12 12

L L

mp

ij K P f kl ij K mp mp f kl≅ ∑ , (12)

Since the 2-electron integrals in the RI expressions involve three occupied orbitals,
the maximum angular momentum required in the RI basis becomes 3 occL  for the

highest occupied angular momentum, occL , in an atomic calculation. Thus s-, f-, and i-
functions contribute for systems with s-, p-, and d-occupied shells, respectively. Very
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Fig. 1. Frozen geminals as functions of Zc

recently, making use of density fitting, we developed a novel decomposition scheme,
which reduces the requirement to

 
2 occL [16]. We do not employ the scheme in this

work, focusing on molecules without d-occupied orbitals. The performance of the
approximation is investigated using the index of RI,

(2) (2) (2)
1 2 1 2 1 2[ ] 2 [ ] 4 [ ]N Z ZE P P E P P E PPτ = ∆ + − ∆ + + ∆ (13)

The term, (2)
1 2[ ]ZE PP∆ , dependent on the description of occupied orbitals has

relatively large amplitude whereas (2)
1 2[ ]NE PP∆  is zero because of the symmetry of the

operator, ( )LK . The exact energy for a given basis and 12f ,

(2) (2)
V VE E τ τ= − + (14)

is estimated with a reliable τ  of an augmented basis set.

We bypass the optimizations of the parameters, ( , )S M
ijc , the coefficients and

exponents of GTGs, using a template geminal, 12
tf , expanded as a linear combination

of 10 Gaussians. It is determined in such a way that the Coulomb repulsion multiplied
by a short-range weight Gaussian is suppressed in the similarity transformed
Hamiltonian [14]. For the exponents, we use an even-tempered sequence in the range

between 610 and 0.5 along with the weight Gaussian with the exponents, 5. 12
tf  is

further transformed with a scaling parameter, Zc , as

1
12 12( ; ) ( )t

Z Z Zf r c c f c r−= . (15)

Fig. 1 shows some profiles of 12( ; )Zf r c  with different scaling parameters. The

effective radius of an
explicitly correlated function
is of Zc  with a template

function whereas the
approximate slope, 1/ 2 , is
maintained around 12 0r =  by

the scaling. As for the
parameter, ( , )S M

ijc , Klopper

developed a unitary invariant
formulation to pair
functionals in the MP2-R12
theory [17]. Such a
convention is not employed
in this work to keep the
short-range behavior of 12f . Hence

we use (0,0) 1ijc = , for all singlet pairs. The triplet pairs ( 1)S =  are antisymmetric in

the spatial part to follow the p-wave cusp condition[18] and the parameters,
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(1, ) 1/ 2M
ijc = , are used for the pairs. The latter condition is not crucial especially for

the use of a short-range geminal because of the Fermi hole at 12 0r = .

Table 1. Correlation energies of the Ne atom in mEh. All electrons are correlated

Basis set b)

zc τ τ− a) χ (2)
VE (2)

VE (2)E

VDZ 1.0 -41.05 0.82 -381.69 -340.6 -255.48
(9s4p1d) 2.0 -16.54 1.08 -351.25 -334.7

3.0 -7.89 1.24 -322.06 -314.1
VTZ 1.0 -6.98 0.76 -377.39 -370.4 -321.93
(10s5p2d1f) 2.0 -3.58 0.98 -375.26 -371.7

3.0 -2.14 1.16 -364.33 -362.2
VQZ 1.0 -1.52 0.75 -381.32 -379.8 -351.22
(12s6p3d2f1g) 2.0 -0.87 0.89 -382.86 -382.0

3.0 -0.63 1.06 -379.48 -378.9
CVTZ 1.0 -5.40 0.86 -382.03 -376.6 -333.49
(12s7p3d1f) 2.0 -1.79 1.05 -374.46 -372.7

3.0 -0.91 1.19 -364.59 -363.7
AVDZ 1.0 -27.45 0.80 -395.07 -367.6 -278.21
(10s5p2d) 2.0 -15.32 1.07 -371.26 -355.9

3.0 -7.66 1.23 -343.51 -335.9
AVTZ 1.0 -3.20 0.75 -381.83 -378.6 -330.17
(11s6p3d2f) 2.0 -3.24 1.12 -382.35 -379.1

3.0 -2.06 1.14 -371.64 -369.6
ACVQZ c) 1.0 -13.43 0.97 -399.84 -386.4 -320.08
(16s10p6d) 2.0 -5.60 1.32 -373.57 -367.9

3.0 -2.44 1.53 -354.50 -352.1
ACVQZ c) 1.0 0.00 0.89 -387.55 -387.5 -354.94
(16s10p6d4f) 2.0 0.00 1.12 -382.35 -382.4

3.0 0.00 1.29 -375.56 -375.6
ACVQZ c) 1.0 0.00 0.85 -387.14 -387.1 -365.91
(16s10p6d4f2g) 2.0 0.00 1.00 -386.08 -386.1

3.0 0.00 1.17 -382.69 -382.7
Limit -388.1d)

a)  The reference values of the index, τ , are based on the calculations with the aug-cc-pCVQZ

(uncontracted) set. It takes the values, 1354.27, 447.03, and 200.98 mEh for zc =1.0, 2.0, and

3.0, respectively.
b) The uncontracted set of the primitives in cc-p(C)VXZ  and aug-cc-pCVXZ sets.
c) Angular subcomponents of the reference primitive set, ACVQZ (uncontracted).
d) A estimate value in the MBPT2 limit taken from Ref.[1].

3   Results and Discussions

Table 1 shows the results of the Ne atom with the uncontracted functions in the
correlation consistent basis sets [20,21]. We took the reference value of the RI index,
τ , from the calculations with aug-cc-pCVQZ (uncontracted) set, which is sufficiently
accurate to ca. 0.2mEh [16]. The errors in RI, τ τ− , are significant especially for the
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use of a small basis set and a large zc . The positive increment of (2)
VE  with 1zc =

from VDZ to VTZ is mostly an artifact of the insufficiency of the DZV set, in which
the f-shells are absent. The energy, –399.84 mEh, in the calculation of (16s10p6d) and

1zc =   is also lower than the MBPT2 limit by ca. 12 mEh artificially. It is preferable

to use the decomposition scheme with density fitting to bypass the requirement of the
f-shells[16]. The slightly positive increment from (16s10p6d4f) to (16s10p6d4f2g) is
due to the neglect of the commutator between the exchange and geminal operators
since the augmentation of the g-shell does not affect the accuracy of RI.

The electron correlation is a short-range phenomenon. Thus the calculation with
VXZ sets shows that the results become less sensitive to the choice of zc  with the

increase of the cardinal number, X. The series of ACVQZ shows quite different
behavior; the estimated energy, (2)

VE , is almost saturated at the d-shell and is less

sensitive to the augmentation of angular functions at 1zc = . In the difference between

VTZ and CVTZ, the results with 2zc =  and 3 are hardly altered whereas there is an

improvement, ca. 5mEh for 1zc = . This implies that the geminal with a large radius

is inappropriate for correlations concerning core electrons and the situation is
improved significantly by the augmentation of the core correlation functions.

Table 2. MBPT2 energies (in mEh) of some typical molecules computed with the cc-pVTZ
basis set (uncontracted) and 2zc =

Molecule χ (2)E % (2)
VE % Limita)

CH2 1.00 -183.79 87.6 -202.15 96.3 -209.9
CH4 1.05 -243.89 89.1 -265.34 97.0 -273.6
NH3 1.05 -283.32 87.7 -310.81 96.3 -322.9
H2O 1.06 -318.46 87.9 -347.45 96.0 -362.1
HF 1.01 -326.07 84.8 -370.27 96.3 -384.6
Ne 0.98 -321.93 83.0 -375.26 96.7 -388.1
CO 1.02 -450.42 86.7 -501.71 96.5 -519.7
N2 1.02 -469.31 87.4 -518.20 96.5 -536.9
F2 1.00 -630.61 85.1 -714.74 96.5 -740.6

a) The values in the Refs. [19] and [22]

We show the calculated MBPT2 energies of some molecules with cc-pVTZ basis
set (uncontracted) and 2zc =  in Table 2. The conventional MBPT2 covers from 83%

(Ne) to 89% (CH4) of the correlation energies in the complete basis limits. In
explicitly correlated calculations, the ratio, χ , is dependent on the choice of zc  and

basis set as seen in the Ne result. It however ranges in a small area between 0.98 (Ne)
and 1.06 (H2O) irrespective of the system. Generally speaking, the error of RI reduces
in the calculation of a molecule compared to atoms. The effects are thus estimated
less than 1% (for Ne) in the correlation energy. The use of the frozen GTG reproduces
ca. 96% of the MBPT2 energies reducing the correlation error by 2/3–3/4 compared
to the conventional expansion.
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4   Conclusion

We have illustrated the MBPT2 method with frozen GTG. Instead of minimizing the
pair energy functional, the s- and p-wave cusp conditions are utilized in adapting the
geminal. It is shown that the present method improves the calculation of MBPT2
energy substantially.
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