Terascale I/0 Solutions

Nathan Stone, John Kochmar, Paul Nowoczynski, J. Ray Scott, Derek Simmel,
Jason Sommerfield, and Chad Vizino

Pittsburgh Supercomputing Center, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
{stone, kochmar, pauln, scott, dsimmel, jasons, vizino}@psc.edu

Abstract. PSC has architected and delivered the TCS-1 machine, a Terascale
Computing System for use in unclassified research. PSC has enhanced the
effective usability and utilization of this resource by providing custom I/O
solutions in four key areas: high-performance communication, high-
performance file migration, checkpoint/recovery and an updated hierarchical
storage management system. These I/O solutions have a synergistic effect that
is leveraged in their design, implementation and integration. Each successive
enhancement builds on its predecessors, thereby exacting the highest
performance (e.g. multi GB/sec file transfers) from the available hardware.
This paper presents a technical overview of these solutions from design to
integration to application.

1 Introduction

We have four well-developed and unique custom I/O solutions to suit the needs of
TCS-1 users: high-performance communication, high-performance file migration,
checkpoint/recovery and a new hierarchical storage manager. These solutions,
although they address independent issues, have been integrated in ways that can and
will allow TCS-1 users an unprecedented quality of service in these areas. The
impact of these solutions enhances the performance both of the TCS-1 machine and of
the applications that run there.

1.1 Machine Configuration

The TCS-1 machine is a cluster of more than 750 Compaq ES-45 quad-processor
servers, which are built with 1.0 GHz EV68 generation Alpha processors. Thus there
is a pool of more than 3000 processors available to the compute partition of the
machine, which does not include “hot” spare nodes positioned for immediate and
automated scheduling in the case of a compute node failure. The nodes are
interconnected via two independent communication fabrics (or ‘rails”) called
“QsNet”,! by Quadrics. The TCS-1 is a Compaq AlphaServer SC? system. As such

! See: http://www.quadrics.com/.
2 See: http://www.hp.com/techservers/systems/sys_sc.html.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 13-22, 2003.
© Springer-Verlag Berlin Heidelberg 2003

14 N. Stone et al.

its software configuration is composed from three layers. The operating system on
each node is Tru64. Nodes are grouped into sets of 32 by a cluster-management layer
called TruCluster, which creates clusters from Tru64 nodes. In addition to providing
high-availability of services that run within the TruClusters, this layer provides some
advanced file system features. The third layer is called the Resource Management
System (RMS). RMS provides for some level of hardware event handling, a basic job
queueing interface, a parallel job launching mechanism and the ability to divide the
available nodes into “partitions” for convenience. Many of our high-level site
customizations are layered over RMS, from custom scheduling and job control to
event monitoring and management, although some site customizations necessarily
intercede at a lower level.

2 TCSCOMM

The first feature we present is a high-performance communication library called
TCSCOMM. This is a user-level library that allows applications to use the QsNet to
communicate outside of the RMS environment. By using TCSCOMM, system level
daemons and user-level applications can transmit data at near Quadrics network rated
speeds, with extremely low latencies.

QsNet is a high bandwidth, low latency network comprised of 2 major components:
the Elan network cards and the Elite switch components. A full “fat-tree” switch
topology allows point-to-point non-contending communication between any two
nodes at full network bandwidth. On TCS-1 full bandwidth is approximately
250MB/s per QsNet rail with a 5 microsecond latency.

2.1 The Elan System Libraries

Two system libraries are available for communicating over QsNet using the Elan
cards: the 1ibelan? library, and the 1ibelan3 library. The 1ibelan library is a
high-level library that facilitates communications between processes locally and on
other machines connected to the switch. This library requires RMS to set the memory
layout, communications contexts and capabilities. This library is designed to be less
architecture dependent, so that applications and libraries written against this library
can be more easily ported to future versions of the QsNet interconnect.

The libelan3 library, a lower level interface, is specific to the elan3 card and
interconnect and much of the 1ibelan library is based on it. With this interface,
applications can control the specific memory layout for communications, as well as
create specific context and capabilities for the communications. In addition
applications can access the lowest levels of the communication layer, providing the
highest levels of performance at the expense of code complexity and portability to
future versions of the interconnect.

3 Quadrics Supercomputers World Ltd. Elan Programming Manual, January 1999.

Terascale I/0 Solutions 15

2.2 A Custom Elan3-Based API

It was our intent to use the QsNet for system applications and daemons (running

outside of RMS), so we designed the TCSCOMM API to use the 1ibelan3 library

rather than the 1ibelan library. Using the 1ibelan3 library had the following
benefits:

e It allowed us to provide communications between Tru64 and Linux (IA-32 and
IA-64) hosts on the same QsNet network by ensuring the same memory layouts
on the two architectures. By default, the 1ibelan library chooses a layout that
matches the process memory layout, which differed between the various
architectures and OSes.

e It allowed us to create custom capabilities and contexts for the running
applications. This allowed us to run outside of RMS, so that we could create
system daemons and applications that didn't need to depend on RMS to run.

e Using libelan3 also allowed us to develop a multi-rail communications
scheme that we use to improve performance by striping communications over
multiple independent QsNet rails, improving over-all performance.

At the moment, the library only supports point-to-point communications. There is no
concept in this library of a multi-cast operation, even though the QsNet supports this
type of operation in the form of a hardware broadcast.

2.3 Memory Management

Mapping the memory directly from the Elan card allows for the greatest performance,
over 220 MB/s on a single rail, and better than 400 MB/s over 2 rails. This contrasts
with 170MB/s and 270MB/s when not using the API’s memory malloc routines,
respectively. The maximum memory available to use off of the card is 32 MB. This
size is configurable at library compile time, and in addition to the 32MB available for
tcscomm Malloc, 16MB is used for send/receive buffers for the tcscomm Send
and tcscomm Recv calls when using memory not allocated via
tcscomm Malloc.

2.4 Message Transfer Protocol

The TCSCOMM library uses a two-stage method to transfer data from one client to

another:

e Queued DMA operations are used to send data transfer requests from the sender
to the receiver.

e The receiver uses the elan3_getdma function to transfer large blocks of data from
the sender to the receiver, based on a request pulled from the message queue.
When one process wants to send data to another process, it stores the data in an area
of memory known to the library, and then tells the remote process to fetch the data,

allowing the receiver to synchronize the data transfers.

16 N. Stone et al.

3 TCSIO

The second feature we present is a high-performance file migration utility called
TCSIO. This is an object-oriented client-server toolkit. As such, we introduce the
presence of an “I/O daemon” that runs on each node where disk resources are to be
presented—both file servers and compute nodes, for the purpose of accessing their
local disks. The I/O daemons are conversant in multiple transport protocols,
including a reference implementation in TCP/IP and an expansion to the TCSCOMM
library. The protocol for connecting to an I/O daemon begins with a TCP/IP socket
connection and includes, among other things, a negotiation to the highest performance
protocol for bulk data transport. Metadata are always transmitted over the TCP/IP
connection. By separating functionality between the client and the I/O daemon we
achieve several useful benefits, as follows.

3.1 High-Performance

All of the performance-oriented software is isolated within the daemons, minimizing
exposure to the user’s environment. This client-server subsystem has been shown to
achieve transfers at roughly 2 GB/sec aggregate, utilizing parallelism for the transfer
of multiple files. Furthermore, distributed clients transferring to /dev/null on the file
servers have been benchmarked at roughly 2.4 GB/sec, revealing that faster file
systems on the file servers would improve the overall transfer performance. This is
an area of ongoing work.

3.2 Bypass NFS Cross-Mounts

The presence of an I/O daemon at the point of origin of disk resources allows us to
explicitly transfer files from source to destination via our custom TCSIO protocol.
This has the immediate advantage that we can replace NFS cross-mounts with our
higher-performance protocol, which is faster than NFS due to the use of TCSCOMM.
Furthermore, in a system the size of TCS-1, the high node-count can lead to literally
hundreds of cross-mounted file systems. This presents a scaling problem that can
significantly degrade the performance of conventional files systems such as NFS.

3.3 Third-Party Copy

By passing a copy request from a client to the I/O daemon the client can leverage the
I/O capabilities of a reliable third-party process. Thus a compute job can, for
example, pass a non-blocking file migration request to an I[/O daemon and return to
CPU-intensive compute tasks while the I/O daemon (a separate process) handles the
I/O intensive tasks involved with the migration.

Terascale I/0 Solutions 17

3.4 Pluggable Transport Protocols

Communications in the I/O daemon are encapsulated in a “Connection” object. In
this way, future transport protocols can be added with minimal code modification, in a
manner completely transparent to user applications running on the system.

3.5 I/0 Redirection

Some applications of TCSCOMM are being introduced directly into users’
applications. One of these instances will use the TCSCOMM library directly, not to
migrate an existing file, but to redirect file-oriented I/O to a remote file server. This
will be further described in the Checkpoint/Recovery section below.

3.6 Extensible Service Integration

The I/O daemon has already been instrumented with additional features, beyond file
migration, for other custom TCS-1 services. Thus, the I/O daemon provides a
foundation for building other integrated services, like checkpoint/recovery and our
new HSM implementation, which we discuss below.

4 Checkpoint/Recovery (CPR)

We have created an application-level checkpoint/recovery (CPR) library to enable
TCS-1 users to checkpoint and recover jobs in a way that makes optimal use of
machine resources and provides additional features otherwise inaccessible to them.
Of dominant concern in the design of this library was the minimization of “non-
compute” time—time spent either in I/O or library overhead.

Some features of the CPR library are discussed in a previous publication,* including
the description of independent I/O schemata (also called “plans”) and how a user’s
job selects the desired I/O schema for a particular job execution by the means of an
environment variable. Of note is the fact that each I/O plan is a complete
implementation for generating and retrieving checkpoint data. As such, any of the
available plans could be selected for any job execution, although certain job types
may experience performance differences between the various I/O schemata.
Furthermore, since all plans are accessed via the same fixed API, the CPR library is
extensible to support new schema implementations. To access a newly added schema,
users need only re-link their application to the updated CPR library and update the
corresponding CPR plan environment variable.

4N. Stone, J.R. Scott, J. Kochmar, J. Sommerfield, R. Subramanya, R. Reddy, K. Vargo, “Mass
Storage on the Terascale Computing System”, Proceedings of the 18" IEEE Symposium on
Mass Storage Systems and Technologies, p. 67, 2001.

18 N. Stone et al.

The checkpoint implementation also supports a passive pre-emption mechanism. It
provides users with a means for checking whether their job should write a checkpoint
in anticipation of an impending job termination.

The recovery implementation is also dependent on the selected checkpoint schema.
All plans rely upon some type of redundancy in storing checkpoint files, as a means
of protecting against lost of files, storage media or file-serving nodes. Recovery plans
range from retrieving full duplicates of lost files to regenerating lost files from parity
files. In all cases the recovery is handled by a single call to the API.

4.1 Failover Syntax

When identifying files internally, the checkpoint system utilizes a failover syntax that
expresses potentially redundant routes to a given file path. Failover paths are
generally strings that include host and path notations with reserved keywords. Here
are a few illustrative examples:

“node[4-10] : /scratch/” indicates the absolute path “/scratch/” that
exists only on the hosts “node4, node5, ... nodel0” and is only accessible locally on
those nodes;

“{local}:/local/checkpoint/” indicates the absolute path
“/local/checkpoint/” that exists on all nodes but is exclusively accessible on
the node where it is written;

“{cluster}: /usr/storage/” indicates the absolute path “/usr/storage/”
that is mounted from the cluster file system and is thus accessible equally from all
nodes within a given TruCluster set;

“node[0-9] (n+1) : /usr/speedy/” indicates the absolute path
“/usr/speedy/” that exists on hosts “node0, nodel, ... node9” and are pair-wise
redundantly accessible (e.g. via multi-initiator SCSI), for example nodeO and nodel
can access each other’s /usr/speedy, and similarly for node2 and node3, node4 and
node5, and so on.

Using this failover notation during the creation and registration of checkpoint files
allows the propagation of this redundancy information to the recovery step, thereby
providing alternative access routes to checkpoint data in the case of hardware or other
failures.

Performance of the checkpoint I/O methods is internally monitored and reported to an
external database for offline analysis and evaluation. In the event that this reporting
becomes burdensome either to the user’s job execution or the system’s recording
resources this behavior can be deactivated by a switch in a system configuration file
/etc/tcsiod.conf.

4.2 Scheduler Integration
Checkpoint/recovery is of some usefulness without automation, but its full value is

only achieved when it is integrated into the scheduling environment for automated
restart and recovery. Our CPR system has been integrated into the Resource

Terascale I/0 Solutions 19

Management System (RMS) to automatically flag machine-failure conditions as
distinct from job failure conditions. It has also been integrated into “Simon,” our
custom scheduler based upon OpenPBS.> PBS, like most schedulers, provides hooks
for scripts that can be run immediately before and after job execution; for PBS these
are called the “prologue” and “epilogue” scripts. By providing a supplement to the
epilogue script we ensure proper cleanup of CPR resources, re-running of failed jobs
that will need to resume from checkpoint and notification of administrators and the
user of noteworthy job-related conditions. The epilogue script even automates
refunding of “lost” compute time, which we discuss further below. The precise steps
executed within that script depend on both the job exit status, captured by RMS, and
the state information, if any, held in the checkpoint system. In this way jobs that
abnormally terminate because of machine failure conditions will be automatically
recovered without intervention from the administrator or the user.

4.3 Accounting Integration

Many computing sites monitor their usage, charging users or grants directly for
resources consumed by compute jobs. The accuracy of the records is imperative.
Since CPR handling occurs within a user’s job, CPR handling can cause extensions to
the wall-time consumed by a user’s job and thus, an inflated job charge. The
integration of the CPR system and the scheduling system is made complete by a
further integration of the accounting system. To eliminate charging the user for CPR
handling, the CPR system keeps track of the time spent in CPR activities and reports
this in a table that is available to our accounting system. Furthermore, by measuring
the time between the last complete checkpoint and the end of a failed job one can
determine the amount of time “lost” by a compute job that terminated due to machine
failure and post that in a manner accessible to the accounting system as well. In our
CPR system the PBS epilogue script records this automatically, as noted above. In
this way, resources lost or consumed by CPR activities can be credited back to the
user’s allocation.

By policy, neither nodes nor processors within TCS-1 are time-shared. Thus, the
formula for job charging on TCS-1 is as follows:

N,
C =Y (UT, - RT, -min(LT,, MaxLT))* N

i=1

where:
C = total charge for user’s job (node-hrs)
N, = total number of RMS resources created by OpenPBS job
UT; = wall-clock time (hrs) for each RMS resource
RT; =time spent in checkpoint file recovery for each RMS resource
LT; = “lost time” calculated for each RMS resource
MaxLT = maximum refundable “lost time”, set by policy
N = number of nodes requested

5 See: http://www.openpbs.com/.

20 N. Stone et al.

4.4 Examples

Encouraging users to make use of application-level checkpointing is, to a large
degree, a matter of user education and is motivated by the direct advantages to the
user. Aside from the obvious benefit of job recovery, users gain recovery automation,
an assurance of checkpoint file availability, and access to the highest-performance
storage resources on the TCS-1 by using our CPR library. As a first step toward
achieving this user education we provide many examples of CPR-instrumented codes
ranging from simple two-integer test cases to Laplace solvers, in both C and Fortran.
In this way we hope to make it easier for users to understand how to properly utilize
the library and its features.

S Hierarchical Storage Manager

We have designed a new archiving system that will tightly integrate into TCS-1. The
Scalable Lightweight Archival Storage Hierarchy (SLASH) is a heterogenous system
comprised of two major components. The first component is the Linux Cache Node
(LCN) cluster. LCNs are arranged as a loosely distributed caching cluster that is
enmeshed in the QsNet network. The second component is XFS, a metadata file
system that distributes and maintains the metadata for the distributed disk caches.
The third component is DMF, a tape archiver that manages the tape archives and their
front-end disk cache. XFS and DMF are tightly integrated, as discussed below.

5.1 Linux Cache Nodes (LCNs)

The Linux cache nodes (LCNs) have been designed to handle considerable amounts
of I/O and house many disks. LCNs have the internal capacity to hold up to 32
commodity IDE devices. Given today's maximum disk density a single LCN's usable
storage capacity is over § terabytes.

The software layer, SLASH-SWL, executes a number of tasks such as getting
permission from XFS for file system update operations and obtaining LCN residency
information for specific file. SLASH-SWL also manages the local cache consistency,
which offloads tasks from XFS.

SLASH-SWL exports an API that most file transport applications, e.g. the TCS I/O
daemons, can use. When uploading data to the HSM, an I/O daemon running on an
LCN obtains the target upload file descriptor from a SLASH-SWL API function
(“hsmCacheUploadInit”) instead of directly from an open() system function.
For HSM downloads another SLASH-SWL API call
(“hsmCacheDownloadInit”) is used, which can either return a local read-only
file descriptor or, if the local LCN does not have the most recent cached file, redirect
I/O to another I/O daemon on the LCN holding the most recent version.

Terascale I/0 Solutions 21

5.2 XFS/DMF

The XFS° subsystem is an advanced Unix file system that incorporates capability for
user-supplied information into its metadata. It runs on Silicon Graphics, Inc. (SGI)
hardware as well as most Linux platforms. The Data Migration Facility (DMF)’ is an
additional software package, also from SGI, that integrated HSM functionality into
the XFS file system. DMEF is currently most mature on the SGI hardware platform,
though Linux options are emerging. The current architecture has a moderately sized
and robust SGI server connected running the XFS/DMF file system. The design
includes over ten terabytes of disk cache presented by several external RAID
enclosures and petabytes of tape storage connected to the SGI machine. Failover
paths to these storage devices are possible through a Fibre Channel switch.

SLASH uses the “user metadata location" of the XFS metadata to store its own
internal consistency information. Noted information stored here is the identifier of
the LCN, if any, which holds the most recent version of the file. SLASH requests
from the LCNs are transmitted via an RPC layer to the XFS file system.

5.3 User Access Methods

The preferred access method for SLASH is the TCSIO subsystem. Used within the
Terascale Computing system, TCSIO to SLASH will perform data transfers via the
Quadrics network. When transferring groups of files, such as in the case of reading or
writing checkpoint files, TCSIO can take advantage of SLASH's large distributed
cache by batching many simultaneous requests to the LCNs. This method will yield
bandwidths of order gigabytes per second.

A secure, interactive client, similar to 'ftp', will also be provided. This will be
accessible via the wide or local area network. The interactive client will be built
with the SLASH-SWL API so that it will be able to take advantage of the large
distributed cache.

6 Total Integration

We have presented a discussion of application services designed to augment both the
performance of the TCS-1 machine and the applications that run there. Our
innovations range from communications to file systems to job checkpoint/recovery to
hierarchical storage, yet all of these areas have been integrated to extract the highest

6 See http://0ss.sgi.com/projects/xfs/.
7 See http://www.sgi.com/products/storage/software.html#dmf.

22 N. Stone et al.

possible performance from this machine. The I/O enhancements described above are
not mere research constructs. These are deeply integrated into one another and into
the production services now used by many TCS-1 users. In addition, some of these
services have been designed and written in a machine-independent or even platform-
independent manner to facilitate portability of these facilities to additional platforms
at PSC and elsewhere in the scientific computing community.

	1 Introduction
	1.1 Machine Configuration

	2 TCSCOMM
	2.1 The Elan System Libraries
	2.2 A Custom Elan3-Based API
	2.3 Memory Management
	2.4 Message Transfer Protocol

	3 TCSIO
	3.1 High-Performance
	3.2 Bypass NFS Cross-Mounts
	3.3 Third-Party Copy
	3.4 Pluggable Transport Protocols
	3.5 I/O Redirection
	3.6 Extensible Service Integration

	4 Checkpoint/Recovery (CPR)
	4.1 Failover Syntax
	4.2 Scheduler Integration
	4.3 Accounting Integration
	4.4 Examples

	5 Hierarchical Storage Manager
	5.1 Linux Cache Nodes (LCNs)
	5.2 XFS/DMF
	5.3 User Access Methods

	6 Total Integration

