
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 191–200, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Dynamic Performance Tuning of Distributed
Programming Libraries1

Anna Morajko, Oleg Morajko, Josep Jorba, Tomàs Margalef, and Emilio Luque

Computer Science Department. Universitat Autònoma de Barcelona.
08193 Bellaterra (Spain)

ania@aows10.uab.es, olegm@aia.ptv.es,
{josep.jorba, tomas.margalef, emilio.luque}@uab.es

Abstract. The use of distributed programming libraries is very common in the
development of scientific and engineering applications. These libraries, from
message passing libraries to numerical libraries, are designed in a very general
way to be useful for a wide range of applications. Therefore, there are several
polices that must be adapted to the particular application, system and input data
to provide the expected performance. Our objective is develop an environment
for tuning the use of a distributed library on the fly according to the dynamic
behavior of the applications. In this paper, we present as an example a tuning
environment for PVM-based applications. We show potential bottlenecks when
using PVM. We also include tuning scenarios that describe the evaluation of the
application behavior and the solutions that can improve the performance.

1 Introduction

High performance computing is provoking a new evolution in many fields of science
and engineering. Physicists, biologists or chemists have become developers and end-
users of high performance applications running on powerful systems (parallel
systems, clusters, or even Grid systems). However, the design and development of
such applications from scratch is a complex task that requires a high degree of
expertise and deep knowledge of the system and the programming capabilities.

To insulate the programmer from the low level details, several libraries ranging
from communication and message passing to numerical methods and programming
frameworks have been developed. These libraries offer a higher level of abstraction
and facilitate the design and development of high performance applications. However,
these libraries are developed in a general way to be useful for a wide range of
applications. Therefore, to accomplish the performance expectations, a developer
must tune the library use by choosing the best polices considering application
requirements and the environment. Such tuning process requires a deep knowledge of
the library that is not necessary for developing applications. Moreover, these
adaptations do not depend only on the application features, but also on the input data

1 This work has been supported by the MCyT (Spain) under contract TIC2001-2592, by the

European Commission under contract IST- 2000-28077 (APART 2) and partially supported
by the Generalitat de Catalunya – GRC 2001SGR-00218.

192 A. Morajko et al.

or on the dynamically changing conditions of the application execution. Therefore, it
is very hard to take into account all these variable conditions when developing
applications. It is necessary then to tune the library usage on the fly during the
application execution.

The goal is not to tune the library by modifying its source code, but to improve the
way the library is used, e.g. switching a parameter in a library function call according
to the variable environment conditions. This approach does not require analysis or
tuning specific for an application, instead the optimization process is based on the
features characteristic for the library.

The tuning is a complex and time-consuming task, and not feasible if it must be
carried out manually by a developer. Therefore, it is beneficial to accomplish the
performance expectations by using an automatic tuning environment. Such an
environment is based on an expert knowledge of the possible bottlenecks and library
limitations. It automatically inserts the required instrumentation to determine the
current application behavior, decides what parameters must be modified and inserts
the modifications dynamically to improve the performance of the whole application.

This approach is powerful because we focus on tuning the use of the library.
Investigating the library it is possible to find its potential drawbacks. For each
problem then the set of specific information can be determined, such as what should
be measured to determine the behavior, which should be the desired behavior and
which parameter should be modified to improve the application performance. The
developers can concentrate on designing and developing an application, and submit it
with the input data. After this the dynamic tuning environment takes care of
controlling the application execution to ensure a good performance.

In the following sections of this paper, the dynamic tuning approach is presented.
In Section 2, we introduce concepts and design of the MATE environment that
supports dynamic tuning of parallel applications. Section 3 describes the aspects of
PVM library considered as bottlenecks and presents their example optimizations.
Section 4 shows practical experiments with dynamic tuning that we have conducted
using MATE environment. Finally, Section 5 summarizes and concludes this work.

2 MATE

The main goal of dynamic tuning is to improve the application performance on the
fly. This approach is suitable for applications with dynamic conditions, like variable
behavior depending on the input data or variable behavior during the application
execution. Running the application under control of a dynamic tuning system allows
for adapting its behavior to the existing conditions. We propose a novel Monitoring,
Analysis and Tuning Environment (called MATE) that provides dynamic automatic
tuning of parallel applications. Our presentation of MATE focuses on its use with the
PVM library [1].

MATE performs dynamic tuning in three basic and continuous phases: monitoring,
performance analysis and modifications. This environment dynamically and
automatically instruments and traces a running application to gather information
about the application behavior. The analysis phase searches for bottlenecks, detects
their causes and gives solutions on how to overcome them. Finally, the application is

Dynamic Performance Tuning of Distributed Programming Libraries 193

dynamically tuned by applying given solution. Moreover, the application does not
need to be re-compiled, re-linked and restarted.

2.1 Basic Concepts

To achieve the objective set out by our work and allow for the application
modifications on the fly, it is necessary to use dynamic instrumentation [2]. The basic
idea is to defer program instrumentation until it is in execution and insert, modify and
delete this instrumentation dynamically during run-time. MATE utilizes a special
library called DynInst [3], [4] for two main purposes:

− Monitoring – to instrument an application during its execution. It is possible to
add/remove a code that collects information about the application behavior.

− Tuning – to modify an application behavior. It is possible to change the code of the
running application to improve its performance.

Since a parallel application consists of many intercommunicating processes physically
executed on different machines, we distribute the modules of MATE to machines
where the processes are running. To improve performance of the whole application,
we gather information about all processes at a central location.

The tuning methods must be kept simple. The changes cannot affect the correct
functioning of the application. We cannot assume that an application variable can be
modified without taking any precautions. These factors limit the application of
dynamic tuning, hence it is desired to provide external specifications of the programs
behavior [5]. In MATE we assume the following terms: measure points, performance
model, tuning points/actions. A measure point is a location in a process where the
instrumentation must be inserted to provide measurements. A performance model
consists of activating conditions (conditions in the application behavior considered to
be a bottleneck) and/or formulas that allow for finding the optimal conditions. Tuning
points are the elements that may be changed to improve application performance.
Tuning action represents the action to be performed on a tuning point.

2.2 Design

As it is shown in Figure 1, MATE consists of three main components that cooperate
among themselves controlling the execution of the application: a set of distributed
Monitor modules (Monitors), a global Analyzer module (Analyzer), and a set of
distributed Tuner modules (Tuners).

2.3 Monitor

The Monitors are distributed to all machines where a parallel application is running.
They control the processes and collect the events produced during the execution. Each
Monitor instance is responsible for a single machine. As PVM-based applications can
create new processes and add new machines during execution, the Monitor integrates
two special PVM services: the “tasker service” responsible for new process creation

194 A. Morajko et al.

and the “hoster service” that controls machine management. The Monitor is able then
to control virtual machine changes (add/remove host), as well as application processes
(add/remove process). This information is always up-to-date and any changes are sent
to the Analyzer module.

Fig. 1. Basic design of MATE in PVM environment.

To collect events, the Monitor dynamically inserts instrumentation into the original
program execution at points needed to detect performance problems. Instrumentation
generates events containing information about what happened, when and where. For
example, if communication is monitored, the instrumentation can be inserted at the
entry and/or exit of pvm_send() and pvm_recv() functions and each event should
contain: timestamp, event type, source and target process identifiers, size of message.
Generated events are sent to the Analyzer. This event flow can introduce high level of
intrusion into the network and hence in some cases we aggregate the selected events.
The Monitor is able to add or remove instrumentation dynamically. This capability
minimizes the intrusion and permits to provide more precise information about the
application behavior.

2.4 Analyzer

The Analyzer module is responsible for the automatic performance analysis of a
parallel application “on the fly”. The Analyzer uses the knowledge (measure points,
performance model and tuning points/actions) of possible problems and their
solutions. All necessary information is specific for PVM problems and determined by
the investigation of the library implementation. To be effective, the analysis is kept
simple and decisions are taken in a short time.

When the Analyzer has been started, it receives from the Monitors information
about the configuration of a virtual machine. This module is informed about all the
changes in PVM virtual machine. The Analyzer chooses initial measure points and
broadcasts them to all Monitors. When an application to be tuned starts, the Analyzer
enters in a bottleneck search phase. It continuously receives requested events
generated by different processes. By examining the set of events, the Analyzer
extracts measurements. Then, it evaluates a performance model to determine the
actual and optimal performance. When the Analyzer decides that the actual
performance can be improved, it sends a request to the appropriate instance of Tuner,

Change instrumentation

Apply modifications Apply modifications

Events

Change instrumentation

 Machine 3

Analyzer

Machine 2Machine 1

Monitor Tuner

Process1

Process2

Tuner Monitor

Process3

pvmd pvmd

Dynamic Performance Tuning of Distributed Programming Libraries 195

determining what should be changed, and where. For example, when the Analyzer
determines that in a process a particular PVM function should be invoked with a
specific parameter value, the name of the function, together with a new parameter
value, is sent to the Tuner.

Obviously, during the analysis, Monitor modules are collecting and providing new
data to the Analyzer. The Analyzer may need more information about program
execution to determine the causes of a particular problem. It can therefore request the
Monitor to change the instrumentation dynamically. The Analyzer also informs a user
about detected problems and undertaken actions.

2.5 Tuner

The Tuner modules automatically change the application execution by inserting
modifications into the running processes. The Tuners manipulate the process image in
memory by means of DynInst library, hence they do not need to access a source code
or restart the application. Similarly to the Tracers, the Tuners must have access to all
application processes. Therefore, the Tuner modules are distributed among all the
machines where the application is running. The Tuner module waits for requests from
the Analyzer. The request specifies a target process, a tuning point and a tuning
action. When the Analyzer detects a problem and its solution is found, a tuning
request is sent to an appropriate Tuner instance. The Tuner receives it and applies
given solution dynamically to a specified process or processes on the machine where
it is running. This module contains a set of predefined modifications that can be
activated by the Analyzer. We consider the following tuning actions, among others:

− One time function invocation – calling a specified function in the application.
− Function parameter changes – the value of an input parameter is modified before a

function body is executed.
− Function invocation – an additional function call is inserted into the application at

a specified point.
− Function replacement – all calls to a given function are replaced with a call to

another function.

3 Tuning Examples

In this section, we present some of the PVM tuning examples that we studied within
MATE. All examples illustrate aspects of the PVM library that can significantly
improve the application performance. First, we investigate the library searching for its
characteristics that can cause significant bottlenecks in an application performance.
Then, for each potential bottleneck, we describe an optimization scenario, namely:
what should be measured to detect the problem (set of measure points), how to
discover the problem (performance model and activating conditions), and a solution
as to overcome the problem (tuning point/action).

In the following subsections we present potential bottlenecks and their
optimization scenarios when using PVM library: communication mode, data encoding
mode, and message fragment size. To demonstrate communication performance of the

196 A. Morajko et al.

PVM environment and indicate its problems, we used a master-worker benchmark
program that exchanges messages of various sizes. The presented measurements were
repeated thousands of times, and the average round-trip time and its standard
deviation (i.e. error) were calculated. Experiments were conducted in the environment
consisting of a cluster of homogenous workstations Sun UltraSPARC II, 440 MHz
connected by 100Mb/sec network.

3.1 PVM Communication Mode

PVM tasks have two modes to establish communication with other tasks, the task-to-
task mode (direct) and task-to-daemon-to-daemon-to-task mode (indirect). By default,
the indirect mode is used so all the messages are routed through the daemons. The
direct mode is available only on some architectures. In this mode the tasks bypass the
PVM daemon and have a direct link to each other using a separate socket. Although
the initial TCP set up time is larger, all subsequent communication between the same
two tasks is usually faster. The primary drawback of this method is that each TCP
socket consumes one file descriptor, so there is a limit on maximum number of
opened connections. This mode is less scalable, but it is a faster transfer method.

In Table 1 we compare the measurements of PVM communication performance in
both communication modes. We can observe that the change from indirect to direct
mode results in significantly faster communication (up to 50%). We must also point
out that in majority of typical environments used to run PVM applications
(workstation clusters) this mode is available, but rarely used.

Table 1. Benefits gathered from changing communication mode in a round trip application.

MsgSize [B] Indirect Time [ms] Direct Time [ms] Difference [ms] Average Benefit %
1 1,08 (±0,04) 0,53 (±0,02) 0,55 (±0,06) 50,72%

 10 1,09 (±0,04) 0,54 (±0,01) 0,55 (±0,05) 50,39%
100 1,15 (±0,04) 0,61 (±0,02) 0,53 (±0,07) 46,47%

1000 1,77 (±0,05) 1,18 (±0,03) 0,59 (±0,08) 33,45%
10000 10,66 (±0,23) 8,51 (±0,21) 2,15 (±0,44) 20,13%

100000 104,95 (±4,11) 84,17 (±3,91) 20,78 (±8,02) 19,80%
1000000 1059,64 (±30,08) 861,37 (±39,07) 198,27 (±69,16) 18,71%

The application can configure the mode explicitly, but by default the indirect mode
is used. During the execution, we can detect the use of indirect mode by calling
pvm_getopt(PvmRoute) and check conditions to use direct mode. This mode is
available when the environment does not include shared-memory machines and the
number of PVM tasks is smaller than system-dependent limit. The tuning action
includes one-time function invocation pvm_setopt(PvmRoute, PvmRouteDirect) that
activates the mode. To avoid reentrancy problems in PVM library implementation, the
invocation must be synchronized with the application execution. Therefore, first the
breakpoint is inserted at the entry of function pvm_send() and when it activates the
actual invocation is performed.

Dynamic Performance Tuning of Distributed Programming Libraries 197

3.2 Data Encoding Mode

When PVM transfers the data, it converts the data format transparently between
machines that have different architectures. By default PVM encodes data using XDR
(external data representation) standard, because it cannot know if the user is going to
add a heterogeneous machine before this message is sent. If there is no heterogeneous
machine, the next message will only be sent to a machine that understands the native
format. The encoding phase therefore, can be skipped, what allows for avoiding data
encoding costs and reducing execution time.

In Table 2 we can observe the benefits from data raw encoding mode in
comparison to default XDR encoding obtained with our benchmark application (up to
~74%). We can see that encoding overhead grows together with message size. For
message sizes less than 1KB, the difference is low. If bigger amount of data is sent,
more time is required to encode/decode it. We conclude that the data raw mode is
significantly faster and preferable in the typical homogeneous clusters.

Table 2. Benefits gathered from changing data encoding mode in a round trip application.

MsgSize [B] XDR Time [ms] Data Raw Time [ms] Difference [ms] Average Benefit %
1 0,53 (±0,02) 0,51 (±0,01) 0,01 (±0,03) 2,25%

 10 0,53 (±0,02) 0,52 (±0,01) 0,01 (±0,03) 2,25%
100 0,61 (±0,02) 0,58 (±0,01) 0,03 (±0,03) 4,76%

1000 1,17 (±0,02) 0,98 (±0,01) 0,19 (±0,04) 16,38%
10000 8,53 (±0,30) 3,28 (±0,05) 5,24 (±0,34) 61,49%

100000 84,69 (±4,02) 23,36 (±1,20) 61,33 (±5,22) 72,42%
1000000 873,90 (±40,35) 227,37 (±19,81) 646,52 (±60,16) 73,98%

The application can configure the data encoding mode explicitly, but by default the
XDR mode is used. MATE controls the addition of hosts to the virtual machine
(tasker/hoster services) so it is able to detect if an application is executed in the
homogeneous cluster. During the execution we can decide to use data raw mode if the
condition of hosts’ homogeneity is fulfilled. The tuning action includes insertion of
instrumentation (entry of pvm_initsend()) that changes the encoding mode from
XDR to data raw (parameter mode set to PvmDataRaw). Moreover, when a new
machine with different architecture is about to be added, the Analyzer module can
request to restore the XDR mode.

3.3 PVM Message Fragment Size

In PVM messages exchanged by the tasks are composed without a maximum length.
This is accomplished internally by dividing bigger messages into fixed-size blocks
called fragments. PVM uses a default fragment size of 4KB (implementation limits it
to 1024KB). When sending large messages, a number of fragments must be allocated
and then separately sent. This causes high fragmentation what may reduce
performance. Therefore, by changing message fragment size, bandwidth can be
increased significantly. When the fragment size increases, PVM dynamically allocates
more memory while sending/ receiving messages, hence more data is sent/received
per system call. The drawback to this strategy is increased memory usage. It must be
also pointed out that fragment size changes do not give significant effects in indirect
communication mode, because they do not affect the behavior of PVM daemons.

198 A. Morajko et al.

The results of experiments are presented in Table 3. All experiments were
conducted using direct communication mode. The default fragment size proved to be
the optimal choice for small message sizes (less than 4KB). However, we can observe
that for bigger messages the benefits from using larger fragment sizes are significant
(up to 55%). This example demonstrates that the optimal fragment size depends on
the application behavior – size of data that is sent and received. Moreover, the optimal
value can vary during the execution (due to program phases) and hence it is not
enough to calculate it once, but it should rather be adapted to the application behavior.

Table 3. Benefits gathered by changing the message fragment size in a round trip application.

FragSize 4 KB 16 KB 64 KB 256 KB 512 KB

MsgSize Time [ms] Time [ms] Benefits [%] Time [ms] Benefits [%] Time [ms] Benefits [%] Time [ms] Benefits [%]

2 KB 1,77 1,75 1,11 1,77 -0,22 1,76 0,34 1,79 -1,45

4 KB 4,54 2,51 44,68 2,51 44,68 2,51 44,80 2,50 44,88

8 KB 7,99 4,13 48,37 4,14 48,16 4,25 46,85 4,12 48,45

64 KB 55,64 34,11 38,70 29,47 47,03 27,08 51,33 26,85 51,74

256 KB 226,45 133,08 41,23 113,31 49,96 107,99 52,31 104,93 53,66

512 KB 460,66 264,40 42,60 224,41 51,28 214,75 53,38 212,99 53,76

1024 KB 920,62 525,61 42,91 443,56 51,82 426,94 53,62 425,02 53,83

4096 KB 3730,53 2105,77 43,55 1739,84 53,36 1666,26 55,33 1657,24 55,58

The application can configure the fragment size explicitly, otherwise the default
value is used. During the execution, we can query the actual size by calling
pvm_getopt(PvmFragSize) and detect if the application changes this value by
instrumenting the function pvm_setopt(PvmFragSize, size). Currently, to calculate
the optimal fragment size, we use the experimentally deduced formula:

OptimalFragSize = Average (message size) + Std deviation (message size)

The Analyzer module requires the number and sizes of transmitted messages.
Therefore, the communication calls (e.g., pvm_send(), pvm_recv(), pvm_mcast())
must be instrumented to gather statistics. The analysis of collected data is performed
periodically and separately for each task. However, the tuning action is not applied
each time the new optimal value is calculated. Instead, the tuning action is triggered
when the difference between current and optimal values exceeds a fixed threshold,
and the estimated communication cost becomes significant during the period. The
tuning action includes one-time function invocation pvm_setopt(PvmFragSize,

OptimalFragSize) that changes the current fragment size. The invocation must also
be synchronized as described in Section 3.1.

4 Tuning Experiments

This section presents the results of practical experiments with dynamic tuning that we
conducted using MATE. We provide timings that characterize the performance
obtained executing parallel application with our environment MATE. We evaluate
dynamic tuning costs, i.e. the overhead incurred by MATE in comparison to
traditional PVM implementation. The total intrusion time includes application startup
(process load time, process image parsing time), instrumentation (adding, removing,

Dynamic Performance Tuning of Distributed Programming Libraries 199

execution and reporting), analysis and tuning. Experiments show performance
improvements originated from dynamic tuning when applying different scenarios.
Each test was performed hundreds of times and the average of the wall clock
execution times of the master process was taken. We show that tuning is effective and
benefits are higher than the overhead introduced into the application execution.

4.1 NAS Parallel Benchmark – IS Kernel (Sort Application)

To conduct our experiments, we selected a computationally-intensive parallel
program. We used Integer Sort (IS) kernel benchmark from NAS Parallel Benchmark
suite [6]. The IS kernel ranks a large array of small integers as fast as possible using a
bucket sort method. Communication costs are high (up to about 50% communication)
in this application and are dominated by all to all data exchange messages, wherein
each processor sends to all others this data which falls in the range of the recipient.

Table 4. Execution time of IS Kernel Benchmark in different tuning scenarios.

No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec]
1. PVM (no tuning) 732 - -
2. PVM + communication mode tuning 604 127 (17,5%) 21 (~3,5%)
3. PVM + data encoding mode tuning 761 -29 (-3,9%) 21 (~2,8%)
4. PVM + message fragment size tuning 769 -37 (-5,1%) 27 (~3,5%)
5 PVM + all scenarios 529 202 (27,7%) 28 (~5,3%)

Table 4 presents the results of the IS Kernel Benchmark experiments in different
tuning scenarios. In the first scenario the application was executed under standard
PVM 3.4 without any tuning and it was used as a reference result. The other tests
were performed under PVM, but MATE monitored and tuned the application.

In the second scenario, the PVM communication mode was tuned by MATE. The
MATE analyzer decided to use the direct mode, as by default the application used
indirect mode and our experiments were conducted in a small NOW environment. We
can observe 17,5% benefit in execution time caused by this tuning action. Such
improvement can be explained by high computation-communication ratio (1:1). The
measured intrusion did not exceed 3,5% of the total execution time.

In the third scenario, tuning the data encoding mode was tried. The analyzer did
not perform any tuning actions. Originally the application used data raw encoding
mode, so no improvement was possible. However, when the application was
experimentally executed in XDR mode, the improvement reached 47% (as the
exchanged data was integers). The intrusion resulted in 2,8% of the execution time.

In the forth scenario, MATE conducted message fragment size tuning. In this
scenario the analyzer requested the instrumentation of send and receive primitives in
all of the tasks to examine number and sizes of messages. The analysis indicated that
the default fragment size was improper, because each of the tasks was sending a series
of very small messages (4B and 16B) as well as big messages (over 1MB). The
requested tuning action increased the fragment size. After the change, the application
remained stable and no more tuning was performed. However, we cannot observe any
benefits, because by default indirect mode was used. The benefits are significant
when conducting the same experiment in direct mode. The intrusion reached 3,5%.

Finally, in the fifth scenario, we conducted all described tuning scenarios in the
same execution. Both communication mode tuning and fragment size tuning was

200 A. Morajko et al.

applied successfully. Despite of the intrusion (about 5,3% resulted from more inserted
instrumentation and higher volume of collected measurements), the introduced
changes produced the best results, improving the total execution time up to 27,7%.

5 Conclusions and Future Work

Dynamic automatic performance tuning of distributed libraries appears as a powerful
technique to accomplish a performance improvements of applications with a dynamic
behavior. A complete dynamic automatic performance tuning environment (MATE)
has been presented. MATE includes the monitoring, analysis and modifications of the
application on the fly without stopping, recompiling or rerunning the application. In
this paper we have focused on the tuning of PVM-based application. We have shown
a set of problems that can appear as bottlenecks when using PVM library. We have
proven that MATE is promising and is able to improve the performance of the
application implemented in PVM by tuning the library usage. Obviously, environment
causes intrusion and it is inserted into the application execution, but it is still smaller
than the benefits obtained from the performed improvements.

The presented methodology is general and can be applied to improve the use of
other libraries. Moreover, the set of conducted experiments gave us new ideas on
future work and tuning examples. Many applications highly use memory. Therefore,
it would be profitable to optimize memory usage by providing custom allocators as
general-purpose allocators may be inefficient or inflexible. The tuning of
communication protocol options correlated with message exchange can be beneficial
as well. We also found interesting the tuning of work size unit or data distribution as
it can reduce significantly the execution time.

References

1. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V. “PVM:
Parallel Virtual Machine, A User´s Guide and Tutorial for Network Parallel
Computing”. MIT Press, Cambridge, MA, 1994.

2. Buck, B., Hollingsworth, J.K. “An API for Runtime Code Patching”. University of
Maryland, Computer Science Department, Journal of High Performance Computing
Applications. 2000.

3. Hollingsworth, J.K., Buck, B. “DyninstAPI Programmer’s Guide. Release 3.0”.
University of Maryland, January 2002.

4. Paradyn Project “Paradyn Parallel Performance Tools, User’s Guide, Release 3.3”.
University of Wisconsin, Computer Science Department, January 2002.

5. César, E., Morajko, A., Margalef, T., Sorribes, J., Luque, E. “Dynamic Performance
Tuning Environment Supported by Program Specification”. Scientific Programming, 10,
pp. 35–44. 2002.

6. Bailey, D.H., Harris, T., Saphir, W., Wijngaart, R., Woo, A., Yarrow, M. “The NAS
Parallel Benchmarks 2.0”, Report NAS-95-020, December, 1995.

	1 Introduction
	2 MATE
	2.1 Basic Concepts
	2.2 Design
	2.3 Monitor
	2.4 Analyzer
	2.5 Tuner

	3 Tuning Examples
	3.1 PVM Communication Mode
	3.2 Data Encoding Mode
	3.3 PVM Message Fragment Size

	4 Tuning Experiments
	4.1 NAS Parallel Benchmark – IS Kernel (Sort Application)

	5 Conclusions and Future Work
	References

