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Abstract. Smart disks, a type of processor-embedded active I/O devices, with
their on-disk memory and network interface controller, can be viewed as proc-
essing elements with attached storage. The growing size and access patterns of
today’s large I/O-intensive applications require architectures whose processing
power scales with the storage capacity. We evaluate a distributed smart disk ar-
chitecture with representative I/O-intensive workloads including TPC-H que-
ries, association rule mining, data clustering, and 2-D fast Fourier transform
applications to study the proposed architecture.

1   Introduction

A hard disk drive typically consists of one or more disk platters, read/write heads, and
other embedded general- or special-purpose processors. While much of the processing
power on the disk is currently used for scheduling and optimizing disk bandwidth, the
rapid advancements of processor and memory technologies promise to provide future
hard disk drives with application-level processing capabilities to perform more com-
plex operations directly at the drive [1]. For I/O-intensive applications that process
large amount of disk-resident data, various storage architectures have been proposed
to exploit the parallelism available from the large number of disks by offloading cer-
tain elementary operations to the disk drive. We study the benefits of a distributed
smart disk (SD) architecture using TPC-H queries, association rule mining, clustering,
and fast Fourier transform.
    The remainder of this paper is organized as follows. Section 2 briefly reviews the
work related to various SD architectures. In Section 3, we describe a distributed SD
architecture in single- and multiple-disk configurations. Section 4 explains the algo-
rithms and implementations of our workloads. Section 5 presents our experiments and
results. Conclusions and future work are in Section 6.

2   Background

Five major factors catalyzed the evolution of storage architectures: I/O-bound work-
loads, improved disk drive attachment technologies, increased on-drive transistor
density, emergence of new interconnects, and cost of storage systems [2]. Typically,
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a SD consists of an embedded processor, a controller, on-disk memory, local disk
space, and a network interface. The embedded processor would have a speed of 300 –
500 MHz, and the memory size between 16 and 128 MB, while the disk space would
be in tens of GB or more.

2.1   Database Machines and Parallel Databases

The concept of performing application-level processing on the disk originates from
the research in database machines in the late 1970s. The limited disk bandwidth and
the complexity of programming special-purpose hardware at that time eventually lead
to the extinction of the database machines. Nevertheless, parallel database research
has since produced efficient algorithms for large distributed-memory database servers
that employ commodity processing elements [3]. This development and the growing
processing power on the disk drive have prompted some researchers to suggesting that
all application-level processing would eventually be performed at the disk [4].

2.2   Active Disks, IDISKs, and Smart Disks

Processor-embedded disk architectures changed the processing model of large data-
bases by offloading I/O-intensive tasks to the disk. Thus, rather than sending to the
host, data are filtered or processed directly at the disk, significantly reducing the net-
work traffic between host and disk. Taking this approach, an Active Disk architecture
was proposed by assuming application-level on-disk processing and large on-disk
memory [5]. Active Disks use a stream-based programming model to address the
software structure and implementation, in which host-resident code interacts with
disk-resident code using streams [6]. The Active Disks work in [7] investigated scan-
based algorithms for databases, nearest neighbor search, frequent sets, and edge de-
tection. The Intelligent Disks (IDISKs) [8], proposed to succeed networks of worksta-
tions, uses on-disk integrated processor-in-memory called IRAM, and can perform
direct disk-to-disk communication.
    The Smart Disks architecture [9] introduced operation bundling to optimize query
execution. Execution of each operation bundle is offloaded to the disk. While data
transfer between disks was through the central unit, there was less involvement by the
central unit in the overall query execution. Results from [9] showed that Smart Disks
outperformed both host-based and cluster systems in comparable configurations.

3   Distributed Smart Disks (SD) Architecture

We propose a fully distributed SD architecture, where a SD group consists of SDs
interconnected by a switched network. Applications such as database queries can be
applied onto the group from a remote client. Figure 1 illustrates this single SD group
(SDG) architecture. To exchange, combine, or re-distribute data within an SDG, data
is communicated between the involved SDs without being routed through the client.
For data queries to multiple database machines located remotely across the network,
communication within a SDG as well as between several SDGs will be necessary. As
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shown in Figure 2 of the multiple-SDG architecture, inter-SDG communication would
occur when databases reside on separate SDGs, which may belong to different storage
area networks that are connected to a common router. This architecture exploits data
parallelism to meet the storage, computation, and communication requirements of
future I/O-intensive applications. The architecture would utilize emerging interconnect
technologies for low-latency and high-bandwidth data communication.

3.1 Storage Interconnect

Since the design of the SD architecture pushes data queries down to the disk, a net-
work with high connectivity is favorable as its communication infrastructure. Tradi-
tional I/O architectures employ PCI/PCI-X bus protocols to communicate with storage
systems and networks. Recent research on network-attached storage systems suggests
the use of switched networks to maintain sufficient I/O bandwidth. We use the Infini-
Band Architecture (IBA) [10] to represent the storage interconnect. IBA networks
employ channel-based switched fabric, host/target channel adaptors (HCA/TCA),
switches and routers to provide simultaneous point-to-point communications between
end nodes. All end nodes communicate through switches with any other nodes in a
subnet; or via a router to another end node.

Fig. 1. The single smart disk group (SDG) architecture

4 Workloads: TPC-H, ARM, Data Clustering, and 2-D FFT

4.1  TPC-H Queries

For distributed SD architectures, performing parallel database operations is one of the
logical approaches to exploit data parallelism. We used full queries Q1, Q6 and Q12

from the TPC-H benchmark suite to define our database workload.
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Fig. 2. The multiple-SDG architecture over an InfiniBand-based network

4.1.1   Query Primitives
We offloaded the scan, join, sort, group-by and aggregate primitives to the SDs, and
implemented these primitives in parallel. We assume the database tables are evenly
distributed across all SDs so that full parallelism of database queries can be exploited.
In our implementation, the entire processing of a primitive is performed on the SDs
without the remote client’s participation or management. The scan primitive is imple-
mented by sequentially retrieving and evaluating every tuple in the disk-resident data.
The main purpose of scan is to filter data for further processing. Due to the limited
amount of on-disk memory, out-of-core paging strategy was implemented. Since scan
involves only local disk access, there is no inter-disk communication. For the remain-
ing primitives, disk-to-disk communication is required. We adopted an out-of-core
parallel bucket sort [11] for our sort implementation. It has four stages: sampling, re-
distribution, internal sort, and external merge. Since group-by and aggregate are usu-
ally combined with sort and each is performed with a global communication, an analy-
sis on sort would cover group-by and aggregate.

4.1.2   Join with Two SDGs
Two scenarios exist for the join: the two tables to be joined can reside in the same or
different SDGs, or likewise, in one or more database machines. The former is the
traditional implementation of a parallel join. In this work, we are interested in the
latter scenario. Assume that the two tables to be joined, R and S, reside in SDG 1 and
2, respectively. Parallel join of these two tables will thus involve both intra- and inter-
SDG communications. Assuming R is evenly partitioned across P SDs and S is evenly
partitioned across Q SDs (P need not equal Q), the join processing proceeds as illus-
trated in Figure 3. Each SDG, denoted “SDG 1” or “SDG 2”, starts by locally hashing
its R or S tuples into “destination files” (or send buffers) for each of the SDs in both
SDG 1 and SDG 2. Each SD then reads the tuples from its local “destination files”,
and sends the tuples to their destination SDs. Meanwhile, each SD also receives tuples
destined for it from both SDGs. Upon completion of this re-distribution phase, each
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SD will hold its R and S tuples, which are joined locally using a simple nested-loop
join algorithm.

4.1.3   Full Query Execution
We assume that input tables are initially distributed across the SDs, and use PSQL’s (a
PostgreSQL database) explain command [12], along with TPC-H executable query
text files to generate the query plans. The processing flow of these full TPC-H queries
proceeds according to the full query execution protocol specified in Table 1.

Fig. 3. Processing of join from two separate SDGs.

Table 1: TPC-H full query execution protocol

TASK REMOTE CLIENT SMART DISKS
Query parsing/optimization Parse and optimize query —
Query plan generation Generate query plan —
Query execution Send the query plan to SDs

Await completion signal
from SDs

Receive signal from the SDs

Receive the query plan
Execute the query plan
– Perform primitives
– Re-distribute data
– Store results locally
– Communicate data
Signal client of com-
pletion

Response to user Receive results from the SDs
Respond to user

Send results to client
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4.2 Association Rule Mining (ARM) and Frequent Set Counting (FSC)

ARM techniques have been used to help address marketing questions such as “the
90% of customers who buy A probably also buy B”. Given a collection of transactions
T and each transaction contains items from an itemset I, an association rule takes on
the expression X ⇒ Y, where itemset X ⊆ I and itemset Y ⊆ I. An association rule X ⇒
Y holds in T with a confidence C and a support S, if at least C% of all the transactions
(in T) containing X also contain Y, and X ⇒ Y exists in at least S% of all the transac-
tions in T [13,14]. Typically, an ARM process consists of two phases. In the first
phase, a set of frequent itemsets is found. In the second phase, the rules that satisfy the
minimum S and the minimum confidence C are identified.

4.2.1   Count Distribution and Hybrid Distribution Methods
Our ARM FSC primitive exploits the total memory of an SD system for higher effi-
ciency. The Count Distribution (CD) method is based on the Apriori algorithm in [15].
In the CD method, each SD executes the Apriori algorithm serially, followed by a
global reduction to obtain the final results. The Hybrid Distribution (HD) method
partitions the frequent itemsets into sufficiently large sections, then assign a group of
SDs to each section. Thus, the HD method dynamically configures the processor grid
for more effective load balancing.

4.3 Clustering for Large Data Sets

Clustering techniques help discover interesting patterns (called clusters) from large
data sets. Such patterns often exist in high-dimensional space. Common applications
that exploit clustering techniques include collaborative filtering [16], organization of
document datasets [17], image processing and seismic studies, to name a few. Effi-
cient clustering techniques address data and noise that both exist in high-dimensional
spaces and subspaces, which result in an exponential growth of the search space for
clusters. We implemented a data clustering primitive based on the parallel adaptive-
grid and density-based algorithms studied in [18]. Define S=A1×A2×...×Ad as a d-
dimensional numeric space, where A={A1,A2,...,Ad} is the attribute set and
D={D1,D2,...,Dd} is the domain set. Assume r=(r1,r2,...,rd) is a d-dimensional input
record. The space S is divided into a grid of non-overlapping cells, where each cell C
is defined to be  c1k’×c2k’’×...×cdk’...’ and for all i ∈ {1,2,...,d}, cik’ ⊆ Di and ∪kcik = Di.
That is, cik’=[lik’,uik’) is the partitioning interval for Ai. The cell C is dense if the frac-
tion of the total data points contained in C is greater by some given factor than the
value expected if the data were uniformly distributed in S. A cluster is thus a union of
connected dense cells. The clustering primitive first computes the histogram for Ai,
adaptively setting the bin size, then builds candidate dense cells and perform subspace
clustering on the local records r to compute the local dense cells. Reduction is per-
formed to obtain global data on the histogram, candidate dense cells, dense cells, and
bounds for the dense cells.
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4.4 Two-Dimensional Fast Fourier Transform (2-D FFT)

FFT is used in many scientific problems. The memory requirement on the SD moti-
vates our evaluation of out-of-core 2-D FFT. The FFT takes O(N lg N) time to com-
pute the discrete Fourier transform of an N×N matrix. For a distributed-memory model
such as our SD architecture, the 2-D FFT can be performed using a parallel out-of-
core transpose- and redistribution-based algorithm [19,20] as follows:

(1) Distribute input matrix A by rows as (BLOCK, *).
(2) Perform 1-D FFT on the rows of matrix A.
(3) Perform 2-D transpose on the intermediate matrix B from step (2).
(4) Perform 1-D FFT on the rows of BT.

    We evaluated the out-of-core 2-D FFT over a 2048×2048 complex matrix on the
distributed SD architecture. Our implementation is based on the distributed-memory
2-D FFT algorithm prescribed in [21].

5 Experiments and Results

We first compared the performance of the fully distributed SD architecture with that
of the partially distributed SD architecture, using TPC-H Q1, Q6 and Q12. Then, we
evaluated the performance and scalability of the fully distributed SD architecture for
the ARM FSC, data clustering, and 2-D FFT. The following platform was used to
simulate the workloads: 32 Pentium III Linux PCs running at 500 MHz, each with 64
MB of RAM and a local disk of 6 GB. The PCs are connected via a switched network.
We used TPC-H database generator [22] to populate synthesized data into tables with
scale factors (SF) of 0.1 and 1.0. DiskSim 2.0 simulator [23] was used to simulate the
cost of accessing the disk drive.

5.1 Fully vs. Partially Distributed SD Architectures

We simulated with 4, 8, 16, and 32 SDs, page size of 8 KB, on-disk memory size of
32 MB, and SF of 0.1 and 1.0. We measured the execution times of TPC-H Q1, Q6 and
Q12. Figures 4 and 5 suggest that the fully distributed SD system provides further per-
formance improvement over the partially distributed system. We used the formula
TPD/TFD to evaluate the improvement obtained with a given number of SDs, where TPD

denotes the query execution time on the partially distributed SD system and TFD de-
notes that on the fully distributed SD system. For example, in processing Q6, hardly
any noticeable improvement was achieved regardless of the number of SDs used,
since Q6 contains less than 0.01% of communication time. On the other hand, Q1 con-
tains about 10.4% communication time, while Q12 averages 0.56%. The low proportion
of communication in Q12 is attributed to the highly selective scan that was performed
prior to the join, sort, and aggregate operations in that query. Consequently, when
running at an SF of 1.0 (the validation data size required by the TPC-H benchmark)
the TPD/TFD values for Q1 ranged from 2.88 to 3.41, and from 1.20 to 2.30 for Q12, as
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Fig. 4. Performance of partially vs. fully distributed SDs on Q1, Q6 and Q12 with SF of 0.1

expected. Increasing the data size from SF=0.1 to SF=1.0, however, exposed the inef-
ficiency of our nested loop-based join primitive.

5.2 Association Rule Mining Frequent Set Counting

A synthetic transaction database was generated using the data generator from IBM
[24]. The database had an average transaction size of 20, each transaction containing
up to 25 distinct items. 100K transactions were generated for each SD. Figures 6 and
7 present the results for our ARM FSC primitive executed on SD systems with 2, 4, 8,
16 and 32 disks, using data page sizes of 4K, 8K, 16K, 32K and 64K bytes, and
64MB on-disk memory. The single-SDG processing model was assumed in this ex-
periment. Figure 6 shows the results when the primitive uses the CD method; Figure 7
shows when the primitive uses the HD method.
    Note that since data size increases linearly with the number of SDs, keeping the
response time constant demonstrates scalability. Except for the data page size of 16
KB, the performance of the two methods are quite comparable at the 5% minimum
support level– an indication that the hash tree for the frequent itemsets was able to fit
into the available (64 MB) on-disk memory used in our evaluation.

5.3 Data Clustering Primitive
The data-clustering primitive discussed in Section 4.3 was executed over a data set of
2,234,961 records (≈ 179 MB), which contains 20-dimensional data with 5 clusters,
and each cluster is of 5 dimensions. As with the ARM FSC primitive, we experi-
mented with SD systems of 2, 4, 8, 16 and 32 disks, using data page sizes of 8K, 16K,
32K and 64K bytes with 64 MB on-disk memory. We also executed the primitive on a
system with only 1 SD, where the processing is effectively serial.
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Fig 5. Performance of partially vs. fully distributed SDs on Q1, Q6 and Q12 with SF of 1.0
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Figure 8 shows the performance of the clustering primitive when system size is scaled
up, with the page size fixed at 64 KB. The results demonstrated that both the compute
time taken to populate the candidate dense cells and the I/O time decreased when the
number of SDs increases. Results for page sizes of 8 KB, 16 KB and 32 KB showed
similar trend. Figure 9 presents the total response times of the clustering primitive
versus number of SDs for all four page sizes. The results show a reduced response
time as we increased data page size.

5.4 Two-Dimensional FFT

We evaluated the performance of the 2-D FFT primitive with 1, 2, 4, 8, 16 and 32 SDs
for various data page sizes and 64 MB on-disk memory, and normalized all execution
times with respect to the base case where 1 SD with a data page size of 4 KB are used.
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Our results show larger speedups for smaller data pages at smaller system size. As we
increase the number of SDs, such difference in speedups diminishes. Figure 10 pres-
ents our results for the 2-D FFT workload.
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6 Conclusions and Future Work

For disk-based storage systems, increasing processing power on the disk results in
offloading user-level code closer to data. Built on the progress to date, we showed that
a distributed Smart Disk model is feasible. We evaluated a distributed Smart Disk
architecture using TPC-H queries, ARM FSC, data clustering and 2-D FFT workloads.
Our results suggest that such architecture would outperform a partially distributed, and
thus, a centralized system. Our results also demonstrate that the Smart Disk architec-
ture scales well with increased system size and data size. For future work, query opti-
mization techniques for distributed-memory parallel databases can be studied to ex-
ploit cost models and load-balancing techniques.
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