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Abstract. In this paper we review some applications of generalized
polynomial chaos expansion for uncertainty quantification. The math-
ematical framework is presented and the convergence of the method is
demonstrated for model problems. In particular, we solve the first-order
and second-order ordinary differential equations with random parame-
ters, and examine the efficiency of generalized polynomial chaos com-
pared to Monte Carlo simulations. It is shown that the generalized poly-
nomial chaos can be orders of magnitude more efficient than Monte Carlo
simulations when the dimensionality of random input is low, e.g. for cor-
related noise.

1 Introduction

The generalized polynomial chaos, also called the Wiener-Askey polynomial
chaos, was first proposed in [6] for solving stochastic differential equations. It
is a generalization of the classical Wiener’s polynomial chaos, which is defined
as the span of Hermite polynomial functionals of a Gaussian process [4]. The
Hermite-chaos expansion converges to any L2 functional in the L2 sense, accord-
ing to the Cameron-Martin theorem [1]. It has been a useful tool in the study
of multiple Itô integrals. In recent years, the Wiener’s Hermite-chaos has been
applied to the stochastic modeling of engineering applications, including various
problems in mechanics [2, 3]. The more general framework of polynomial chaos
employs many classes of orthogonal polynomials, and includes the Hermite-chaos
as a subset. The main advantage of the generalized polynomial chaos is that it
can represent many non-Gaussian stochastic processes, including some discrete
processes, more efficiently [5–8].

In this paper, we review the theory and application of generalized polynomial
chaos, and evaluate its performance by solving stochastic ordinary differential
equations.
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2 The Generalized Polynomial Chaos

The generalized polynomial chaos is a means of representing second-order stochas-
tic processes X(ω), viewed as a function of ω (the random event)

X(ω) = a0Ψ0

+
∞∑

i1=1

ai1Ψ1(ξi1(ω))

+
∞∑

i1=1

i1∑
i2=1

ai1i2Ψ2(ξi1(ω), ξi2(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Ψ3(ξi1(ω), ξi2(ω), ξi3(ω))

+ · · · , (1)

where Ψn(ξi1 , . . . , ξin
) denotes the generalized polynomial chaos of order n in the

variables (ξi1 , . . . , ξin
), and are orthogonal polynomials in terms of the multi-

dimensional random variables ξ = (ξi1 , . . . , ξin
). For notational convenience, one

can re-arrange the terms in equation (1), according to some numbering scheme,
and rewrite the expansion as

X(ω) =
∞∑

j=0

âjΦj(ξ), (2)

where there is a one-to-one correspondence between the functions Ψn(ξi1 , . . . , ξin
)

and Φj(ξ), and their corresponding coefficients ai1i2i3... and âj . Again {Φj(ξ)} are
the (multi-dimensional) orthogonal polynomials in terms of the multi-dimensional
random vector ξ, satisfying the orthogonality relation

〈Φi, Φj〉 = 〈Φ2
i 〉δij , (3)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. This is
the inner product in the Hilbert space determined by the support of the random
variables

〈f(ξ), g(ξ)〉 =
∫

f(ξ)g(ξ)w(ξ)dξ (4)

with w(ξ) denoting the weighting function. In the discrete case, the above or-
thogonal relation takes the form

〈f(ξ), g(ξ)〉 =
∑

ξ

f(ξ)g(ξ)w(ξ). (5)

In (2), there is a one-to-one correspondence between the type of the orthog-
onal polynomials {Φ} and the type of the random variables ξ. This is deter-
mined by choosing the type of orthogonal polynomials {Φ} in such a way that
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their weighting function w(ξ) in the orthogonality relation (4) has the same
form as the probability distribution function of the underlying random vari-
ables ξ. For example, the weighting function of Hermite orthogonal polynomials
is 1√

(2π)n
exp(− 1

2ξT ξ), and is the same as the probability density function of

the n−dimensional Gaussian random variables ξ. Hence, the classical Wiener
polynomial chaos is an expansion of Hermite polynomials in terms of Gaussian
random variables. Some types of generalized polynomial chaos corresponding to
the commonly known distributions are listed in table 1.

Table 1. Correspondence of the type of Wiener-Askey polynomial chaos and their
underlying random variables (N ≥ 0 is a finite integer).

Random variables ξ Wiener-Askey chaos {Φ(ξ)} Support

Continuous Gaussian Hermite-chaos (−∞,∞)
gamma Laguerre-chaos [0,∞)
beta Jacobi-chaos [a, b]

uniform Legendre-chaos [a, b]

Discrete Poisson Charlier-chaos {0, 1, 2, . . . }
binomial Krawtchouk-chaos {0, 1, . . . , N}

negative binomial Meixner-chaos {0, 1, 2, . . . }
hypergeometric Hahn-chaos {0, 1, . . . , N}

The expansion (1) (or (2)) resides in the infinite dimensional space deter-
mined by ξ, and is an infinite summation. In practice, we have to restrict our-
selves to the finite-term summation. This is achieved by reducing the expansion
to the finite-dimensional space, i.e. expansion of finite-dimensional random vari-
ables ξ, according to the nature of random inputs; we also set the highest order
of the polynomials {Φ} according to accuracy requirement. The finite-term ex-
pansion takes the form

X(ω) =
M∑

j=0

âjΦj(ξ), (6)

where ξ is an n−dimensional random vector. If the highest order of polynomial
{Φ} is m, then the total number of expansion terms (M + 1) is, (M + 1) =
(n + m)!/(n!m!).

3 Applications to Stochastic ODEs

In this section we apply the generalized polynomial chaos to the solution of
stochastic ordinary differential equations with random parameters. We first con-
sider the first-order ODE and demonstrate in detail the solution procedure; we
then consider a second-order ODE with multiple random parameters which re-
sults in multi-dimensional polynomial chaos expansion. Hereafter, we restrict
our discussion to the continuous probability distributions.
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3.1 First-Order ODE

We consider the ordinary differential equation

dy(t)
dt

= −ky, y(0) = ŷ, (7)

where the decay rate coefficient k is considered to be a random variable k(ω) with
certain probability density function (PDF) f(k), zero mean value and standard
deviation σk.

By applying the Wiener-Askey polynomial chaos expansion (6) to the solution
y and random input k

y(t) =
M∑
i=0

yi(t)Φi, k =
M∑
i=0

kiΦi (8)

and substituting the expansions into the governing equation, we obtain

M∑
i=0

dyi(t)
dt

Φi = −
M∑
i=0

M∑
j=0

ΦiΦjkiyj(t). (9)

We then project the above equation onto the random space spanned by the
orthogonal polynomial basis {Φi} by taking the inner product of the equation
with each basis. By taking < ., Φl > and utilizing the orthogonality condition
(3), we obtain the following set of equations:

dyl(t)
dt

= − 1
〈Φ2

l 〉
M∑
i=0

M∑
j=0

eijlkiyj(t), l = 0, 1, . . . ,M, (10)

where eijl = 〈ΦiΦjΦl〉. Note that the coefficients are smooth and thus any stan-
dard ODE solver can be employed here, e.g. Rouge-Kutta methods.

In Figure 1 we show the error convergence at time t = 1 of the Hermite-
chaos expansion and Jacobi-chaos expansion, subject to Gaussian input and
beta input, respectively. It can be seen on the semi-log plot that the errors
decay exponentially fast as the highest order of expansion (P ) increases. Given
the simplicity of the equation, we can estimate the solution error of the finite-
term chaos expansion. In particular, we estimate analytically the relative error
in variance, denoted ε2(t), for different distributions of k as a function of time
[9]:

ε2(t) =
(

σt

1 + σt

)2(M−1)

, (11)

ε2(t) ≤ (σt)2(M+1)

e(σt)2 − 1

[
(M + 1)!

(
1− (σt)2

M + 1

)]
, (12)

for the Laguerre-chaos when k has exponetial distribution and the Hermite-
chaos when k has Gaussian distribution, respectively. Similar estimates can
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Fig. 1. Error convergence of the mean and the variance (σk = 1). Left: Hermite-chaos
with Gaussian random input, Right: Jacobi-chaos with beta random input.

be applied to Legendre-chaos with uniform random input, although no explicit
analytical formula is available and the estimation has to be evaluated numeri-
cally. By using these error estimates, we examine the number of expansion terms
needed for a given error control threshold. The results of Hermite-chaos with
Gaussian input and Legendre-chaos with uniform input are plotted in Figure 2,
for fixed relative error of 10−7 in variance. It can be seen that the number of
Hermite-chaos needed is larger than Legendre-chaos, and grows faster over time.
For details of these estimates, see [9].

3.2 Second-Order ODE

In this section, we consider a linear oscillator subject to both random parametric
and external forcing excitations, in the form

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) = F (ω) cos(ωt + φ), (13)

x(0) = x0, ẋ(0) = ẋ0, t ∈ [0, T ]

We assume the parameters and the forcing amplitude are random variables, i.e.

c
.= 2ζω0 = c̄ + σcξ1

k
.= ω2

0 = k̄ + σkξ2 (14)
F = F̄ + σF ξ3,
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Fig. 2. Number of expansion terms needed for given relative error in variance ε2 =
10−7. Left: Hermite-chaos with Gaussian random input, Right: Legendre-chaos with
uniform random input.

where ξ1, ξ2 and ξ3 are three independent random variables with zero mean; σc,
σk and σF scales as the standard deviations of c, k and F , respectively. Here
we will consider the uniform and Gaussian distributions. Correspondingly, the
Legendre-chaos and Hermite-chaos will be employed.

The numerical integration is performed up to T = 100 when the solution
reaches the asymptotic periodic state. We examine the convergence of the relative
error in mean and variance at the final time versus the expansion order(see figure
3). It can be seen that the errors of the mean and variance decrease exponentially
fast as the expansion order increases. However, in the Legendre-chaos the error in
the mean and variance decay at the same rate in contrast to the Hermite-chaos.

4 Efficiency

The expanded equations from generalized polynomial chaos is a set of coupled
equations, with each one of them resembles the deterministic equation. Since
these equations are solved explicitly, the overall computational cost of gener-
alized polynomial expansion is roughly the number of expansion terms times
the cost of a single deterministic solution. On the other hand, the cost of Monte
Carlo simulations is the number of realizations times that of a deterministic solu-
tion. Normally, thousands of realizations are needed for Monte Carlo simulation
to obtain the solution statistics with moderate accuracy. Thus, the generalized
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Fig. 3. Error convergence of the mean and variance. Left: Hermite-chaos with Gaussian
random input; Right: Legendre-chaos with uniform random input.

polynomial chaos offers a great potential of computational speed-up due to its
fast convergence rate.

For example, if k is an exponentially distributed random variable in the first-
order ODE problem discussed in 3.1, the error convergence of the mean solution
of the Monte-Carlo simulation and the corresponding Laguerre-chaos is shown
in table 2.

Monte Carlo simulation Generalized polynomial chaos:
εmean (no. of realizations) (no. of expansion terms) S

4% 100 1 100
Exponential 1.1% 1, 000 2 500

0.05% 9, 800 3 3, 267

Table 2. Speed-up factors S based on the relative error in mean (εmean) with expo-
nential random input, for the first-order ODE problem (7). (S is defined as the cost of
Monte Carlo simulations over that of generalized polynomial chaos.)

For the second-order linear oscillator (13), we examine the efficiency of gener-
alized polynomial chaos and Monte Carlo simulation by fixing the error require-
ment in mean at T = 100. Both uniform random inputs and Gaussian random
inputs are considered, and the results are summarized in table 3. Smaller speed-
up factors are observed for the Hermite-chaos expansion with Gaussian inputs,
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compared with Legendre-chaos with uniform inputs. The advantage of the ex-
ponential convergence of chaos expansion is obvious, especially when smaller
errors are required. In the case of uniform random input with error requirement
of 0.001% in mean, a speed-up factor of 17 millions is observed for Legendre-
chaos expansion.

Monte Carlo simulation Generalized polynomial chaos:
εmean (no. of realizations) (no. of expansion terms) S

2% 350 56 6.25
Gaussian 0.8% 2, 150 120 18

0.2% 33, 200 220 151

0.2% 13, 000 10 13, 000
Uniform 0.018% 1, 58× 106 20 79, 000

0.001% 6.1× 108 35 1.7× 107

Table 3. Speed-up factors S based on the relative error in mean (εmean) with Gaussian
and uniform random inputs, for the second-order ODE problem (13).

5 Conclusion

The efficiency of the generalized polynomial chaos can be orders of magnitude
higher than the methods that require sampling, e.g. Monte Carlo method. This
is especially obvious when the random inputs have low to moderate dimensions.
However, if the random input has large dimensions, i.e. in the limit of white
noise, the cost of generalized polynomial chaos grows fast, for a large number
of expansion terms is required. In this case, the efficiency of the generalized
polynomial chaos expansion is reduced drastically and the Monte Carlo method
may be more efficient. This is still an unresolved problem for the generalized
polynomial chaos and more work is required to resolve this issue.
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