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Abstract. Traditional simulation-based applications for exploring a pa-
rameter space to understand a physical phenomenon or to optimize a
design are rapidly overwhelmed by data volume when large numbers of
simulations of different parameters are carried out. Optimizing reservoir
management through simulation-based studies, in which large numbers
of realizations are sought using detailed geologic descriptions, is an ex-
ample of such applications. In this paper, we describe a software archi-
tecture to facilitate large scale simulation studies, involving ensembles
of long-running simulations and analysis of vast volumes of output data.
This architecture is built on top of two frameworks we have developed:
IPARS and DataCutter. These frameworks make it possible to imple-
ment tools and applications to run large-scale simulations, and generate
and investigate terabyte-scale datasets efficiently.

1 Introduction

Numerical simulations provide a powerful mechanism for investigating and un-
derstanding complex systems and the interactions between various entities in
those systems, and for effectively exploring design alternatives. In such applica-
tions, a large ensemble of simulations are carried out using different parameter
values that descripe different potential initial states of the complex system under
study. These applications are highly data-driven. Choosing the next set of sim-
ulations to be performed requires analysis of data from earlier simulations. As
high-performance parallel and distributed platforms become more ubiquitous,
traditional simulation approaches are overwhelmed by the vast volumes of data
that need to be queried and analyzed. In this paper, using oil reservoir man-
agement applications as an example, we describe the design and a prototype
implementation of a software system for large scale simulation studies.
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Fig. 1. Software system architecture

Numerical simulation of oil and gas reservoirs can aid the design and im-
plementation of optimal production strategies. With a better understanding of
oil and gas produced from existing reservoirs, better techniques can be devised
to locate new reserves and maximize oil production from the existing reserves.
Complex models of subsurface allow better assessment of the risk to the environ-
ment of existing and new reservoirs and remediation and storage of hazardous
waste.

Despite technological advances in methods of determining reservoir proper-
ties, operators still have at best a partial knowledge of critical parameters such
as rock permeability which govern production rates. Thus a major challenge to
these objectives is incorporating geologic uncertainty while maintaining opera-
tional flexibility in large, detailed flow models. One approach to this problem is
to simulate alternative production strategies (number, type, timing and location
of wells) applied to multiple realizations of multiple geostatistical models. In a
typical study, a scientist runs an ensemble of simulations to study the effects
of varying oil reservoir properties (e.g., permeability, oil/water ratio, etc.) over
a long period of time. With the help of high-performance computers, even for
relatively coarse descriptions, this approach can lead to unmanageably large vol-
umes of output data. Storage, analysis and visualization of large volumes of data
generated by an ensemble of simulations is key to achieve a better understanding
and characterization of oil reservoirs.

Figure 1 illustrates the overall architecture of the software system for large
scale oil reservoir simulation studies. The system consists of two main frameworks
that we have developed.

— IPARS (Integrated Parallel Accurate Reservoir Simulator) is a
framework that supports multiple physical models and algorithms for the
solution of multiphase flow and transport problems in porous media. The
framework provides common memory management for general geometric
grids, portable parallel communication, linear solvers with state-of-the-art
preconditioners, keyword input, and output with visualization.
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— DataCutter is a middleware framework for subsetting and processing multi-
dimensional datasets in a distributed environment. The application process-
ing structure is implemented as a set of interacting components, referred to
as filters. Application filters can be placed on the machines in a setting so
that communication and computation overheads are minimized.

In this architecture, IPARS is used to simulate alternative production strate-
gies for a large number of geostatistical realizations of a hypothetical reservoir.
Output from TPARS is stored on distributed collections of disk-based storage
systems for interactive data analysis. Using the DataCutter framework, various
data analysis operations can be implemented that query and manipulate those
datasets. These operations can be executed on the storage systems where the
datasets are stored or on other machines dispersed across a network. A graph-
ical user interface allows a scientist to formulate queries to carry out different
analysis scenarios, such as economic ranking of the alternatives, exploration of
the physical basis for differences in behavior between realizations, in particular
to identify regions of bypassed oil, and identification of representative realiza-
tions, which could be used as a basis for further optimization. Visualization of
the datasets can be carried out remotely.

In the rest of the paper, we present the components of the software system in
more detail. We describe the implementation of several data analysis scenarios
for a sample case study.

2 System Components

2.1 IPARS Framework

IPARS [6,18] represents a new approach to reservoir simulator development,
emphasizing modularity of code, portability to many platforms, and ease of in-
tegration with other software. It models multiphase, multiphysics flow in porous
media, and is suitable for massively parallel computers or clusters of worksta-
tions. There are currently ten physical models in IPARS, including multiphase
gas—oil-water and air—water flow and reactive transport models. These models
can be coupled for multiphysics simulations including couplings between IPARS
models or with external codes. For example, the IPARS black—oil model was used
in a loosely coupled geomechanics and flow implementation driven by reservoir
subsidence problems. Solvers used by IPARS employ state-of-the-art techniques
for nonlinear and linear problems including multigrid and other preconditioners.

A key feature of the IPARS framework is that it explicitly builds upon the
multiblock multiphysics approach ([14,18,10]) which allows for the mathemati-
cally rigorous treatment of multiple domains in which different physical processes
are occurring, as well as providing a basis for implementing different numerical
schemes in different parts of the domain using nonmatching grids while preserv-
ing mass and momentum conservation.

The black-oil model implemented in IPARS is a three phase (water, oil and
gas) model describing the flow in a petroleum reservoir [13] with three compo-
nents. As such it can be considered as a subset of a compositional model [13].



358 J. Saltz et al.

Here it is assumed that no mass transfer occurs between the water phase and the
other two phases and that water phase can be identified with water component.
In the hydrocarbon (oil-gas) system, only two components: light and heavy hy-
drocarbons, are considered. The black-oil model described here has been shown
[11] to give accurate results by comparing them with available analytical so-
lutions and in other cases with solutions obtained by a recognized industrial
reservoir simulation tool Eclipse [4]. In addition, the models and solvers under
IPARS Framework were shown to be scalable in parallel [17].

2.2 DataCutter

A number of toolkits integrate processing with parallel data retrieval on tightly-
coupled systems [5, 3]. Component-based frameworks provide an viable program-
ming environment for application development in distributed environments. Be-
sides the ease of complex application development, such models facilitate ap-
plication implementations that can adapt to the heterogeneous and dynamic
nature of the environment. Several research projects have focused on developing
different types of component-based models [7,12,15].

DataCutter [2,1] is a component framework designed to support subsetting
and processing of large datasets. DataCutter implements a filter-stream pro-
gramming model for developing data-intensive applications. In this model, the
application processing structure is implemented as a set of components, referred
to as filters, that exchange data through a stream abstraction. The interface for
a filter, consists of three functions: (1) an initialization function (init), in which
any required resources such as memory for data structures are allocated and ini-
tialized, (2) a processing function (process), in which user-defined operations are
applied on data elements, and (3) a finalization function (finalize), in which the
resources allocated in init are released. Filters are connected via logical streams.
A stream denotes a uni-directional data flow from one filter (i.e., the producer)
to another (i.e., the consumer). A filter is required to read data from its input
streams and write data to its output streams only. We define a data buffer as
an array of data elements transferred from one filter to another. The current
implementation of the logical stream delivers data in fixed size buffers, and uses
TCP for point-to-point stream communication.

The overall processing structure of an application is realized by a filter group,
which is a set of filters connected through logical streams. When a filter group
is instantiated to process an application query, the runtime system establishes
TCP/IP socket connections between filters placed on different hosts before start-
ing the execution of the application query. Filters placed on the same host ex-
ecute as separate threads. An application query is handled as a wunit of work
(UOW) by the filter group.

The programming model provides several abstractions to facilitate perfor-
mance optimizations. A transparent filter copy is a copy of a filter in a filter
group. The filter copy is transparent in the sense that it shares the same logical
input and output streams of the original filter. A transparent copy of a filter can
be made if the semantics of the filter group are not affected. That is, the output
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of a unit of work should be the same, regardless of the number of transparent
copies. The transparent copies enable data-parallelism for execution of a single
query, while multiple filter groups allow concurrency among multiple queries.
The filter runtime system maintains the illusion of a single logical point-to-point
stream for communication between a logical producer filter and a logical con-
sumer filter. For distribution between transparent copies, the runtime system
supports a Round-Robin (RR) mechanism and a Demand Driven (DD) mech-
anism based on the buffer consumption rate. DD aims to send buffers to the
filter that would process them fastest. When a consumer filter starts processing
of a buffer received from a producer filter, it sends an acknowledgment message
to the producer filter to indicate that the buffer is being processed. A producer
filter chooses the consumer filter with the minimum number of unacknowledged
buffers to send a data buffer to, thus achieving a better balancing of the load.

3 A Case Study

In this section, we describe a case study we have implemented using IPARS and
DataCutter. This case study involves generation of a large collection of data
sets from IPARS simulations, and implementation and execution of various data
exploration scenarios.

3.1 Data Generation

We have generated a large dataset consisting of 207 separate realizations using
the IPARS simulation framework. The input data for this dataset is based on the
industry benchmark SPE9 problem[8] and comes from a black-oil (three phase)
flow problem on a grid with 9,000 cells. At each time step, the value of seventeen
separate variables is output for each node in the grid. A total of 10,000 time steps
are taken and the total output stored for each realization is about 6.9 GB. The
total of 207 realizations were taken from among 18 geostatistical models and
4 well configurations/production scenarios. The geostatistical models are used
to randomly generate permeability fields that are characterized by statistical
parameters such as covariance and correlation length. The total dataset size is
roughly 1.5 Terabytes' and was generated and stored on a storage cluster of
50 Linux nodes (PIII-650, 128MB, Switched Fast Ethernet) with a total disk
storage of 9TB.

3.2 Data Exploration Scenarios

We have implemented several data exploration scenarios using the DataCutter
framework. These scenarios involve user-defined queries for economic evaluation

! The case study that is described in this paper was demonstrated at Supercomputing
2001; a study with a larger dataset (5 Terabytes), which is distributed across three
sites (San Diego Supercomputer Center, University of Maryland, and Ohio State
University), was demonstrated at Supercomputing 2002. We plan to report on the
performance evaluation of the latter study in a future work.
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as well as technical evaluation, such as determination of representative realiza-
tions and identification of areas of bypassed oil.

Economic Evaluation In the optimization of oil field production strategies,
the objective function to be maximized is the resulting economic value of a given
production strategy. The value can be measured in a variety of ways. In our model
we compute both the net present value (NPV) and return on investment (ROI).
In the computation of the NPV for a given realization, a query integrates over
time the revenue from produced oil and gas, and the expenses from water injec-
tion and production, accounting for the time value of the resources produced.
This calculation is performed for a subset of the realizations chosen by the user.
As all of the well production and injection data for each realization resides in a
single file in a single disk, the data access pattern for this application is relatively
simple, and most computation time is spent parsing the output file. The well
data is also a relatively small part of the output data at each time step, so this
is not a compute and data intensive computation. Presently, the operations for
the economic evaluation is implemented as a single DataCutter filter, which also
performs data retrieval from the storage system.

Bypassed Oil Depending on the distribution of reservoir permeability and
the production strategy employed, it is possible for oil to remain unextracted
from certain regions in the reservoir. To optimize the production strategy, it is
useful to know the location and size of these regions of bypassed oil. To locate
these regions, the user selects a subset of datasets (D), a subset of time steps
(T), minimum oil saturation value (Os ;0r), maximum oil velocity (V, ;01), and
minimum number of connected grid cells (N,) for a bypassed oil pocket. The
goal is to find all the datasets in D that have bypassed oil pockets with at least
N, grid cells. A cell (C) is a potential bypassed oil cell if S, . > S0 and
Vo,c < ‘/o,tol-

We implemented a set of filters that carry out the various operations required
to find the bypassed oil regions. The implementation consists of three filters. RD
— Read data filter retrieves the data of interest from disk and writes the data
to its output stream. A data buffer in the output stream contains oil velocity
and oil saturation values, and corresponds to a portion of the grid at a time step
in a data set. CC — Connected component filter performs operations to find
bypassed oil pockets at a time step on data buffer received from RD. These oil
pockets are stored in a byte array, passed to the next filter in the pipeline. Each
entry of the byte array denotes a grid cell and stores if the cell is bypassed oil
cell or not. The CC filter writes the data buffer for each time step to the output
stream, which connects CC to the MT filter. MT — Merge over time filter
performs an AND operation on the data buffers received from CC, and finds the
bypassed oil pockets. The result is sent to the client.

This scenario accesses the large four-dimensional (three spatial dimensions
and time) datasets which are output for each realization. Each of the output
variables are written to separate files, so this computation involves the subsetting
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of data spread across several files. Additionally, if the simulation was run in
parallel, the data for different parts of the domain could reside on separate disks
or nodes.

Representative Realization Running multiple realizations with the same geo-
statistical model and well configurations can give an idea of the upper and lower
bounds of performance for a particular production strategy. It is also of interest
to find one realization for a given production scenario that best represents the
average or expected behavior. A client query to find a representative realization
for a given subset of realizations computes the average of the primary IPARS
unknowns — oil concentration (C,), water pressure (W), gas pressure (Gp) —
and then finds the realization in the subset which is closest to the average in the
sense that

min Z |COC_ Co-avg| + |Pw; Pw_avg| + |Py; Pg-avy|
all grid points o-nve w-avg g-avg
is realized.

The DataCutter implementation consists of four filters. RD - Read filter
retrieves the data of interest from disk. The read filter sends data from each
dataset to the SUM and DIFF filters. A data buffer from the read filter is a
portion of the grid at one time step. SUM - Sum filter computes the sum
for C,, W,, and G, variables at each grid point across the datasets selected by
the user. AVG - Average filter calculates the average for C,, W,, and G,
values. DIFF - Difference filter finds the sum of the differences between the
grid values and the average values for each dataset. It sends the difference to the
client, which keeps track of differences for each time step, carries out average
over all time steps for each dataset.

3.3 Visualization

We have developed two different implementations for visualizing output from
a realization. The first visualization employs isosurface rendering implemented
using the Active Data Repository (ADR) framework [3], which is designed to
support processing of large, out-of-core datasets via generalized reduction op-
erations on distributed memory systems. The ADR implementation uses the
marching cubes and polygon rendering functions of the Visualization Toolkit
(VTK) [16] for extracting and rendering an iso-surface from large, out-of-core
datasets on a distributed-memory parallel system with a local disk farm [9].
Figure 2 shows a visualization of bypassed oil regions using the isosurface ren-
dering. The second visualization tool is based on direct volume rendering. We
implemented a DataCutter filter using the volume rendering library, developed
at Ohio Supercomputer Center. This implementation uses a texture based vol-
ume rendering approach and takes advantage of 3D hardware texture rendering
(e.g., NVIDIA GeForce 3) cards.
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Fig. 2. Visualization of bypassed oil

4 Results

We present results for the representative realization and bypassed oil scenarios.
The experiments were carried out using the DataCutter implementations of the
two scenarios and the 1.5TB data set generated in this study. The data set is
stored on 19 nodes of the 9.5TB storage cluster at University of Maryland. In
the experiments, we varied the number of data sets accessed by a query. For
this purpose, we submitted a total of 28 queries (varying the number of datasets
from 1 to 200); 14 queries for the bypassed oil analysis and 14 queries for the
representative realization analysis. Half of the queries in each set requests data
over 10 time steps (time steps 0 through 9999, with increments of 1000 time
steps), while the other half retrieves 25 time steps (time steps 0 through 9999
with increments of 400 time steps).

Figures 3 shows the execution time for each query. As is seen from the fig-
ures, up to 40 datasets the query execution time remains below 1 seconds for the
bypassed oil scenario. As the number of datasets is increased the query execu-
tion time increases, as expected. For a query that accesses 200 datasets over 25
time steps, the execution time is about 3 seconds. Thus, we are able to achieve
interactive rates even for queries that access a large number of datasets from
the collection. The experimental results show that queries for representative re-
alization scenario take longer, as the operations involved are more expensive.
As is seen from the figure, the query execution time remains below 5 seconds
for queries that access up to 40 datasets over 25 time steps. Our preliminary
results show that the query execution does not scale well after 40 datasets for
the representative realization scenario. This is because of the fact that in the
experiments the number of transparent copies for the SUM and DIFF filters are
fixed at four. In future work, we plan to examine the effect on performance of
varying the number of transparent copies.
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Fig. 3. (a) Performance results for bypassed oil computation (b) Performance results
for representative realization computation

5 Conclusions

We have demonstrated a new paradigm for applying reservoir simulation to the
challenges of reservoir management. The selected challenge was to enable the
evaluation of large numbers of realizations, both of geological models and of well
patterns. The black oil model within the IPARS framework provided the numer-
ical solutions to the forward flow problems, while the DataCutter middleware
provided the means for subsetting and filtering the multidimensional output.
The volume of data resulting from such studies can be extremely large. Such
datasets would be unmanageable for most evaluation tools, especially for com-
plex queries such as identifying representative realizations or locating regions of
bypassed oil. The IPARS/DataCutter applications enable the creation, interro-
gation and visualization of such datasets while maintaining the familiarity and
speed of interaction of the traditional simulation workflow. Thus many more
realizations of higher resolution geologic models and more production strategies
can be studied in greater detail within a given time, increasing the utility of the
study for decision making.
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