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Abstract. Previous research in reverse auction B2B exchanges found
that in an environment where sellers collectively can cater to the
total demand, with the final (i.e. the highest-priced bidding) seller
catering to a  residual, the sellers resort to a  mixed strategy
equilibrium [2]. While price randomization in industrial bids is an
accepted norm, it may be argued that managers in reality do not
resort to advanced game theoretic calculations to bid for an order.
What is more likely is that managers learn that strategy and over
time finally converge towards the theoretic equilibrium. To test this
assertion, we model the two-player game in a  synthetic
environment, where the agents use a simple reinforcement learning
algorithm to put progressively more weights on selecting price
bands where they make higher profits. We find that after a sufficient
number of iterations, the agents do indeed converge towards the
theoretic equilibrium.

1  Introduction

The recent industry excitement around business-to-business (B2B) e-commerce has
brought into focus the large potential size of the market as well as the mechanisms
that are expected to bring multiple benefits to the participants of B2B exchanges.
Forrester Research predicts that there will be $1.5 trillion in goods and services
transacted online among U.S. businesses domestically by 2003, and $2.5 trillion
internationally [14]. Therefore, it is critical to attempt to better understand the
dynamics comprising this particular type of market.

Some of the more prominent advantages B2B exchanges are expected to
bring include lower costs due to automating the procurement process, reverse
auctions, interoperability among users, collaborative planning and collaborative
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design [10]. For example, Ford announced in July 2001 that it had saved $70 million 
through Covisint (the online automotive exchange by the Big Three automakers) in
terms of reduced paperwork and lower supplier prices, which is more than its initial
investment in the exchange [10]. Bandyopadhyay, Barron and Chaturvedi [2]
analyzed the competition between sellers in reverse auctions in a game-theoretic
framework, and established the Nash equilibria in several scenarios. It was found that 
in an environment where sellers can collectively cater to the total demand, with the
final (i.e. the highest-priced bidding) seller catering to a residual, the sellers resort to a 
mixed strategy Nash equilibrium. While price randomization in industrial bids is an
accepted norm, it may be argued that managers in reality do not resort to advanced
game theory calculations to bid for an order. What is more likely is that managers
learn that strategy over time and finally converge towards the theoretic equilibrium.
This paper tests that assertion by creating an artificial B2B exchange in the synthetic
environment for analysis and simulation (SEAS) [6]. It models the sellers’ behavior
with artificial software agents that start bidding randomly, and use a simple
reinforcement learning (RL) algorithm to “learn” the ideal strategy over time.

The competition among sellers in the environment mentioned above is
different from the traditional oligopolistic Cournot competition between firms facing
a downward facing demand curve, where both firms sell at the same price point. It is 
also distinct from a capacity-constrained Bertrand model that has been analyzed
extensively in the literature, where a quantity precommitment and Bertrand
competition yield Cournot outcomes that have equilibrium prices above marginal cost
[12].

The analysis of Bandyopadhyay et al. [2] also established the nature of the
equilibrium under various assumptions of the sellers’ cost, capacities and the market
demand. The problem is most interesting when we assume that there is no combined
capacity constraint as such: the sellers were supplying to the entire demand before the 
birth of the exchange, and continue to do so after it comes into play. However, it is
conceivable that the firms individually cannot supply to the entire market (in fact, it is
to their benefit not to have too much capacity, when there is industry overcapacity in
the first place, as then the competition reduces to a Bertrand game with all firms
supplying at their marginal cost). Since the set of suppliers is limited and all are
reputed in the marketplace, the buyers would not mind getting their orders fulfilled by 
any one or several of these suppliers. This means that while there is a competition
between the firms to be the low-price bidder, it is not as extreme as a Bertrand game 
that results in prices equal to marginal cost. However, there remains an incentive to
be the low-price bidder and have the “first invitation” to supply a requirement.

We use an agent-based simulation approach to study the sellers’ behavior in
a B2B market place. The use of simulation allows repeated and detailed study of the
behaviors exhibited by the players in the market under various experimental treatment
conditions. These artificial agents are endowed the ability to learn from previous
actions by the use of a type of Reinforcement Learning (RL) algorithm described
below. Artificial agents have been used to simulate human agents or players in a
number of different settings such as for automated negotiations in an e-commerce
environment [7, 16].
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RL has been used to examine various competitive scenarios such as sealed
bid k-double auction under asymmetric and incomplete information dynamics [17],
market entry games [8] and rule learning in repeated games [3]. RL is an appropriate
choice for the application presented in this paper due to the ability of RL agents to
incorporate previous experience (either reward or no reward) into action. The model
under which the artificial agents operate in this research is discussed in the next
section.

The remainder of the paper is organized as follows: The model of the
reverse auction is provided in Section 2. Section 3  presents the RL algorithm
deployed in the simulation. Section 4 states the research assertions, hypotheses that
are tested in the simulation, and provides the results. Conclusions and future research
directions are discussed in Section 5.

2   The Model

SEAS uses intelligent agents (IA) to represent economic realities of electronic
markets and hierarchies in a  decentralized manner [5]. SEAS’ intelligent agents are
autonomous processes that are adaptive and behave like human agents in a  narrow
domain. In their respective domains, each agent has a  well-defined set of
responsibilities and authorities so that it can execute its tasks effectively. Examples of
SEAS’ IAs are: economic agents --consumer IAs, producer IAs, and regulator IAs;
political agents -- government IAs, special interest IAs, etc. An agent in SEAS is
equipped with reasoning, action, and communication skills required for performing
their respective tasks. A SEAS IA is characterized by the knowledge it possesses.

SEAS markets are implemented in JavaSpace (Figure 1). JavaSpace is a
descendant of the Linda system developed at Yale University [4]. Java Space defines
the market structure. The rules for all the markets are implemented through
JavaSpace, which in turn synchronizes the thread between the agents. Agents
maintained in the space are updated through their working status. JavaSpace also
forms the connectivity between the agents and the Database, and therefore, after
completing the transactions, it updates the database.

Let us suppose that there are two buyers who bought from two sellers (one
from each) before the advent of the exchange. What prevented buyers from
establishing contact with both the sellers (and vice versa) are the search costs and the
ongoing cost of establishing relationships within large organizations (dedicated
account management teams for buyers, sales force for sellers, cost of sending

individual RFQs to the entire universe of sellers, etc.) [11].1 With the lack of
competition, the sellers could afford to sell the required quantities to the buyers at
their reservation price, which we assume to be the same for both buyers at r. With the
advent of the exchange, the buyers put forward their requirements to the exchange,
and the sellers can then bid for the total requirement from both buyers. The above
example is just illustrative, and is not crucial to the analysis. There can be in fact only

1 It has been estimated that in terms of reduction of paperwork alone, B2B exchanges can bring 
down costs per purchase order from $75-$150 to $10-$30 [10]
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a single large buyer, whose requirements cannot be met by one seller – however, two 
sellers together have a combined capacity that is more than the buyer’s requirement.

SEAS B2B model derives much of its intuition from the basic 2-player
model, and therefore it is instructive to first consider the 2-player model in detail. We 
consider the case when both sellers have equal capacities K that is more than the
respective individual requirements of the buyers, but is lesser than the total
requirement of both buyers Q (i.e. 02 >− QK ). In such a setting, the lower priced
seller is invited first to sell the required quantity, and after he has supplied his total
capacity K, the other seller can then sell the residual demand KQ − . Both sellers
have a common fixed marginal cost of production, c.

From the modeling point of view, it is immaterial whether the sellers respond 
to an aggregate demand of several buyers or one single demand from a buyer. What
is important to note is that the entire requirement is auctioned to the sellers, and for
any unfulfilled demand, a lower priced bidder is invited before a higher priced bidder
to satisfy the unfulfilled demand. It is readily apparent that with unlimited capacity,
the sellers respond with a Bertrand competition in prices with the seller or sellers with
the lowest marginal cost outbidding the others. This is not to the advantage of the
sellers. Kreps and Scheinkman [12] (and several variants of the original model, such
as [1])) show that if sellers could limit capacity, then a quantity precommitment and 
Bertrand competition yield Cournot outcomes that have equilibrium prices above
marginal cost. At the other end of the spectrum, if the total capacity of the sellers is
so limited as to be less than the total demand, it is easy to see that the sellers can sell
their entire capacities at the buyer’s reservation price.

The analysis shows that there exists a mixed strategy equilibrium of prices
where the sellers randomize between a range of prices. The intuition behind such an
equilibrium is as follows: With two similar players, there cannot be any equilibrium
in pure strategies with the players settling on different prices. Settling on the same
price is also ruled out, since the best response to any price is to set a price that is ε
lower than that price. Thus, if any Nash equilibrium exists, it has to be mixed strategy 

equilibrium. It can further be shown that the support of the strategy lies between 1p
and r, where r is the reservation price for the buyer and 1p is given by

. c
K

KQcr
p +−−= ))((

1 (1)

An intuitive way of looking at 1p  is that below this price, a seller makes less 
profit by “winning” (supply to capacity) than by “losing” and supply the residual at
the highest possible price r (which is the best price the seller can supply the residual, 
since he is losing anyway).

The equilibrium strategy for either player can be expressed in terms of their 
price randomizing cumulative probability density function F(p):
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rp ,1 ), and
effectively defines the symmetric Nash equilibrium strategy of the two players (i.e.
the suppliers). The suppliers randomize their bids within this interval, such that their 
randomizing has a probability distribution given by F(p) in (2). By definition the
Nash equilibrium maximizes the expected return of the suppliers.

The analysis will be similar for the n-player model, where the highest bidder
supplies the residual, and the rest supply to capacity ( nKQKn <<− )1( ). The

support of the strategy for the sellers is given by ( rp n ,1 ), where

c
K

KnQcr
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1 , (3)

and the expression for the distribution function is given by
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While price randomization in industrial bids is an accepted norm, it might be
difficult to accept that managers go through advanced game theory calculations (and
in any case, the real-life situations are far more varied than the simplified model
scenarios that make any game theory analysis extremely complex) to determine their 
bids. It is conceivable that sellers learn from their past experiences to bid in a fashion 
that maximizes their surplus. It is this assertion that we test in the remainder of this
paper.

Fig. 1. SEAS Agent-based Architecture
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3   The Algorithm

To test our assertion, we model the competing sellers as artificial software agents.
Like human subjects, we propose that these agents “understand” the following
(without resorting to knowing game theory):

1. There are two opposing forces in the pricing strategy – a higher price (towards r)
means greater per-unit profit, but also brings about a  higher probability of
“losing” to the competition (in terms of being the first invited bidder to supply
the demand).

2. It does not make any sense to price below 1p , as is clear from the above analysis.
3. Since there is a need to balance between higher probability of winning and higher 

per-unit profit, there is no a priori reason to rule out any price between 1p  and r,
and further, there is reason to believe that price randomizing might be the ideal
(or equilibrium) solution.

The “sellers” thus start off initially with a totally random pricing strategy
(i.e. the price distribution is uniform in its support), with the hope of learning over
time about the ideal nature of the randomization. This is the same assumption as Erev 
and Roth [8] employ in their experiments and refer to as the “initial propensities” of
the players for their pure strategies.

If we denote the average profit of player j (j=1,2) in division k (k=1,…10) in 

simulation round t as )(tjkΠ , then the probability )1( +tp jk of choosing that

division in round t+1 is given by

∑
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The game is then repeated a sufficient number of times so that the players
can hopefully learn sufficiently to converge to the ideal distribution. The experiment
can be repeated with other values of Q, K, c and r.

4   Hypothesis Testing, Results, and Discussion

For testing the assertion, we selected various values of Q, K, c and r. In the 2-player

model equilibrium, we can see from the expressions of 1p and F(p) that the drivers

of interest are the values ( QK −2 ) and ( cr − ). If the combined capacity (2K) is
barely more than the demand (Q), the sellers have little incentive to lower prices,
while if there is a large amount of overcapacity, the sellers would greatly reduce
prices (since losing would mean catering to a very small residual demand). The
difference ( cr − ) on the other hand would determine the range of the support of
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prices. We keep Q (the total quantity demanded) fixed at 100 units and r (the
reservation price) fixed at $80. The values of K chosen reflect the amount of
overcapacity: at K=65, we have moderate overcapacity, prompting moderate
competition; at K=80, the possibility of supplying only a small fraction of the demand
(i.e. if the supplier bids the higher price, he ends up supplying the residual of only 20
units) should prompt more severe competition. For each of these values of K, we
choose the value of c, the marginal cost, as $60. 

For each of the pairs of values of K and c, we calculate 1p and
corresponding subdivision limits, which are shown in the Bin column. After running
the simulation as described above, we find out the number of times the prices are

picked in each subdivision, and this is given in the Frequency ( iO ) column. The

theoretical cumulative distribution gives us the theoretically expected number of

observations in each subdivision, and this is presented in the iE column. We

compute the 2χ statistic as∑
=

−10

1

2)(

i i

ii

E

EO
, and this is compared with the

corresponding chi-square value with 05.0=p (16.92). Formally stated, we would
reject the null hypothesis that the data follows the distribution specified in (2), if the

calculated 2χ exceeded the corresponding 2χ value with a significance level α of
0.05:

The simulation results show that as expected from the theoretical results,
lower prices are preferred over high prices (Tables 1 & 2). We run a chi-square
goodness of fit test with each of the simulation settings. As the results show (the ‘Chi-

sq.’ column in the tables compute the 2χ statistic, whose sum is shown in the final
row, and this sum is compared to the corresponding chi-square value with p = 0.05
which is shown in the final column), the fit with the theoretical distribution is always
very good. In all the nine cases, we do not reject the null hypothesis that the
experimental frequency distribution follows the theoretical probability distribution. In 
other words, the simulation runs results in the agents learning over time to come very
close to the ideal distribution with every set of values of the parameters K and c.

It is therefore observed that the artificial software agents start off selecting

their prices uniformly throughout the interval of ( rp ,1 ), but gradually learn over
time to select lower prices with monotonically higher probabilities. In fact, the final
frequency distributions show that the learning is ‘perfect’ within margins of statistical 
error. The results have interesting ramifications in real-world scenarios. Managers
might not have the luxury of learning over a large number of observations themselves 
as in these simulations, but they can utilize the “organizational memory” (i.e. the

H0: )()( * pFpF nn = where )(* pFn is the experimentally generated distribution.

H1: )()( * pFpF nn ≠
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experiences of him as well as his predecessors) to effectively build the learning
capability over time. Managers also have their own intuition, which these artificial
agents lack that might result in accelerated learning towards equilibrium (and
therefore optimal) behavior.

5   Conclusions

While we are currently addressing many of these issues in our ongoing research, the
results of our simulations with the 2-player model show considerable promise. We
hope that these results spur the interest of using automated agents that will enable
organizations to effectively compete in the increasing number of electronic
transactions. While one of the main attractions of B2B exchanges remains in their
ability to automate the processes by which organizations can participate in electronic
transactions with each other, the problem of overseeing each and every one of them is
still very much an issue. This problem will likely exacerbate in future as more and
more organizations start to utilize these electronic services. While the algorithms that
need to be used in real-world scenarios will be much more complex than those
presented in this research, we think that organizations might over time develop such
algorithms of increasing sophistication. At first, very basic transactions having routine
processes would be entrusted to such learning mechanisms. As algorithms get more
complex, and simultaneously organizations also gain confidence in such mechanisms,
more complex transactions would probably be entrusted. Organizations might also
develop processes by which unusual procedures set off triggers for either human
intervention or even a complete abort.

Table 1. Simulation run results with K = 65 units, c = $60

Bin
Frequen
cy (Oi) Th. Cum. Fr.

Th. Freq. 
dist. (Ei) Chi-sq.

Chi-sq.
value

(p=0.05)
71.69230769 176 171.0526316 171 0.143093117
72.61538462 152 317.0731707 146 0.244855636
73.53846154 133 443.1818182 126 0.376585912
74.46153846 109 553.1914894 110 0.009266784
75.38461538 86 650 97 1.206752397
76.30769231 78 735.8490566 86 0.717628032
77.23076923 75 812.5 77 0.035558781
78.15384615 67 881.3559322 69 0.050024511
79.07692308 68 943.5483871 62 0.052534014

80 56 1000 56 0.351041475

1000 1000 3.187340659 16.92
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Table 2. Simulation run results with K = 80 units, c = $60
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