GSiB: PSE Infrastructure for Dynamic
Service-Oriented Grid Applications

Yan Huang

Department of Computer Science
Cardiff University
PO Box 916
Cardiff CF24 3XF
United Kingdom
Yan.Huang@cs.cardiff.ac.uk

Abstract. This paper describes the Grid-Service-in-a-Box(GSiB) sys-
tem — a visual environment for both service providers and service clients
who wish to deploy, manage, and use services in a Grid environment,
without having to be experts in Grid and Web service technologies. GSiB
provides a variety of easy-to-use graphical user interfaces for service
providers to deploy, undeploy, update, compose, and monitor services,
and for service clients to generate service-composite applications, and
to track and monitor submitted jobs. In this paper, these interfaces are
described and several implementation issues are addressed.

1 Overview

Building on Grid and Web service technologies, the Open Grid Services Architec-
ture (OGSA) proposes a new generation of Grid infrastructure, in which services
act as the building blocks of the Grid system. OGSA abstraction [1, 2] is quite a
new concept and presents a lot of challenges for the scientists who wish to use it.
In general, these scientists cannot be expected to keep abreast of the rapid devel-
opment of Grid technologies, so easy-to-use tools and environments are needed
to allow scientists to take full advantage of service-oriented Grids, such as those
based on OGSA, without them having detailed knowledge of the underlying in-
frastructure. This is the main motivation for the Grid-Service-in-a-Box (GSiB)
system. The GSiB project is developing a visual problem-solving environment
for both service providers and service clients. For the service provider GSiB
provides a visual environment for creating and publishing Grid services from ex-
isting software and libraries, browsing, monitoring and querying Grid services,
and composing higher-level Grid services from other services. For service clients,
GSiB presents a visual environment for browsing and querying Grid services
and creating Grid applications by composing Grid services. It also provides an
execution environment for running Grid applications.

GSiB is designed to function in conjunction with OGSA-compliant Grid sys-
tems, as well as with other similar service-oriented architectures. In this context
we refer generically to a Grid service as any service that is consistent with this

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 430-439, 2003.
© Springer-Verlag Berlin Heidelberg 2003

GSiB: PSE Infrastructure for Dynamic Service-Oriented Grid Applications 431

architecture. We assume that all Grid resources are accessible as services, and
that there are standard mechanisms for service publication, service querying and
service invocation. In [5] and [4], we have explored techniques for building such
a system and a brief description of these will be given in section 3.

2 GSiB Interfaces and Functionality

GSiB provides an easy-to-use graphical user interface for service providers and
clients that allows users to take advantage of Grid services even though they
may have little knowledge of Grid computing and Web services. The details of
the underlying technologies are largely hidden within the GSiB system. GSiB
consists of two packages: the Service Provider GUI (SP-GUI) package, and the
Service Client GUI (SC-GUI) package. The interfaces and functionalities of these
opackages are discussed in the following subsections:

2.1 The Service Provider GUI Package

The SP-GUI package contains a variety of graphical interfaces for service providers
to easily and quickly create Grid services from existing legacy software and li-
braries, to update, monitor and manage Grid services, and to compose more
complex Grid services based on existing Grid services. GSiB provides mecha-
nisms for supporting the updating of Grid services and fault-tolerant lifecycle
management. The SP-GUI package contains the following graphical interfaces
and components:

— Login Interface for users to log in as authorized service providers.
— Service Deployment/Undeployment Interface for deployment and undeploy-
ment of services. This provides the following functionality:

e Automatic deployment of existing software routines or libraries as OGSA-
compliant Grid services. Java, C, and C++ are supported as the native
languages of the service deployed by this mechanism.

e Visual Service Composition Environment (VSCE) for service providers
for building and deploying a service composed of existing services by
visually drawing a diagram representing the workflow of the composite
service.

e Updating of existing Grid services. When a service is updated, its im-
plementation or/and interface may be changed, so it is important to
consider how to avoid interrupting running applications and other high-
level services that are built on top of the updated services.

e Undeployment of an existing Grid service. This also involves considera-
tion of how to avoid interrupting a running application and disrupting
high-level services.

— Service Configuration Interface for setting up or changing a service’s security
policy and lifetime.

— Service Monitoring Interface for dynamically monitoring the distribution
and workload of Grid services.

432 Y. Huang

— Other interfaces include an Authorization Interface for a user to log in as an
authorized service administrator; an Authentication Interface for setting up
a Grid service so that it is accessible by only authorized users for a required
or assigned time; and, a Lifecycle Management Interface for dealing with any
failures, and reclaiming service and state associated with failed operations.

2.2 The Service Client GUI Package

The SC-GUI package presents a variety of graphical interfaces for a service client
to browse and query Grid services, create Grid applications, submit jobs, monitor
the execution of jobs, and retrieve results. The SC-GUI package contains the
following interfaces and components:

— Login Interface for users to log in as authorized service users.

— The Visual Service Composition Environment for service clients is similar to
the VSCE for service providers, except that it produces a composite Grid
application rather than a composite higher-level Grid service. A VSCE al-
lows a user to create a representation of a Grid application by drawing its
workflow. The graphical model created using VSCE can be transformed into
an XML-based workflow description, and can also be sent to a Workflow
Engine to be executed. This is discussed further in Section 4.

— The Workflow Engine Component provides an execution environment for
Grid applications that are described in an XML-based workflow description
language.

— The Job Tracking and Monitoring Interface allows users to track and monitor

the jobs they have submitted.

A Service Browser for browsing and querying services.

3 Implementation Aspects

3.1 Service Deployment

Usually additional code, such as a wrapper, is needed to make a piece of software
available as a Web service. This can result in a lot of repeated work, especially
when a large library of routines is to be wrapped as Web services. A legacy
problem exists when the implementation language of the services and the lan-
guage supported by the service hosting environments are different. Thus, service
deployment is one of the main issues addressed by the SP-GUI package.

As mentioned above, we assume that Grid services are Web service compati-
ble, which means that they are accessible by general Web service users regardless
of how they are implemented. The public interfaces and bindings of a Web ser-
vice are described in an XML document, and it is registered in a service registry
to allow service discovery and querying [8]. The SP-GUI package can be used
by service providers to publish existing software and libraries as Web services.
Although Java is used to build the system framework, the implementation lan-
guage of the services supported by the SP-GUI is not limited to Java — it can

GSiB: PSE Infrastructure for Dynamic Service-Oriented Grid Applications 433

be Java, C, or C++. In the implementation of the SP-GUI package, a Java-C
Automatic Wrapper (JACAW) is used to automatically generate the Java JNI
wrapping code for the legacy software [3]. This JNI wrapper provides a Java
interface for the wrapped legacy code and invokes the original routine which is
compiled into a dynamical library. Thus, the wrapped legacy code can be invoked
and run in the same way as any other Java code. To deploy a Java program as
a Web service the Axis Java2WSDL utility is used to generate the Web Service
Description Language (WSDL) document from the Java code. The service is
then published into a UDDI (Universal Description, Discovery and Integration)
registry server by using UDDI4J which provides an Java API for interaction with
a UDDI registry [7]. Figure 1 illustrates this service deployment scenario.

@ generate
AVA2WSDL WSDL Document
JNI Wrapper

register

UDDI Registry
Server

Legacy code generate

(C/C++)

i

Java code

Fig. 1. Service deployment in the SP-GUI package.

3.2 Service Composition

It is useful to be able to build new services and applications through the com-
position of existing services, and this task can be made easier by using visual
programming tools. GSiB provides a Visual Service Composition Environment
(VSCE) for both service and application composition that allows a user to cre-
ate a new composite service or application by drawing its workflow graph. The
VSCE lists all the known service instances matching some set of requirements
specified by the user, and allows the user to choose from these based on dynam-
ically discovered metrics such as speed, workload, and network latency of the
service instances!.

In the workflow representation, or flow model, an activity represents a task
to be performed as a single step within a process, and is implemented by one
of the operations provided by a Web service. There are three kinds of activities:
normal activity, assignment activity and control activity. A normal activity is
implemented by an operation of a Web service; an assignment activity specifies
an assignment normally between a variable and the output of an activity; a
control activity specifies a control process such as a loop or conditional construct.
The workflow representation is a directed graph, similar to a task graph, and

! In the future this task will be done automatically by a resource manager.

434 Y. Huang

the activities correspond to nodes in the graph. Activities are wired together
through control links. Each control link is a directed edge of the graph, and
together they represent the control flow of the flow model. A data link is a
second kind of directed edge of the graph and specifies the flow of data between
a source activity and a target activity. A data map that describes how a field in
the message part of the target’s input message is constructed from a field part
of the source’s output message is defined for each data link. A flow model itself
also has input and output: a flow source is a source of the data links targeting
activities in the flow model, and a flow sink is a target of the data links of
the flow model. Figure 2 shows the graphical symbols used in displaying a flow
model.

Graphic Symbol JSFL Symbol

m] Data input port

o Data output port

L Control input port

o Control output port
-- B> Data Link

Control Link

Nomal and assign activity

—
{> Control activity

Fig. 2. Graphical symbols for constructing a flow model.

Figure 3 gives an example of the directed graph of a job flow model, together
with the corresponding Java code.

After the graphical flow model representing an application has been created
using VSCE, GSiB can convert it into an XML description document, and then
(if the user requests it) the application can be submitted for execution by passing
its this XML document to a workflow engine, as described in Section 5.

3.3 Service Workflow Language

One of the main aims of GSiB is to provide a visual composition and editing tool
to create and submit service-based applications, described in an XML document
and based on a standard job description language. Figure 4 shows how a user can
create and run a service-based application through a drag-and-drop interface. In
this scenario, the workflow engine is a service that accepts an XML document

GSiB: PSE Infrastructure for Dynamic Service-Oriented Grid Applications 435

retA = activityA(...);
for(i=0; i<100; i++)
{

activityF(retA, 1);
}
retC = activityC();

Fig. 3. The graphical workflow model of a for loop example.

describing an application, automatically produces a corresponding Java code,
compiles the code, and executes it.

In building a Visual Service Composition Environment, choosing and defining
a job description language is one of the critical issues. A VSCE must be able to
convert a graphical job flow model into an XML-based description document,
and then from this XML description document into a distributed Java code. It
would be more convenient if two-way conversion is available because, for example,
after saving a job as a XML document, the user might want to modify the
job again. Thus, the mapping between the XML job description language and
job’s graphical flow model, and the mapping between the XML job description
language and the Java program are the main requirements in defining a job
description language. Therefore, an XML job description language that allows
documents to be readily converted to both a graphical representation and a Java
program meets our requirements.

Web Service Flow Language (WSFL) warrants attention because it can de-
scribe a composite job in a graphical form. Its activities can be mapped into
nodes of the graph, and its data links and control links can be mapped onto
directed edges of different kinds. However WSFL has its limitations, such as a
lack of a one-to-one mapping between Java programming constructs and WSFL
processes, inflexibility in how the variables that are used as parameters in the
boolean expression of the transition and exit conditions are specified, and dif-
ficulties in displaying WSFL control processes in a clear and understandable
graphical form [5]. We have, therefore, extended WSFL to create the Service
Workflow Language (SWFL), which overcomes the limitations of WSFL and

436 Y. Huang

-
XML
Job Flow Graph Job Degcription
s vf T \v
/ N <xml
ll \‘ : : —_————— ~
|
‘\ ,‘ e) : : Executable :
Drawi \ / C 1 d 1 Code h
rawing S .2 reate nlind il Workflow S
7| Screen XML .
Engine
A XML
Validator
Visual Service Composition Editor (VSCE)

(. J

Fig. 4. Visual service composition.

meets the above requirements for a job description language. The details of
SWFL is available in [5].

4 SWFL2Java

We have developed a tool, called SWFL2Java, that converts the description of a
job in SWFL into executable Java code. The details of SWFL2Java are discussed
elsewhere [5], however, we will give here an overview of the implementation. In
SWFL2Java an SWFL document is not translated directly into a Java program
but is stored in an intermediate form as a Java FlowModel object. This is made
up of two Java Graph objects: DataGraph and ControlGraph. The former stores
the data flow structure of the flow model, and the latter stores its control flow
structure. One reason for storing the job description in this intermediate form
is to be able to interact readily with Java-based graphical tools, such as VSCE,
for the visual composition of Web services. The graph created with VSCE can
be stored as a FlowModel object and converted to and from SWFL, as well as
into a Java program. Another reason for using the FlowModel form is to reduce
the overhead when the same job is used many times and scheduled on different
resources. In such cases it is easier to generate the Java code from the interme-
diate form rather than starting from the original SWFL. Figure 5 illustrates the
importance of the FlowModel representation of a composite application.

5 Workflow Engine

After it is generated by VSCE, a composite service-based application may then
be submitted to a Workflow Engine to be executed. A Workflow Engine provides

GSiB: PSE Infrastructure for Dynamic Service-Oriented Grid Applications 437

<?xml version="1.0" 7> public class AProgram{

<jiniJobDefinition name=".. AProgram...
<jiniJobDefinition>

}
XML Job

Description File Task Graph Java program

|

(GraphClass Je |

Fig. 5. Using a FlowModel object as an intermediate representation in SWFL2Java.

an execution environment for such applications described in an SWFL document.
We have implemented such a Workflow Engine as part of our Jini-based Service
Grid Architecture (JISGA) citeThesis.

In JISGA, the WorkflowEngine service supports both blocking and non-
blocking submission of applications, as well as their sequential and parallel pro-
cessing. For blocking sequential jobs, the Workflow Engine processes the job by
generating the Java harness code using SWFL2Java, executing it, and sending
the result to the job submitter. In the case of non-blocking and/or parallel jobs,
Jini’s JavaSpaces plays a key role in the job processing.

JavaSpaces provides object storage services through a tuple-space abstrac-
tion, and supports the sharing of objects between distributed applications [6].
In JISGA, JavaSpaces is used in the following ways:

1. As a shared memory, allowing message passing between different services
and processes.

2. To store the result objects of non-blocking jobs so that job submitters can
retrieve their job results later.

3. To store message objects used in communication between sub-job processes,
thereby allowing job parallel processing.

4. In maintaining the two job queues of the JISGA system so that jobs and
sub-jobs can be processed in an FIFO (First In First Out) order.

The JISGA environment makes use of two job queues. One is the Parallel-
Job Queue, containing parallel jobs to be processed. The other is the Sub-Job
Queue, containing sub-jobs generated from the partitioning of parallel jobs. The
JSHousekeeper performs housekeeping tasks in JavaSpaces serving in the sys-
tem. Its duty is to collect result objects, update job queues, and maintain data
messages. It is also a service, and provides an interface for job submitters to
retrieve their job results.

The WorkflowEngine and JobProcessor services both deal with the processing
of parallel jobs. After the parallel job is submitted, the WorkflowEngine service
will leave the job for the JobProcessor service to process by adding the job to
the Parallel-Job Queue. A JobProcessor is a service working internally in the

438 Y. Huang

environment supported by a number of workflow engine services. Its main duty
is to process parallel jobs, which includes partitioning a parallel job into sub-
jobs, adding these sub-jobs to the Sub-Job Queue, and processing sub-jobs in
the Sub-Job Queue. There are two threads running synchronously in a JobPro-
cessor. One of the threads takes one job at a time from the Parallel-Job Queue
and then partitions the job into sub-jobs which are then added to the Sub-Job
Queue. Another thread takes one sub-job a time from the Sub-Job Queue and
processes it. As many as WorkflowEngine and JobProcessor services as deemed
necessary may exist in the environment they support. It is up to the system
administrator to determine the number of WorkflowEngine services and JobPro-
cessor processes. However, more than one JobProcessor processes are needed to
allow the processing of parallel jobs.

6 Concluding Remarks

The main motivation for developing GSiB was to provide a user-friendly visual
PSE to assist computational scientists to build and run composite service-based
applications. A variety of visual interfaces are supported in GSiB to achieve this
aim. The GSiB interfaces are divided into two packages: Service Provider GUI
(SP-GUI) and Service Client GUI (SC-GUI). The SP-GUI package supports
deploying, undeploying updating and monitoring services,as well as service com-
position. The SC-GUI package supports the creation of composite service-based
applications, job tracking and monitoring, and service advertising and subscrip-
tion.

Several issues in the implementation of the underlying infrastructure have
been addressed in the paper. The legacy problem in deploying existing software
as services is solved by using JACAW to automatically generate JNI wrappers
for C legacy codes. By using VSCE users can generate composite services and
applications through a simple “drag-and-drop” interface. The graphical repre-
sentation of the flow model of a composite service-based application has been
discussed, and SWFL, an XML-based language for describing such applications
has been introduced. SWFL is an extension of WSFL that can describe Java-
like conditional and loop constructs, permits sequences of more than one service
within conditional clauses and loop bodies, and overcomes limitations inherent in
WSFL’s data mapping approach. Given a SWFL job description the SWFL2Java
tool can generate a representation of the corresponding data and control link
structure in the form of a Java FlowModel object. An application created with
VSCE and described in SWFL can be submitted to a Workflow Engine that
provides an execution environment for such applications. By using SWFL2Java,
code based on the SWFL document can be dynamically generated and run.
The Workflow Engine supports blocking and non-blocking job submission, and
provides both sequential and parallel job processing.

GSiB: PSE Infrastructure for Dynamic Service-Oriented Grid Applications 439
References

1. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The Physiology of the
Grid: An Open Grid Services Architecture for Distributed System Integration,”
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf.

2. S. Tuecke, K. Cazajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman,
and P. Vanderbilt, “Grid Service Specification,” http://www.gridforum.org/ogsi-
wg/drafts/draft-ggf-ogsi-gridservice-04_2002-10-04.pdf.

3. Y. Huang, I. Taylor, D. Walker, and R. Davies, “Wrapping Legacy Codes for Grid-
Based Applications,” in Proceedings of the Fifth International Workshop on Java
for Parallel and Distributed Computing, held as part of the International Parallel
and Distributed Processing Symposium (IPDPS) in Nice, France, April 2003.

4. Y. Huang and D. Walker, “JSFL: An Extension to WSFL for Composing Web
Services,” UK e-science All Hands Meeting, 2-4 September 2002.

5. Y. Huang, “The Role of Jini in a Service-Oriented Architecture for Grid Comput-
ing,” Ph.D Thesis, Department of Computer Science, Cardiff University, January,
2003

6. W. Keith Edwards and Tom Rodden, “Jini Example By Example,” Sun Microsys-
tems Press, 2001

7. “UDDI4J Overview,” http://oss.software.ibm.com/developerworks/opensource/uddidj/

8. “Web Services Architecture Requirements,” http://www.w3.org/TR/wsa-regs,
April, 2002

	1 Overview
	2 GSiB Interfaces and Functionality
	2.1 The Service Provider GUI Package
	2.2 The Service Client GUI Package

	3 Implementation Aspects
	3.1 Service Deployment
	3.2 Service Composition
	3.3 Service Workflow Language

	4 SWFL2Java
	5 Workflow Engine
	6 Concluding Remarks
	References

