Performance Analysis of PHASTA on
NCSA Intel IA-64 Linux Cluster

Wai Yip Kwok

National Center for Supercomputing Applications, Champaign, IL 61820, USA
kwok@ncsa.uiuc.edu,
http://www.ncsa.uiuc.edu/~kwok

Abstract. Performance of a computation-intensive multi-purpose CFD
code PHASTA is analyzed on the NCSA Intel IA-64 Linux cluster. The
capabilities of current-generation, open-source performance analysis tools
available on this terascale system are demonstrated. Code profiling and
hardware-performance counting tools are used to measure single-processor
performance. Results pinpoint dominant but inefficient subroutines when
level-3 optimization is used. Performance of these subroutines improves
by compiling with level-2 optimization instead, due to reduction in to-
tal instructions. Flop rates of individual subroutines are estimated to
guide further tuning. Parallel performance is addressed with performance
visualization of inter-processor communication. Results reveal sporadic
communication overhead in the function MPI Waitall. This overhead
constitutes about 18% of total simulation time.

1 Introduction

Cluster computers, which are commodity workstations connected by high-speed
network, have emerged as a major source of terascale computing systems. New
microprocessors such as the Intel IA-64 processors have much power to perform
computing-intensive tasks. However, their cutting-edge technology also poses
challenges to performance analysis and compiling.

In this study, we report success in using a variety of performance analysis
tools to study the single-processor performance and multiple-processor commu-
nication of a computational fluid dynamics (CFD) code on the NCSA Intel
TA-64 Linux cluster. The analysis provides vital information to code tuning.
Section 2 describes the application code, NCSA Linux cluster, and performance
analysis tools. Single-processor performance analysis is presented in Section 3.
Multi-processor communication is discussed in Section 4. A summary is given in
Section 5.

2 Preliminaries

This section provides basic information about the multi-purpose CFD code, the
computer architecture, and the tools used to analyse performance of the code.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 4352, 2003.
© Springer-Verlag Berlin Heidelberg 2003

44 W.Y.Kwok

2.1 Application Code

Parallel Hierarchic Adaptive Stabilized Transient Analysis, or PHASTA software
is developed and supported by the Scientific Computation Research Center at
the Rensselaer Polytechnic Institute [5]. It can model three-dimensional, com-
pressible or incompressible, laminar or turbulent, steady or unsteady flows, using
unstructured grids. A stabilized finite-element formulation for fluid dynamics us-
ing mesh-entity hierarchical basis functions is used in the software.

PHASTA consists of more than 150 codes. Most of the codes are written in
Fortran 90. These Fortran 90 subroutines carry out all the computation. A small
number of codes are written in C and C++. Message passing interface (MPI) is
used for data communication when multiple processors are used.

2.2 NCSA Intel IA-64 Linux Cluster

The NCSA Intel TA-64 Linux cluster is a distributed-memory system [3]. It is
based on IBM IntelliStation Z Pro 6894 workstation. Each workstation (node)
has two 800 MHz Intel Itanium I processors. There are more than 120 nodes.
The cluster runs Red Hat Linux version 7.1 and kernel 2.4.16, and uses both
Myrinet interconnect and Gigabit Ethernet network.

2.3 Performance Analysis Tools

A variety of tools are used to analyze the performance of PHASTA. GNU gprof
and VProf are used for code profiling. GNU gprof is written by Jay Fenlason [2].
It can generate flat profiles, which show how much time is spent in each func-
tion, and how many times that function is called. VProf is developed by Curtis
Janssen in Sandia National Laboratories [6]. It carries out statistical profiling
for hardware-performance events. On the NCSA Itanium Linux cluster, VProf
makes use of the Performance Application Programming Interface (PAPI) [4]
to access the hardware-performance monitors. PAPI is developed by the Innova-
tive Computing Laboratory at the University of Tennessee. VProf requires Linux
kernel version 2.4.19 and PAPI version 2.3.1 to function properly. A node on the
NCSA TA-64 cluster is upgraded to this kernel to enable the VProf analysis.

Overall code statistics are gathered with a tool named psrun. The tool
psrun [8] is a command-line utility used to gather hardware-performance infor-
mation on an unmodified executable. It achieves counting of multiple hardware-
performance events (multiplexing) through PAPI. It is developed by Rick Kufrin
at NCSA.

MPI communication among multiple processors are monitored and visualized
with MultiProcessing Environment (MPE) libraries and Upshot [7] developed by
Argonne National Laboratory. MPE and Upshot provide users with profiling and
visualization tools for their MPI programs.

Performance Analysis of PHASTA on NCSA Intel IA-64 Linux Cluster

3 Single-Processor Performance Analysis and Tuning

After the code is ported to the TA-64 Linux cluster and completes some test
problems correctly, its single-processor performance is analyzed. To validate the
accuracy of profiling tools on the new IA- 64 architecture, both GNU gprof and
VProf are used to ensure consistency. PHASTA, when compiled with level-3 opti-
mization, produces profiles shown in Table 1. Profiles measured with GNU gprof
and VProf are consistent. The functions e3ls, e3conv and e3wmlt occupy a large
portion (> 60%) of the total time consumed. This finding directs optimization
efforts to these dominant subroutines.

Table 1. Time-profiles of PHASTA before tuning. All numbers are in percentage

Subroutine Percentage of time spent, Percentage of time spent,

name measured with GNU gprof measured with VProf
e3ls 33.25 36.10
e3conv 17.43 16.50
e3wmlt 11.99 13.00
fillsparsec 5.61 5.90
e3divar 4.03 3.00
e3massl 4.02 3.60
sparseap 3.63 3.20
e3mtrx 3.15 2.60
edvisc 1.96 1.30
e3 1.81 1.80
Others 13.12 13.00

When compilation of functions e3ls and e3conv is reviewed, the following
warning message is noticed: ‘Space exceeded in Data Dependence Test in e3ls
(or e3conv). Subdivide routine into smaller ones to avoid optimization loss.” This
warning appears regardless of size of grid, block, dataset, etc, as all the above
information is fed into the code at the execution rather than the compilation
stage. The compilation process of the whole code is then examined and it is found
out that the following files induce the above warning: 1. asithf.f, 2. bardmec.f, 3.
e3bdg nd.f, 4. e3bdg.f, 5. e3bvar.f, 6. e3conv.f, 7. e3dc.f, 8. e3ls.f, 9. e3mtrx.f, 10.
edtau.f.

Various compiler flags and loop adjustment are explored to remove the cum-
brance in the above codes. It is found at the end that the same subroutines,
compiled with level-2 optimization, surprisingly run faster than their level-3
optimized counterparts. The main difference between level-3 and level-2 opti-
mizations is its additional, more aggressive optimization. These optimization
procedures, also named high-level language optimizations, include prefetching,
scalar replacement, loop transformation, floating-point division optimization and

45

46 W.Y. Kwok

more data-dependency analysis [1]. The additional optimization affects memory
access, instruction parallelism, predication, and software-pipelining. The result-
ing effects can be beneficial or harmful, depending on the particular code or
loop. In the current situation, additional optimization ends up harmful.

As a result, the subroutines that fail the data-dependence test are compiled
with level-2 optimization, while the rest stays with level-3 optimization. It should
be noted that in subsequent paragraphs level-2 optimization refers to this mixed
level-2 and level-3 optimization.

After the change in optimization level, wall-clock time spent in e3ls and
e3conv reduces by 48% and 34%, respectively (Figure 1). In terms of percentage
of time spent in individual functions, e3ls and e3conv consumes 22% and 15%,
respectively, after tuning, down from 33% and 17% before tuning (Table 2).

700

EOD moz

=00 4 ooz |

400 4

Time (s}

300 4

200 4 —

100 —

edls e3cony

Subroutine

Fig. 1. Wall-clock time spent in subroutines e3ls and e3conv, compiled with level-3
(denoted O3) and level-2 (denoted O2), respectively. Wall-clock time is measured with
GNU gprof

Profiles of hardware-performance events provide more information to under-
stand the performance improvement. VProf collects profiling data on various
hardware-performance events down to the line level. In this analysis, profile in-
formation is collected for the following events:

Cycles waiting for memory access (PAPI MEM SCY)
L3 cache misses (PAPI L3 TCM)

L2 cache misses (PAPI L2 TCM)

Total instructions (PAPI TOT INS)

Load/store instructions (PAPI LST INS)
Floating-point instructions (PAPI FP INS)

Total cycles (PAPI TOT CYC)

e

Performance Analysis of PHASTA on NCSA Intel IA-64 Linux Cluster

Table 2. Time-profiles of PHASTA using level-3 and level-2 optimizations, measured
with GNU gprof. All numbers are in percentage

Subroutine Level-3 optimized code Level-2 optimized code

e3ls 33.25 22.30
e3conv 17.43 15.03
e3wmlt 11.99 15.27
fillsparsec 5.61 8.86
edivar 4.03 4.63
e3massl 4.02 4.89
sparseap 3.63 4.74
e3mtrx 3.15 3.36
edvisc 1.96 2.30
e3 1.81 2.30
Others 13.12 16.32

8. Time profile (PROF).

Table 3 shows the profiles for level-3 optimized code. In addition to the per-
centage profile, more interesting is the actual event counts in various subroutines.
Consider a hardware-performance event in a subroutine s;, the event count Ng,
can be obtained by multiplying the event count of the whole code (Nr) with the
percentage of event count spent in that subroutine pg,, as indicated in Equation
(1).

Ns, = N X ps,. (1)

The total counts of hardware-performance events (Np’s) are measured with
psrun, while the distribution of hardware-performance events among subrou-
tines (ps,) is recorded by VProf (Table 3 for example). Table 4, which shows the
event counts in individual subroutines for the level-3 optimized code, is thus de-
rived from Table 3 and the results from psrun. Table 5 lists the same quantities
for the level-2 optimized code.

Tables 4 and 5 reveal the distribution of instruction types. Significant por-
tions of instructions are floating-point and load /store. A considerable percentage
of instructions cannot be measured with PAPI in the case of level-3 optimization.
Floating-point and load/store instructions carried out by various subroutines
change slightly by switching optimization level. However, there is a drastic reduc-
tion in unclassified instructions carried out by subroutines e3ls and e3conv after
tuning. This drop contributes substantially to the performance improvement.
Performance tool pfmon pinpoints those unclassified instructions as instructions
with no operations (NOPS RETIRED). L3 cache misses in subroutines e3ls and
e3conv also decrease slightly.

Flop rates of the dominant subroutines are shown in Figure 2 for the level-2
optimized code. It reveals that subroutines e3ls and e3conv behave above aver-
age. Further tuning should focus on subroutines e3wmlt and fillsparsec, which
occupy 18% and 8% of the time spent and perform relatively poorly.

47

48 W.Y. Kwok

Table 3. Profile of hardware-performance events in level-3 optimized PHASTA, mea-
sured with VProf. All numbers are in percentage

Subroutine MEM L3 L2 TOT LST FP TOT PROF
SCY TCM TCMINS INS INS CYC

e3ls 309 224 30.2 256 333 41.841.7 36.1
e3conv 154 15.0 149 13.6 12.7 123181 16.5
e3wmlt 19.7 11.1 26.1 21.5 25.6 244128 13.0
fillsparsec 3.1 26 08 28 19 09 23 59
e3massl 3.3 22 50 81 82 17 41 36
sparseap 3.4 144 44 19 2.0 09 08 32

edivar 2.4 49 26 3.5 1.5 27 3.5 3.0
edmtrx 3.3 4.2 4.8 2.7 20 1.9 2.6 2.6
ed 2.6 1.7 1.1 1.2 2.0 0.0 09 1.8

e3metric 1.3 24 10 25 29 27 16 1.5
others 146 191 9.1 166 7.9 10.711.6 12.8

Table 4. Counts of occurrence of hardware performance events in level-3 optimized
PHASTA, estimated using psrun and VProf. All numbers are in 10°, except for FLOP
rate

Subroutine MEM L3 L2 TOT LST FP TOT FLOP rate
SCY TCM TCM INS INS INS CYC (mflops)

e3ls 207 1.26 22,53 403 170 133 703 150
e3conv 103 0.84 11.12 214 65 39 305 102
e3wmlt 132 0.62 19.47 338 131 78 216 286

fillsparsec 21 0.15 0.60 44 10 3 39 59
e3massl 22 0.12 3.73 127 42 5 69 62
sparseap 23 0.81 3.28 30 10 3 13 169
edivar 16 0.28 194 55 8 9 39 116
e3mtrx 22 0.24 3.58 42 10 6 44 110
e3 17 0.10 0.82 19 10 0 15 0
e3metric 9 0.13 0.75 39 15 9 27 253

others 98 1.07 6.79 261 40 34 196 138
Total 671 5.619 74.601 1574 512 318 1687 150

Performance Analysis of PHASTA on NCSA Intel IA-64 Linux Cluster

Table 5. Counts of occurrence of hardware performance events in level-2 optimized
PHASTA, estimated using psrun and VProf. All numbers are in 10°, except for FLOP
rate

Subroutine MEM L3 L2 TOT LST FP TOT FLOP rate
SCY TCM TCMINS INS INS CYC (mflops)

e3ls 187 0.99 21.06 246 153 136 245 440
e3conv 81 0.58 11.63 79 49 48 91 415
e3wmlt 162 0.76 19.39 325 126 78 281 220

fillsparsec 27 0.18 0.76 42 10 3 53 45
e3massl 28 0.11 4.11 122 44 6 92 49
sparseap 30 1.03 3.19 29 1 3 27 88
edivar 19 0.31 1.75 53 9 8§ T2 89
e3mtrx 28 0.19 6.23 43 13 7 53 100
e3 22 0.11 0.76 17 1 0 22 0

e3metric 12 0.15 0.68 37 13 9 38 180
others 124 1.20 6.46 247 44 37 258 113
Total 720 4.51 76.03 1240 484 334 1233 215

Regarding overall performance, PHASTA runs at 220 Mflops (CPU cycles)
and 170 Mflops (effective). Compared with the NCSA SGI Origin2000 super-
computer, PHASTA performs 2.4 times faster on the Itanium cluster on a single
processor.

4 Multi-processor Communication Analysis

Message Passing Interface (MPI) is implemented in PHASTA for parallel com-
puting. Communication among processors is monitored with Multi-Processing
Environment (MPE) libraries. Several multi-processor simulations are run to
evaluate the inter-processor communication. Each simulation uses 4 processors
and contains 20 iterations. The log files are viewed using the logfile viewer Up-
shot, and the visualization is shown in Figure 3. Heavy communication is in-
dicated by bundles of black arrows. In each simulation, twenty bundles can be
counted, corresponding to the twenty iterations. The time required per iteration
is not even. The simulation alternates between long and short time-steps. A long
and short time-step takes about 8 and 2 seconds, respectively. The reason for
the variation is the re-use of matrix every other step.

It is noteworthy that there are several ‘extra-long’ time-steps that are marked
by rough MPI communication and idleness in processors due to ‘MPI Waitall’.
This communication overhead appears at different iterations in simulations car-
rying out the same calculation, suggesting that the code is not responsible for the
peculiar delay. One likely cause is congestion in message communication through
the Myrinet switches. Due to synchronization of the code, a large wait-all time
on one processor affects all the other processors.

49

50 W.Y.Kwok

500 25%
-
4850 + —
400 1 (] OFlop rate 1 20%
- 350 4 + + Percentage of time spent
£ *
g 300 4 115% &
=1 -]
£ 250 7 _ Ayerage FLOP rate E
S oo f +10% @
(=]
T 180 + +
100 1 | o
50 +
t t t t t t 0%

edls
23

edivar [4]
edmtrx |+ |
+
+

edwrnlt
g3cony
earmetric
others

[}
fillsparsec ||
edmassl | |
sparseap 4

Subroutine

Fig.2. Flop rate and time profile of dominant subroutines in level-2 optimized
PHASTA, estimated using VProf and psrun

An attempt is made to estimate the adverse effect of the congestion in mes-
sage communication quantitatively. The communication overhead depends on
two factors: 1. frequency at which the congestion occurs; 2. amount of time de-
lay the congestion induces. Five tests with 100 iterations each are run to gather
relevant statistics. Time-steps are divided into three categories: short time-steps
with duration less than 5 seconds, long time-steps with duration between 5 and
10 seconds, and extra-long time-steps that last more than 10 seconds due to
communication overhead. The statistics of all five simulations is shown in Table
6. The percentage of time spent in communication overhead s,; is estimated
with Equation (2).

Tel — Tl
SOhiNelXNsXTs—i—NlXTl-i-NelXTel @)
_ 83« 13.9 — 7.68
244 x 176 + 173 x 7.68 + 83 x 13.9
= 18%.

As a result, a speed-up of about 3.3 instead of an ideal 4 is obtained when 4

processors are used.
A nice feature of Upshot is that it allows one to change the resolution to a
much finer level for deeper understanding of data communication. This study is

Performance Analysis of PHASTA on NCSA Intel IA-64 Linux Cluster 51

i oAy 1w
b R

Iy 1t ol
L, ¥ ! T)

W e

A .
5. L
) N

Fig. 3. MPI communication among 4 processors in 2 test simulations, visualized with
Upshot. Each simulation contains 20 iterations. Time from 0 to about 100 seconds is
represented in the x-axis. The numbers from 0 to 3 on the y-axis are the processor
indices

Table 6. Duration of time-steps of five PHASTA benchmark simulations

Simulation 1 2 3 4 5 Total
Number of short time-steps, Ns 49 49 49 49 48 244
Number of long time-steps, NV, 33 30 34 42 34 173
Number of extra-long time-steps, N; 1821179 1883
Average length of a short time-step, 75 (seconds) 1.66
Average length of a long time-step, 7; (seconds) 7.68

Average length of an extra-long time-step, 7¢; (seconds) 13.9

52 W.Y.Kwok

conducted on some sample time-steps but not covered in this paper due to limit
in space.

A direction of further investigation is an analysis of PHASTA on a larger
machine configuration. This analysis requires PHASTA researchers to custom-
build the mesh and input conditions, and is currently being pursued.

5 Summary

Single-processor performance and multi-processor communication of a CFD code
PHASTA on the NCSA Intel IA-64 Linux cluster are studied. Code profiling and
study of compilation process suggest that level-3 optimization hinders perfor-
mance of some dominant subroutines. Changing optimization to level-2 for the
affected subroutines improves performance of PHASTA. Hardware-performance
events such as various instructions and cache misses are counted at the subrou-
tine level. Results reveal that the change in optimization level leads to a drop
in instructions with no operations (NOPS RETIRED). Inter-processor commu-
nication is visualized with MPE libraries and Upshot. Results show that com-
munication overhead occurs sporadically with the subroutine MPI Waitall. This
delay will be further investigated.

Acknowledgements.

The author would like to thank Kenneth Jansen and Anil Karanam at Rensselaer
Polytechnic Institute for explaining the functions of PHASTA. Rick Kufrin and
Greg Bauer at NCSA provided vital help in the use of performance analysis
tools. The author also had constructive discussions with Faisal Saied on various
code optimization issues.

References

Intel Fortran compiler user’s guide. 2002.

GNU gprof homepage. http://www.gnu.org/manual/gprof-2.9.1/gprof.html. 2003.
NCSA homepage. http://www.ncsa.uiuc.edu. 2003.

PAPI homepage. http://icl.cs.utk.edu/projects/papi.

Scientific Computation Research Center homepage. http://www.scorec.rpi.edu.
2003.

VProf homepage. http://aros.ca.sandia.gov/~cljanss/perf/vprof.

MPE libraries and Upshot homepage.

http://www-unix.mcs.anl.gov /perfvis/software/viewers.

8. psrun homepage. http://perfsuite.ncsa.uiuc.edu/psrun.

AR

o

	1 Introduction
	2 Preliminaries
	2.1 Application Code
	2.2 NCSA Intel IA-64 Linux Cluster
	2.3 Performance Analysis Tools

	3 Single-Processor Performance Analysis and Tuning
	4 Multi-processor Communication Analysis
	5 Summary
	References

