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Abstract. In this paper, we present a scalable keyframe extraction method using
one-class support vector machine. Keyframe extraction seeks to generate
“good” images that best represent underlying video content and provide
content-based access points. Criteria for “good” images play a major role for
keyframe extraction process. Extracting “good images” can be viewed as
detecting “novel images” among all the frames within a video. Therefore,
keyframe extraction reduces to novelty detection problem. We describe how to
efficiently solve the novelty detection problem using one-class support vector
machine. We also present an algorithm of extracting keyframes in a scalable
way so that one can access a video from coarse to fine resolution. We
demonstrate the performance of our algorithm on several different types of
videos.

1   Introduction

The advances in video data capturing, compression, storage, and communication
technologies have made vast amounts of video data available in consumer and
enterprise applications. This phenomenal growth of video data has brought the need
for efficient video access mechanism. Efficient video access requires more than
connecting with data banks and delivering data via networks. It requires improving
the accessibility and usability of video data to the point that one can efficiently and
effectively search, browse, organize, and manage video data as textual data. This
challenge has attracted researchers from various disciplines and has formed a new
research area, so called video content analysis and retrieval. Various applications
involving education, entertainment, journalism, medical video libraries, and
multimedia information services can benefit from this emerging technology.

Among various research areas in video content analysis and retrieval, video
abstraction is one of the most important research topics [8]. Video abstraction is the
process of creating an abridged version of video, which should be much smaller and
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still preserve essential information about the original video content. This abstraction
process is similar to extracting keywords or creating summaries in text document
processing. Video abstraction is especially useful and important when even a short
video of a few minutes’ duration has the vast amount of data.

There exist several methods for abstracting video content: skims, highlights, and
summaries. A video skim is a condensed representation of the original video,
containing image and audio sequences [4]. Highlights only convey interesting parts of
the video and thus involve detection of particular events in the video [8]. A video
summary extracts structural and semantic information about the video, and normally
represented by a collection of keyframes [1][2][3]. The temporal order of extracted
keyframes can be visualized in a spatial domain so that one can quickly grasp the
main content of video. Therefore, keyframe extraction plays an important role in a
video summary. This paper will focus on the keyframe extraction schemes.

Keyframe extraction seeks to select good images that best represent the underlying
video content and provide content-based access points to video content. The challenge
is how to automatically determine which frames are most representative for a given
video. The representational power of a video summary largely depends on the criteria
for selecting keyframes. The criteria for keyframes vary with respect to the target
video at which the video summarization methods aim. The process of keyframe
extraction for long videos focuses on extracting semantic and structural information
about the whole video content. Extracted keyframes are a collection of images,
probably in a hierarchical order that represent events, scenes, or stories. On the other
hand, the keyframe extraction process for relatively short videos seeks to select a
small number of images that best represent dynamic visual content. Various
applications can benefit from this approach. For example, generating thumbnail
images for video clips in web-search services can eliminate the painstaking
downloading of the entire video clips to check whether the retrieved video clips are
the desired ones. Furthermore, condensing video message will be valuable especially
in wireless multimedia messaging services.

In [13], the video is segmented into shots and then the first frame of each shot is
determined as a keyframe. Although this approach seems a natural way of extracting
keyframes, the number of keyframes for each shot is limited to one, regardless of the
visual complexity of the shot. That is, a shot boundary image is not necessarily
representative for the rest of images. Several algorithms have been proposed to
overcome this limitation [11]. Another class of keyframe extraction is to choose the
keyframes based on motion metric. In [10], the optical flow of each flow is first
computed, and then a simple motion metric is computed. Finally, by analyzing the
metric as a function of time, the frames at the local minima of motion are selected as
the keyframes. In [14], a domain specific keyframe extraction method is presented
using sophisticated global motion and gesture analysis. Mosaic-based keyframe
generation is based on detecting specific camera motions [15]. In [9], temporal
variations of feature vectors are used to select keyframes. First, several features are
extracted from each frame, forming a feature vector trajectory. Then, the frames of
local minimal and maximal curvatures in the feature trajectory are chosen as the
keyframes. The curvatures are computed as the magnitude of the second derivative of
the feature vector trajectory.

Selecting the representative frames can be viewed as detecting the novel frames
that best describe visual content. The representatives are novel in that not all frames
within a sequence are descriptive, but only some of them descriptive. Therefore, the
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keyframe extraction problem becomes the novelty detection problem. In this paper,
we propose a scalable shot-based keyframe extraction method based on one-class
support vector machine [7]. We first define a measure for compatibility of a frame
with its neighboring frames using the temporal variations of its visual features. We
select the frames of locally maximal compatibility measure as the novel frames. We
next extract the keyframes out of the selected frames according to the novelty of their
visual features. Detection of novel features is made by one class support vector
machine, which is well known for novelty detection problems [6]. One-class support
vector machine can find the feature vectors on the surface of sphere with minimal
radius, which encloses all the feature vectors. The feature vectors on the surface are
called support vectors. We choose the frames as the keyframes whose features are
mapped into the surface of the smallest sphere. Furthermore, we can peel off the
surface and obtain the support vectors from yet another enclosing sphere, smaller than
the previous. The new support vectors can be added up to the previously obtained
support vectors. In this manner, we can obtain a series of keyframe sets, each of
which represents video content in its own level of detail.

In the rest of the paper, we briefly describe the one class support vector machine
and present the proposed method. We also present the experimental results of our
algorithm on several different video clips.

2   One Class Support Vector Machine

A classical unsupervised learning is density estimation. Assuming that the unlabeled
observations x1,…,xn were generated i.i.d according to some unknown distribution,
the task is to estimate its density. However, there are several difficulties to this task.
First, a density need not always exist: there are distributions that do not possess a
density. Second, estimating densities is known to be a hard task. In many applications
it is enough to estimate the support of a data distribution instead of the full density.
One class SVMs avoids solving the harder density estimation problem and
concentrate on the simpler task [6], i.e. estimating quantities of the distribution, i.e. its
support. So far there are two independent algorithms to solve the problem in a kernel
feature space. They differ slightly in spirit and geometric notation [5][6]. For brevity,
we will focus the approach of [5] as it is more in the line of this paper.

Suppose we are given a data set containing N points, S = {xj, j = 1, ... N}, with S ⊆ Χ
and X ⊆ Rd. Using non-linear transform φ from Χ to some high dimensional feature-
space, one-class SVM seeks the smallest sphere of radius R, enclosing all the points
φ(xj). This is described by the constraints.

2 2( )   ,j R jφ − ≤ ∀x a

where ||⋅|| is the Euclidean norm and a is the center of the sphere. Introducing slack
variable ξj forms soft constraints.

                                           
2

2( )   R j
j j

φ ξ− ≤ + ∀x a                                      (1)
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with ξj ≥ 0. One-class SVM solves the problem by minimizing the following objective
function with inequality constraints (1).

                                                                2
jR C ξ+ ∑                                                              (2)

where C is a constant and CΣξj is the penalty term. One can solve this problem
introducing the Lagrangian multipliers βj ≥0 and µj ≥0 as follows.

22 2( + ( ) )j j j j j j
j j j

L R R Cξ φ β ξ µ ξ= − − − − +∑ ∑ ∑x a                    (3)

Setting to zero the derivative of L with respect to R, a, and ξj, respectively, results in

                                                           1j
j

β =∑                                                            (4)

                                                                   ( )j j
j

β φ= ∑a x                                                      (5)

                                                              j jCβ µ= − .                                                    (6)

The KKT complementary conditions lead to

                                                                            0j jξ µ = ,                                                       (7)

                                       
22( ( ) ) 0j j jR x aξ φ β+ − − = .                                                       (8)

From equation (6) we have 0 ≤ βj ≤ C. If βj is zero, µj is C and ξj is zero. From (8),
22 ( ) 0jR φ− − ≥x a  and thus point xj is inside or on the surface of the sphere. If 0 <

βj < C, 0 < µj < C and ξj is zero. From (8), 2 ( ) 0jR φ− − =x a , and therefore, point xj

is on the surface of the sphere. Such a point will be referred to as a support vector. If

βj = C, µj is zero and ξj ≥ 0. Then, 2 ( ) 0jR φ− − ≤x a  from (8) and thus, point xj lies

outside the sphere. This will be called a bounded support vector.

One can reformulate equation (3) as a function of the variables βj by substituting
equations (4), (5), and (6) into L. This leads to

                                  
,

( ) ( ) ( ) ( )j j j i j i j
j i j

W φ φ β β β φ φ= ⋅ − ⋅∑ ∑x x x x ,                                 (9)

with 0 ≤ βj ≤ C, (4), and (5). One can replace the dot product in equation (9) by a
Mercer Kernel. Throughout the paper, we use the Gaussian kernel

                                                   
2 2( , ) exp( 0.5 )i j i jK σ= − −x x x x ,                              (10)

with a scale parameter σ2.

One can solve equation (9) using the Quadratic Programming. However, we use the
SMO-like (Sequential Minimal Optimization) method [7] since (9) has relatively
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simple constraints. The SMO repeats the procedure of selecting two training points
and updating the corresponding βj’s with box constraints [7] until all training points
satisfy the KKT conditions. We next briefly describe the elementary updating rules
and the overall optimization procedure.

Suppose that we chose two points whose β’s are β1

* and β2

*, respectively. We want to
update the two variables so as to optimize equation (9) while unchanging the sum of
the two variables. That is, we want not to violate the linear constraint (4) while
updating the variables. Therefore, equation (9) becomes a function of β2. Note that the
equation can be re-written as a function of β2 using the fact that β1 + β2 = β1

* + β2

* =
constant. Setting to zero the derivative of (9) with respect to β2 yields

                                                     * 1 2
2 2

11 22 122

O O

K K K
β β −

= +
+ −

,                                           (11)

where ( , )i j i jj
O Kβ= ∑ x x  and Kij = K(xi, xj). SMO selects a first β for the

elementary optimization step in one of the following two ways: (1) SMO scan over
the entire data set until it finds a variable violating a KKT condition. Then, SMO
choose the next variable βj according to j = arg max |Oi – Oj|. (2) Same as (1) except
that SMO scans over non-bounded support vectors. Refer to [7] for the detailed
procedure.

3   Scalable Keyframe Extraction

The scalable keyframe extraction method proposed in this paper consists of three
phases: (1) Selecting the locally representative frames based on a compatibility
measure, (2) Detecting the novel frames among the frames obtained from phase (1)
using one-class SVM, and (3) Constructing a scalable keyframe-based video
summary.

3.1   Compatibility Measure

We denote a given frame sequence as {s1, …, sN} and its corresponding visual feature
vector sequence as {x1, ..., xN}, where si and xi are i-th frame and its visual feature
vector, respectively, and N is the total number of frames within a given sequence. We
define the compatibility measure Ci of frame xi with its neighbors as follows:

1 1
( ) ( ) ( , )i j i i jj W j W

C K
W W

φ φ
∈ ∈

 
= ⋅ =   

∑ ∑x x x x                      (12)

where W represents a set of si’s neighboring shots, |W| cardinality. Note that K(xi, xj) is
the Gaussian kernel function as defined in equation (10). Equation (12) computes the
dot product of φ(xi) and the mean value of its neighbors in the Gaussian kernel space.
That is, the compatibility of xi with its neighbors is defined as the similarity to its
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neighbors in the Gaussian kernel space. It is worthwhile to note that the Gaussian
kernel function is very similar to the bell-shaped fuzzy membership function and
therefore, our compatibility measure can be considered as a fuzzy compatibility
measure [12]. We compute the compatibility for each frame in a given sequence. We
select the frames of locally maximal compatibility measures, each of which best
represents its neighbors in a compatibility sense in (12). Note that the visual feature in
our compatibility definition could be obtained from color, texture, shape of the salient
object in the frame, or the combination of the above. In this paper, we select the color
histogram of a frame as our visual feature, although other visual features can be
readily integrated into the compatibility measure. The color histogram used is a
6×6×6 RGB color histogram. Figures 1 shows the compatibility measures for a hand
movement video clip of 380 frames obtained from the Web. Black dots represent
local maxima in the Figures. We fixed the scale parameter σ2 in equation (10) into the
standard deviation of the feature vectors within a given video.

Fig. 1. Compatibility measurements for a hand movement video clip of 380 frames

3.2   Scalable Novelty Detection

One-class SVM described in section 2 has been successfully used in the novelty
detection problems [6]. One can control the fraction of outliers and support vectors by
varying the value of C. Let C = 1/(nv) where n is the number of training samples and v
∈ (0, 1]. The following statements hold (1) v is an upper bound on the fraction of
outliers and (2) v is a lower bound on the fraction of support vectors. These
statements directly follow from 0 ≤ βj ≤ C and 1jβ =∑ . If we set C to 1, then one-

class SVM does not allow the outliers and finds the smallest sphere that encloses all
the training data.

The proposed scalable keyframe detection algorithm sets C to 1 and finds the support
vectors on the surface of the smallest sphere that encloses all the training points. The
obtained support vectors form a set of keyframes. After finding the support vectors on
the outer surface and removing them from the training points, the algorithm seeks a
new set of support vectors from the rest of training samples. That is, we peel off the
surface and obtain yet another enclosing sphere, smaller than the previous. The
support vectors from the new enclosing sphere can be added up to the previously
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obtained support vectors. In this manner, we can obtain a series of keyframe sets, each
of which represents visual content in its own level of detail. Figure 3 shows the result
on a synthesized data set. The line in Figure 3 represents the contour of the surface of
the sphere in each level.

Fig. 2. Scalable Novelty Detection: Contours of the Surfaces of the Smallest Enclosing Spheres

4   Experimental Results

We have experimented with several video clips from the Web. However, we present
one of them for the sake of space. In this experiment, we used an MPEG-1 video clip
of 380 frames. The 6 × 6 × 6 color histogram in RGB color space was used as a visual
feature. The scale factor σ2 in the Gaussian Kernel function was adaptively adjusted to
the standard deviation of a given video clip. Filtering the original sequence with the
compatibility measure made 80 frames left. Then, we applied one-class SVM to the
remaining 80 frames. Figure 3 shows the result. In order to see the effectiveness of the
result, we uniformly sampled every 20 frame from the original sequence. Figure 3(a)
shows the uniformly sampled frame sequence. In Figure 3(a), the hand movements
are not well captured because the hand movements occur in a burst way within the
sequence. Figure 3(b), (c), and (d) show the results from our method. We can see the
hand movements well captured even in the first level.

5   Conclusions

In this paper, we presented a scalable keyframe extraction method. Our method is
based on the observation that the keyframe extraction problem can be interpreted as
the novelty detection problem. For temporal outlier detection, we defined the
compatibility measures. For novelty detection in visual features, we used one-class
support vector machine. Moreover, we showed how to present a keyframe-based
video summary in a scalable fashion. Several experiments on real video clips show
the effectiveness of the proposed algorithm.
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         (a)

(b)

(c)

(d)

Fig. 3. (a) Result from sampling every 20 frame, (b) Result from our method at level 1, (c)
Result from our method at level 2, and (d) Result from our method at level 3
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