
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 524–532, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Concurrency Control Algorithm for Firm Real-Time
Database Systems

Seok Jae Lee, Jae Ryong Shin, Seok Il Song, Jae Soo Yoo, and Ki Hyung Cho

Department of Computer & Communication Eng., Chungbuk National University, 48
Gaesin-dong, Cheongju, Chungbuk, Korea, 361-763

{sjlee, jrshin, prince}@netdb.chungbuk.ac.kr,
{yjs, khjoe}@cbucc.chungbuk.ac.kr

Abstract. Unlike a conventional database system, whose main objective is to
provide fast average response time, Real-time database systems (RTDBS) may
be evaluated based on how often transactions miss their deadline, the average
lateness or tardiness of late transactions, the cost incurred in transactions miss-
ing their deadlines. Therefore, in RTDBS, transactions should be scheduled ac-
cording to their criticalness and the tightness of their deadlines, even if this
means sacrificing fairness and system throughput. And it always must guarantee
preceding process of a high priority transaction (HPT) as the 2PL-HP (two
phase locking with high priority) method. 2PL-HP resolves a conflict through
aborting or blocking of a low priority transaction (LPT). If HPT is eliminated in
a system because of its deadline missing, an unnecessary aborting or blocking of
LPT is occurred. To resolve the problem, AVCC (alternate version concurrency
control) algorithm that outperforms 2PL-HP was proposed. However, AVCC
must always create the alternative version and have additionally a technique to
manage complex alternative versions. In this paper, we propose a new efficient
scheduling algorithm, called Multi-level EFDF that combines EFDF (earliest
feasible deadline first) and Multilevel Queue scheduling algorithm very ably,
and a concurrency control algorithm, called 2PL-FT that prevents wastes of
needless resources and eliminates an unnecessary aborting or blocking of LPT.
We show through the performance evaluation that our algorithm achieves good
performance over the other existing methods proposed earlier.

1 Introduction

Real-time database systems (RTDBS) are database systems whose transactions are
associated with timing constraints such as deadlines. Therefore transaction needs to be
completed by a certain deadline. Besides meeting transaction timing constraints,
RTDBS need to observe data consistency constraints as well. That is to say, unlike
conventional database systems, whose main objective is to provide fast average re-
sponse time, RTDBS may be evaluated based on how often transactions miss their
deadline, the average lateness or tardiness of late transactions, the cost incurred in
transactions missing their deadlines.
 Therefore, in RTDBS, transactions should be scheduled according to their critical-
ness and the tightness of their deadlines, even if this means sacrificing fairness and
system throughput. And it always must guarantee preceding process of a high priority

A Concurrency Control Algorithm for Firm Real-Time Database Systems 525

transaction (HPT) as 2PL-HP (two phase locking with high priority). 2PL-HP resolves
a conflict through aborting or blocking of a low priority transaction (LPT). However,
if HPT is eliminated in a system because of its deadline missing, an unnecessary
aborting or blocking of LPT is occurred. To resolve the problem, AVCC (alternate
version concurrency control) that outperforms 2PL-HP in simulations for firm real-
time transaction was proposed. However, the algorithm must always create the alter-
native version and have additionally a technique to manage complex alternative ver-
sions.
 The objective of this paper is to present a new concurrency control algorithm, called
2PL-FT. In addition, we propose a new scheduling algorithm, called Multi-level EFDF
that combines EFDF (earliest feasible deadline first) and Multilevel Queue scheduling
algorithm very ably.
 The rest of the paper is organized as follows. In Sect. 2, we review related works
and Sect. 3 presents our proposed scheduling and concurrency control algorithms. And
Sect. 4 shows experimental results. Finally, Sect. 5 gives concluding remarks.

2 Related Works

Concurrency Control algorithms for RTDBS are in general some extensions or combi-
nations of traditional concurrency control techniques, i.e. two phase locking (2PL),
optimistic concurrency control (OCC) or timestamp ordering (TO), which guarantee a
serialization order among conflicting transactions. Most of these algorithms were
developed only for firm deadline RTDBS which is the simplest environment [4]. The
most important problem faced in RTDBS concerns the degradation of system per-
formance due to aborts and restarts of transactions. These restarts are caused by
concurrency control protocols trying to resolve conflicts between transactions[2].
 In non real-time (conventional) database systems all transactions have the same
priorities. Blockings and restarts are the usual approaches to resolve access conflicts.
2PL and OCC are representative techniques used for blocking and restart to resolve
data conflicts, respectively. It is clear that 2PL-HP has wasted restart and wasted wait
due to the semantics of the firm deadline while OCC has wasted execution. A wasted
restart happens if HPT aborts LPT and then HPT is discarded as it misses its deadline.
In other words, a transaction which is later discarded can cause restarts. A wasted wait
happens if LPT waits for the commit of HPT and later HPT is discarded as it misses
its deadline. In other words, a transaction which is later discarded can cause wait of a
conflicting LPT. And a wasted execution happens when LPT in the validation phase is
restarted due to a conflicting HPT which has not finished yet.
 AVCC proposed in [3] always outperforms 2PL-HP in simulations for firm dead-
lines. Because HPT can proceed without aborting conflicting LPTs, they use a de-
ferred update policy which updates on local copies of a data item and makes them
global at commit time. It only needs to stop LPT until the completion (commit or
abort) of the conflicting HPT. If HPT is discarded by missing its deadline it can exe-
cute the stopped LPT by resuming it. This is what it refers to as the stop/resume de-
ferred restart policy. But AVCC always have to maintain the stopped version and

526 S.J. Lee et al.

initiate the restarted version of LPT. Also each transaction might have multiple DR
(deferred restart) versions and a single IR (immediate restart) version.

3 The Proposed Concurrency Control Algorithm

In this section, we introduce architecture of a new real-time database model and de-
scribe a feasibility test method, scheduling and concurrency control algorithms in
detail.

3.1 Architecture

Fig. 1 shows architecture of a new real-time database model. The model is composed
of a module to initialize information that is required to test feasibility of transactions, a
real-time scheduling module, and a real-time concurrency control module. In an appli-
cation, the number of supplied functions and transactions is not infinite. Therefore, it
is possible to classify transactions into multiple types. In the proposed model, we
separated transactions according to the types, and assigned a real-time property such
as firm or soft and criticalness to each transaction.
 In the init module, it acquires a real-time property and criticalness according to the
type of a new transaction and decides the expected computation time by the average of
total computation times of the transaction and the average of total system loads. New
transactions are classified in a level by criticalness and their order is scheduled by the
deadline in each level. The CPU scheduler allocates the CPU to the transaction with
the earliest feasible deadline in the highest level. Therefore, it guarantees that impor-
tant transactions are executed in the first place.
 All firm real-time transactions that are released are dependent on the feasibility test.
Through the test, a firm real-time transaction that has already missed or is about to
miss its deadline is eliminated in a system. And the firm HPT that is real-time trans-
action with the higher priority at the time of conflict is dependent on the feasibility
test. If the firm HPT is not feasible, the infeasible HPT is eliminated from the system.
Therefore, it prevents wastes of needless resources and eliminates an unnecessary
aborting or blocking of LPT that is a transaction with the lower priority.

3.2 Feasibility Test

The feasibility test is that it compares an expected computation time (Ei) of a transac-
tion Ti, with its deadline (Di). For example, the feasibility test of a transaction Ti is
executed as follows:

)()(iii CEtD −≥− (1)

Where t is the current time and Ci is the real computed time of Ti until now. The Ei is
computed based on the average computation time Cavg, the minimum computation time

A Concurrency Control Algorithm for Firm Real-Time Database Systems 527

�� ��

�� � � � ��� � ��� � � � 	��
 � � � ��� � �� �

� � � � � � 	��

�� � ���� � 	
 	 �

� � � � �� ��

�� � � � ��� � �� �

� � � �
�� ���� �

� � � � � � � � ��
� � � �� 	

�� � � � 	 � �
� � � � ��

� � � ��� ��

� � � ��

� � �� �� � ��

� � � �� ��

� � � �� ��� �

 � ��

! �� " #

� �� �

� �� �

$ ��

� �� �

� � �� �� � ��

� ���� ��� � � � ��� � ��� � � � 	��� �

� %� ��� � � � " ��� �
� %� � � � � ��� �
� � � � %� �& � � �� '�� ���� � � � " ��� �
� � %� �� � �� ��� � �� �� � � ��& ��'��� ��� � '��
� � � � 	%� " ����" � �� � � �

 � �� %� � (� ��) � �� '��� �� ��" � � � � �� ��� � ���� � �
� � � � %� � (� ��) � �� '��� �� ��� & � �� � ��� � � �
� %� � * � � " �� � �" � � � � �� ��� � ���� �

� � ���
�� ��� ���& � $ ���

Fig. 1. Architecture of our model

Cmin, the average system load Lavg and the current system load Li. We propose two
methods for computation of Ei.

avg

iavg
i L

LCC
E ×

+
=

2

)(min … (Mid-type) (2)

×=

avg

i
i L

L
CCE minmin ,max … (Min-type) (3)

 In the first method, called Mid-type, we use the intermediate value of Cmin and Cavg. In
the second method, called Min-type, we use a value that is less than or equal to Cmin. In
each method, we use (Li/Lavg) for reflecting fluctuation rates of the system load. In case
of Mid-type, transactions that its Ci is less than Ei can be damaged though the number
of transactions is very few. But Min-type method overcomes that problem though the
elimination ratio for infeasible transactions is decreased. Therefore we use Mid-type
method for non-critical transactions and Min-type method for critical transactions.
Note that non-critical transactions and critical transactions can be classified by a level
of transactions.

3.3 Multi-level EFDF

The proposed Multi-level EFDF scheduling algorithm that combines EFDF (earliest
feasible deadline first) and Multilevel Queue scheduling algorithm very ably elimi-
nates a transaction that is about to miss its deadline and allocates CPU to the firm real-
time transaction with the earliest deadline in the highest level. Accordingly transac-
tions in lower levels must be in the ready queue until higher levels are empty. And if
the priority of a new transaction is higher than the priority of the currently running
transaction, CPU can be preempted by the new transaction. Fig. 2 shows the architec-
ture of Multi-level EFDF.

528 S.J. Lee et al.

�� ��

� � � � � ��� � ��� � � � 	��
 � � � ��� � � � �

� � � ��

� � ���� �

� � ���� �� ���

� � �� �� � 	�

��
 � � � 	� � 	�

� � �

� �

� � � �� � � �

� � � �

� � � �� �� � � �

� � � �� � � �

� � � � ��

� � � � ��

� � � � ��

� � � � ��

� �� � �� � � � �� � �� � � � 	� �

• • • • • •

� � � � �� ��

� � �

� �

Fig. 2. Architecture of Multi-level EFDF

3.4 2PL-FT (Two Phase Locking with Feasibility Test)

The proposed real-time concurrency control algorithm, called 2PL-FT, eliminates an
unnecessary aborting or blocking of LPT. And then it prevents wastes of needless
resources and reduces the number of missed deadlines. To this end, the process of our
algorithm is as follows:

(1) If a conflict occurs between a transaction TH that already is locking on a data
object O and a transaction TR that is requesting the lock, it chooses as candidate
transaction TC the HPT between TH and TR.

(2) It decides whether TC is about to miss its deadline or not (It is feasibility test for
TC).

(3) If TC is infeasible, TC is immediately eliminated in the system and LPT is con-
tinuously executed or acquires the lock. Table 1 shows the plan of the conflict
resolution in detail.

(4) Otherwise TC acquires the lock or is continuously executed. In contrast, LPT is
restarted or blocked.

Table 1. Method to solve the conflict

Conditions TC is feasible TC is infeasible
TH Continuously executed EliminatedTC = TH

TR Blocked Acquires the lock
TH Restarted Continuously executedTC = TR

TR Acquires the lock Eliminated

For example, if TC that is requesting the lock (TR) is infeasible, the transaction is
immediately eliminated in the system and LPT (TH) is executed continuously. And if
TC with the lock (TH) is infeasible, the transaction is eliminated and LPT that is re-
questing the lock (TR) is executed.

Fig. 3 shows architecture of 2PL-FT, respectively.

A Concurrency Control Algorithm for Firm Real-Time Database Systems 529

� � � � � � ��� 	

�� � ���� � � 	 �

 � � ��

��
�
���

� � ���� �� ���

� � � �� � ��

� � � �� �

� � ���
�
�	 �� � � � �� � �� � 	�
��

� � ���� �� ���

� � � � � ��� � �� �

� � �

� � � ��� ��

� � �

� �

� �
� � � �� � ��

� � � ��� ��

� � �

� �

� ��
�

��� �� ��� �� ���� � ��� � � �� � �� �

� ��
�

��� �� ��� �� ���� � �� � � � � ��

�
� �� �

��� �� � � � �� ��� ��� � � � � ��� �
�

� � �
���� � � � �� ��� ��� � � � � ��� �

��
� �� �

�� ��� � �� � �� � !�� � ��
� � �

� � � ��	
 �
� � � ��� ��

� � � ��� �� � ��� �� � ���

� � �

� �

 � ����� � �� � � ����� � �� �

� � �

 � ����� � �� � � ����� � �� �

� �

�� � ��
� �� �

!�� " � ���
� � �

�� �

�� � ��
� �� �

!��
� � �

" �� � � �

Fig. 3. Architecture of 2PL-FT

Fig. 3 shows that all firm real-time transactions that are released and firm HPT that
is conflicted with LPT are dependent on the feasibility test. Through the test, (1) a
firm real-time transaction that has already missed or is about to miss its deadline is
eliminated in the system. (2) And if a firm HPT is infeasible, the HPT is eliminated
too from the system. In contrast, LPT is not terminated or blocked but is executed
continuously or acquires the lock.

4 Performance Evaluations

In this section we evaluate the performance of the proposed 2PL-FT algorithm with
respect to restarting ratio and deadline missing ratio of transactions. The experiments
were performed on a Pentium-III with 256Mbytes of main memory. The input and
design parameters are shown in Table 2. These parameters are based on that of
AVCC.

Table 2. The input and design parameters

Parameters Description Value
DBSize The number of pages in the databases 1,000 pages
CPUtime The processing time of a page 10 ms
NumLevels The number of levels 20 levels
NumTypes The number of transaction types 100 types
TransSize The number of pages accessed per transaction 8~24 pages
Slackfactor The tightness/slackness of deadlines 100~600 %

530 S.J. Lee et al.

First of all, we evaluate an efficiency of feasibility test method with Mid-type or
Min-type that are method for computing the expected computation time (Ei). Fig. 4
shows transaction ratio with missed deadline according as transaction arrival ratio is
increased. In Fig. 4, Mid-type uses the intermediate value of Cmin and Cavg to compute Ei

and Min-type uses a value that is less than or equal to Cmin. The "Average only" uses
Cavg only.

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900

transaction arrival ratios per second (trans/sec)

de
ad

lin
e

m
is

si
ng

 ra
tio

s
(%

)

Average only Mid-type Min-type

Fig. 4. Deadline missing ratios by feasibility test methods

The Mid-type and Average only show better performance than Min-type method.
Because Min-type method applies the minimum execution time to the feasibility test, it
cannot eliminate well firm real-time transactions that are about to miss their deadline.

Therefore it cannot fully prevent wastes of needless resources and eliminate an un-
necessary aborting or blocking of LPT. Nevertheless we use Min-type for critical
transactions because it is wastes of needless resources that the firm real-time transac-
tion with the execution time less than the minimum value reflected fluctuation rate of
the system load is executed uselessly. On the other hand Mid-type decreases the dead-
line missing ratio of firm real-time transactions very well. The reason is that many of
firm real-time transactions that cannot be committed normally in their deadline are
discarded.

From now on, we investigate restarting transaction ratios and deadline missing ra-
tios of 2PL-FT and AVCC algorithms. In these experiments we use the feasibility test
with Mid-type method only. Fig. 5 shows that the restarting ratio of 2PL-FT is about
38% less than that of AVCC, because AVCC always have to maintain the stopped
version and initiate the restarted version of LPT conflicted with HPT. And then, we
can see that the heavier resource competition, the more increased the restarting trans-
action ratio of AVCC. However, in 2PL-FT, LPT is restarted in case HPT is only
feasible. Finally, deadline missing ratios of two algorithms are shown in Fig. 6 The
deadline missing ratio of 2PL-FT is about 27% less than that of AVCC. The reason is
as follows:

(1) Unnecessary restarting transactions of AVCC obstruct harmonious execution of
normal transactions. On the other hand, infeasible transactions eliminated by
2PL-FT help an execution of the other transactions.

A Concurrency Control Algorithm for Firm Real-Time Database Systems 531

(2) AVCC with stop/restart version of LPT prevents an unnecessary aborting of
LPT, whereas 2PL-FT with feasibility test of HPT prevents not only an unnec-
essary aborting of LPT but a blocking of LPT.

0

10

20

30

40

50

60

70

80

90

100

10 20 50 100 200 400 500 700 800 1000

transaction arrival ratios per second (trans/sec)

re
st

ar
in

g
ra

tio
s

(%
)

2PL-FT AVCC

Fig. 5. Restarting transaction ratios

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

transaction arrival ratios per second (trans/sec)

de
ad

lin
e

m
is

si
ng

 r
at

io
s

(%
)

2PL-FT AVCC

Fig. 6. Deadline missing ratios

5 Conclusions

In AVCC, HPT can proceed without aborting conflicting LPTs. They use a deferred
update policy which updates on local copies of a data item and makes them global at
commit time. But AVCC always have to maintain the stopped version and initiate the
restarted version of LPT. Also each transaction might have multiple DR versions and a
single IR version. In addition, AVCC must have additionally a technique to manage
complex alternative versions.

In this paper, we have proposed a new efficient real-time concurrency control algo-
rithm, called 2PL-FT that need not have alternative versions and a scheduling algo-
rithm, called Multi-level EFDF that assigns the highest priority to the transaction with
the earliest deadline in the highest level. And we have proposed the feasibility test to
prevent wastes of needless resources. We have showed through the performance
evaluation that the deadline missing ratio of 2PL-FT is about 27% less than that of
AVCC. In the future research, we will adapt our idea to optimistic concurrency control
algorithms such as OPT-BC, OPT-Sacrifice, OPT-Wait, Wait-50, Wait-X.

532 S.J. Lee et al.

Acknowledgment. This work was supported by Korea Research Foundation Grant
(KRF-2002-074-DS2501).

References

1. Abbott, R., and Garcia-Molina, H.: Scheduling Real-Time Transactions: A Performance
Evaluation, Proceedings of the 14th Conference on Very Large Database Systems (1988)

2. Ben Kao and Hector Garcia-Molina: An Overview of Real-Time Database Systems, in
Sang H. Son, editor, Advances in Real-Time Systems, chapter 19, Prentice Hall (1995)

3. D. Hong: Alternative Version concurrency Control Method for firm real-time database
systems, Korea Information Processing Society, Vol. 5, No. 6 (1998) 1377–1389

4. D. Hong, Sharma Chakravarthy, Theodore Johnson: Locking Based Concurrency Control
for Integrated Real-Time Database Systems, RTDB ’96 (1996) 138–143

5. Haritsa, J. R., Carey, M., Livny, M.: Data Access Scheduling in Firm Real-Time Database
Systems, Journal of Real-Time Systems, No. 4 (1992) 203–241

6. Haritsa, J. R., Carey, M., Livny, M.: Value-Based Scheduling in Real-Time Database
Systems, The VLDB Journal, Vol. 2, No. 2 (1993) 117–152

7. Haritsa, J. R., Livny, M., Carey, M.: Earliest Deadline Scheduling for Real-Time Database
Systems, Proceedings of IEEE Real-Time System Symposium (1991) 232–242

8. Haritsa, J. R., Livny, M., Carey, M.: On Being Optimistic about Real-Time Constraints,
Proceedings of the 9th ACM Symposium on Principles of Database Systems (1990)

9. Huang, J., Stankovic, J., Ramamritham, K., Towsley, D.: Priority Inheritance in Soft Real-
Time Database, Journal of Real-Time Systems, Vol. 4, No. 3 (1992) 243–268

10. Piotr Krzyzagorski: Concurrency Control in Real-Time Database Systems, EDBT Ph.D.
Workshop (2000)

11. Ulusoy, O.: Processing of Real-Time Transactions in a Replicated Database Systems,
Journal of Distributed and Parallel Database, Vol. 2, No. 4 (1994) 405–436

	1 Introduction
	2 Related Works
	3 The Proposed Concurrency Control Algorithm
	3.1 Architecture
	3.2 Feasibility Test
	3.3 Multi-level EFDF
	3.4 2PL-FT (Two Phase Locking with Feasibility Test)

	4 Performance Evaluations
	5 Conclusions
	References

