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Abstract. As computer systems grow in size and complexity, tool support is
needed to facilitate the efficient mapping of large-scale applications onto these
systems. To help achieve this mapping, performance analysis tools must provide
robust performance observation capabilities at all levels of the system, as well
as map low-level behavior to high-level program constructs. Instrumentation and
measurement strategies, developed over the last several years, must evolve to-
gether with performance analysis infrastructure to address the challenges of new
scalable parallel systems.

1 Introduction

Performance observation requirements for terascale systems are determined by the per-
formance problem being addressed and the performance evaluation methodology being
applied. Instrumentation of an application is necessary to capture performance data.
Instrumentation may be inserted at various stages, from source code modifications to
compile-time to link-time to modification of executable code either statically or dynam-
ically during program execution. These instrumentation points have different mecha-
nisms which vary in their ease of use, flexibility, level of detail, user control of what
data can be collected, and intrusiveness.

To provide insight into program behavior on large-scale systems and point the way
toward program transformations that will improve performance, various performance
data must be collected. Profiling data show the distribution of a metric across source-
level constructs, such as routines, loops, and basic blocks. Most modern microproces-
sors provide a rich set of hardware counters that capture cycle count, functional unit,
memory, and operating system events. Profiling can be based one either time or various
hardware-based metrics, such as cache misses, for example. Correlations between pro-
files based on different events, as well as event-based ratios, provide derived informa-
tion that can help to quickly identify and diagnose performance problems. In addition
to profiling data, capturing event traces of program events, such as message communi-
cation events, helps portray the temporal dynamics of application performance.
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For terascale systems, a wide range of performance problems, performance evalua-
tion methods, and programming environments need to be supported. A flexible and ex-
tensible performance observation framework can best provide the necessary flexibility
in experiment design. Research problems to be addressed by the framework include the
following: the appropriate level and location in the framework for implementing differ-
ent instrumentation and measurement strategies, how to make the framework modular
and extensible, and the appropriate compromise between the level of detail and accu-
racy of the performance data collected and the instrumentation cost.

The remainder of the paper is organized as follows. Section 2 describes the instru-
mentation mechanisms desirable to support in such a framework and Section 3 describes
types of measurements. Section 4 explains how the instrumentation and measurement
strategies are supported in the PAPI cross-platform hardware counter interface and in
the TAU performance observation framework. Section 5 presents our conclusions.

2 Instrumentation

To observe application performance, additional instructions or probes are typically in-
serted into a program. This process is called instrumentation. Instrumentation can be
inserted at various stages, as described below.

2.1 Source Code Instrumentation

Instrumentation at the source code level allows the programmer to communicate higher-
level domain-specific abstractions to the performance tool. A programmer can commu-
nicate such events by annotating the source code at appropriate locations with instru-
mentation calls. Once the program undergoes a series of transformations to generate
the executable code, specifying arbitrary points in the code for instrumentation and un-
derstanding program semantics at those points may not be possible. Another advantage
of source code instrumentation is that once an instrumentation library targets one lan-
guage, it can provide portability across multiple compilers for that language, as well as
across multiple platforms. Drawbacks of source code instrumentation include possible
changes in instruction and data cache behavior, interactions with optimizing compilers,
and runtime overhead of instrumentation library calls.

Source code annotations can be inserted manually or automatically. Adding instru-
mentation calls in the source code manually can be a tedious task that introduces the
possibility of instrumentation errors producing erroneous performance data. Some of
these difficulties with manual source code instrumentation can be overcome by using
a source-to-source preprocessor to build an automatic instrumentation tool. Tools such
as Program Database Toolkit (PDT) [10] for C++, C and Fortran 90, can be used to
automatically instrument subroutines, code regions, and statements.

2.2 Library Level Instrumentation

Wrapper interposition libraries provide a convenient mechanism for adding instrumen-
tation calls to libraries. For instance, the MPI Profiling Interface [1] allows a tool devel-
oper to interface with MPI calls in a portable manner without modifying the application
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source code or having access to the proprietary source code of the library implementa-
tion. The advantage of library instrumentation is that it is relatively easy to enable and
the events generated are closely associated with the semantics of the library routines.

2.3 Binary Instrumentation

Executable images can be instrumented using binary code-rewriting techniques, often
referred to as binary editing tools or executable editing tools. Systems such as Pixie,
ATOM [5], EEL [9], and PAT [6] include an object code instrumentor that parses an
executable and rewrites it with added instrumentation code. The advantage of binary in-
strumentation is that there is no need to re-compile an application program and rewriting
a binary file is mostly independent of the programming language. Also, it is possible to
spawn the instrumented parallel program the same way as the original program, without
any special modification as are required for runtime instrumentation [12]. Furthermore,
since an executable program is instrumented, compiler optimizations do not change or
invalidate the performance optimization.

2.4 Dynamic Instrumentation

Dynamic instrumentation is a mechanism for runtime code patching that modifies a
program during execution. DyninstAPI [3] provides an efficient, low-overhead interface
that is suitable for performance instrumentation. A tool that uses this API is called
a mutator and can insert code snippets into a running program, which is called the
mutatee, without re-compiling, re-linking, or event re-starting the program. The mutator
can either spawn an executable and instrument it prior to its execution, or attach to
a running program. Dynamic instrumentation overcomes some limitations of binary
instrumentation by allowing instrumentation code to be added and removed at runtime.
Also, the instrumentation can be done on a running program instead of requiring the
user to re-execute the application. The disadvantage of dynamic instrumentation is that
the interface needs to be aware of multiple object file formats, binary interfaces (32/64
bit), operating system idiosyncrasies, as well as compiler specific information (e.g., to
support template name de-mangling in C++ from multiple C++ compilers). To maintain
cross language, cross platform, cross file format, cross binary interface portability is a
challenging task and requires a continuous porting effort as new computing platforms
and multi-threaded programming environments evolve.

3 Types of Measurements

Decisions about instrumentation are concerned with the number and type of perfor-
mance events one wants to observe during an application’s execution. Measurement
decisions address the types and amount of performance data needed for performance
problem solving. Often these decisions involve tradeoffs of the need for performance
data versus the cost of obtaining it (i.e., the measurement overhead). Post-mortem per-
formance evaluation tools typically fall into two categories: profiling and tracing, al-
though some provide both capabilities. More recently, some tools provide real-time,
rather than post-mortem, performance monitoring.
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3.1 Profiling

Profiling characterizes the behavior of an application in terms of aggregate performance
metrics. Profiles are typically represented as a list of various metrics (such as inclu-
sive/exclusive wall-clock time) that are associated with program-level semantics enti-
ties (such as routines, basic blocks, or statements in the program). Time is a common
metric, but any monotonically increasing resource function can be used, such as counts
from hardware performance counters. Profiling can be implemented by sampling or
instrumentation based approaches.

3.2 Tracing

While profiling is used to get aggregate summaries of metrics in a compact form, it
cannot highlight the time varying aspects of the execution. To study the post-mortem
spatial and temporal aspects of performance data, event tracing, that is, the activity of
capturing events or actions that take place during program execution, is more appropri-
ate. Event tracing usually results in a log of the events that characterize the execution.
Each event in the log is an ordered tuple typically containing a time stamp, a location
(e.g., node, thread) an identifier that specifies the type of event (e.g., routine transition,
user-defined event, message communication, etc.) and event-specific information. For a
parallel execution, trace information generated on different processors may be merged
to produce a single trace file. The merging is usually based on the timestamp which can
reflect logical time or physical time.

3.3 Real-Time Performance Monitoring

Post-mortem analysis of profiling data or trace files has the disadvantage that anal-
ysis cannot begin until after program execution has finished. Real-time performance
monitoring allows users to evaluate program performance during execution. Real-time
performance monitoring is sometimes coupled with application performance steering.

4 PAPI and TAU Instrumentation and Measurement Strategies

Understanding the performance of parallel systems is a complicated task because of
the different performance levels involved and the need to associate performance infor-
mation to the programming and problem abstractions used by application developers.
Terascale systems do not make this task any easier. We need to develop performance
analysis strategies and technique that are successful both in their accessibility to users
and in their robust application. In this section, we describe our efforts in evolving the
PAPI and TAU technologies to terscale use.

4.1 PAPI

Most modern microprocessors provide hardware support for collecting hardware per-
formance counter data [2]. Performance monitoring hardware usually consists of a set
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Fig. 1. Layered architecture of the PAPI implementation

of registers that record data about the processor’s function. These registers range from
simple event counters to more sophisticated hardware for recording data such as data
and instruction addresses for an event, and pipeline or memory latencies for an in-
struction. Monitoring hardware events facilitates correlation between the structure of
an application’s source/object code and the efficiency of the mapping of that code to the
underlying architecture.

Because of the wide range of performance monitoring hardware available on differ-
ent processors and the different platform-dependent interfaces for accessing this hard-
ware, the PAPI project was started with the goal of providing a standard cross-platform
interface for accessing hardware performance counters [2]. PAPI proposes a standard
set of library routines for accessing the counters as well as a standard set of events to be
measured. The library interface consists of a high-level and a low-level interface. The
high-level interface provides a simple set of routines for starting, reading, and stopping
the counters for a specified list of events. The fully programmable low-level interface
provides additional features and options and is intended for tool or application develop-
ers with more sophisticated needs.

The architecture of PAPI is shown in Figure 1. The goal of the PAPI project is to
provide a firm foundation that supports the instrumentation and measurement strategies
described in the preceding sections and that supports development of end-user perfor-
mance analysis tools for the full range of high-performance architectures and parallel
programming models. For manual and preprocessor source code instrumentation, PAPI
provides the high-level and low-level routines described above. The PAPI flops call
is an easy-to-use routine that provides timing data and the floating point operation count
for the bracketed code. The low-level routines target the more detailed information and
full range of options needed by tool developers. For example the PAPI profil call
implements SVR4-compatible code profiling based on any hardware counter metric.
Again, the code to be profiled need only be bracketed by calls to the PAPI profil
routine. This routine can be used by end-user tools such as VProf 1 to collect profiling
data which can then be correlated with application source code.

Reference implementations of PAPI are available for a number of platforms (e.g.,
Cray T3E, SGI IRIX, IBM AIX Power, Sun Ultrasparc Solaris, Linux/x86, Linux/IA-
64, HP/Compaq Alpha Tru64 Unix). The implementation for a given platform attempts
to map as many of the standard PAPI events as possible to the available platform-

1 http:/aros.ca.sandia.gov/c̃ljanss/perf/vprof/
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specific events. The implementation also attempts to use available hardware and op-
erating system support – e.g., for counter multiplexing, interrupt on counter overflow,
and statistical profiling.

Using PAPI on large-scale application codes, such as the EVH1 hydrodynamics
code, has raised issues of scalability of the instrumentation. PAPI initially focused on
obtaining aggregate counts of hardware events. However, the overhead of library calls
to read the hardware counters can be excessive if the routines are called frequently
– for example, on entry and exit of a small subroutine or basic block within a tight
loop. Unacceptable overhead has caused some tool developers to reduce the number
of calls through statistical sampling techniques. On most platforms, the current PAPI
code implements statistical profiling over aggregate counting by generating an interrupt
on counter overflow of a threshold and sampling the program counter. On out-of-order
processors the program counter may yield an address that is several instructions or even
basic blocks removed from the true address of the instruction that caused the overflow
event. The PAPI project is investigating hardware support for sampling, so that tool de-
velopers can be relieved of this burden and maximum accuracy can be achieved with
minimal overhead. With hardware sampling, an in-flight instruction is selected at ran-
dom and information about its state is recorded – for example, the type of instruction,
its address, whether it has incurred a cache or TLB miss, various pipeline and/or mem-
ory latencies incurred. The sampling results provide a histogram of the profiling data
which correlates event frequencies with program locations.

In addition, aggregate event counts can be estimated from sampling data with lower
overhead than direct counting. For example, the new PAPI substrate for the HP/Compaq
Alpha Tru64 UNIX platform is built on top of a programming interface to DCPI called
DADD (Dynamic Access to DCPI Data). DCPI identifies the exact address of an in-
struction, thus resulting in accurate text addresses for profiling data [4]. Test runs of
the PAPI calibrate utility on the substrate have shown that event counts converge
to the expected value, given a long enough run time to obtain sufficient samples, while
incurring only one to two percent overhead, as compared to up to 30 percent on other
substrates that use direct counting. A similar capability exists on the Itanium and Ita-
nium 2 platforms, where Event Address Registers (EARs) accurately identify the in-
struction and data addresses for some events. Future versions of PAPI will make use
of such hardware assisted profiling and will provide an option for estimating aggregate
counts from sampling data.

The dynaprof tool that is part of the most recent PAPI release uses dynamic
instrumentation to allow the user to either load an executable or attach to a running
executable and then dynamically insert instrumentation probes [11]. Dynaprof uses
Dyninst API [3] on Linux/IA-32, SGI IRIX, and Sun Solaris platforms, and DPCL
2 on IBM AIX. The user can list the internal structure of the application in order to
select instrumentation points. Dynaprof inserts instrumentation in the form of probes.
Dynaprof provides a PAPI probe for collecting hardware counter data and a wallclock
probe for measuring elapsed time, both on a per-thread basis. Users may optionally
write their own probes. A probe may use whatever output format is appropriate, for
example a real-time data feed to a visualization tool or a static data file dumped to

2 http://oss.software.ibm.com/developerworks/opensource/dpcl/
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Fig. 2. Real-time performance analysis using Perfometer

disk at the end of the run. Future plans are to develop additional probes, for example
for VProf and TAU, and to improve support for instrumentation and control of parallel
message-passing programs.

PAPI has been incorporated into a number of profiling tools, including SvPablo 3,
TAU and VProf. In support of tracing, PAPI is also being incorporated into version 3 of
the Vampir MPI analysis tool 4. Collecting PAPI data for various events over intervals
of time and displaying this data alongside the Vampir timeline view enables correlation
of event frequencies with message passing behavior.

Real-time performance monitoring is supported by the perfometer tool that is dis-
tributed with PAPI. By connecting the graphical display to the backend process (or pro-
cesses) running an application code that has been linked with the perfometer and PAPI
libraries, the tool provides a runtime trace of a user-selected PAPI metric, as shown in
Figure 2 for floating point operations per second (FLOPS). The user may change the
performance event being measured by clicking on the Select Metric button. The intent
of perfometer is to provide a fast coarse-grained easy way for a developer to find out
where a bottleneck exists in a program. In addition to real-time analysis, the perfome-
ter library can save a trace file for later off-line analysis. The dynaprof tool described
above includes a perfometer probe that can automatically insert calls to the perfometer
setup and color selection routines so that a running application can be attached to and
monitored in real-time without requiring any source code changes or recompilation or
even restarting the application.

3 http://www-pablo.cs.uiuc.edu/Project/SVPablo/SvPabloOverview.htm
4 http://www.pallas.com/e/products/vampir/index.htm
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Fig. 3. Scalable SAMRAI Profile Display

4.2 TAU Performance System

The TAU (Tuning and Analysis Utilities) performance system is a portable profiling and
tracing toolkit for parallel threaded and or message-passing programs written in Fortran,
C, C++, or Java, or a combination of Fortran and C. The TAU architecture has three dis-
tinct parts: instrumentation, measurement, and analysis. The program can undergo a
series of transformations that insert instrumentation before it executes. Instrumentation
can be added at various stages, from compile-time to link-time to run-time, with each
stage imposing different constraints and opportunities for extracting program informa-
tion. Moving from source code to binary instrumentation techniques shifts the focus
from a language specific to a more platform specific approach. TAU can be configured
to do either profiling or tracing or to do both simultaneously.

Source code can be instrumented by manually inserting calls to the TAU instru-
mentation API, or by using PDT [10] to insert instrumentation automatically. PDT is
a code analysis framework for developing source-based tools. It includes commercial
grade front end parsers for Fortran 77/90, C, and C++, as well as a portable interme-
diate language analyzer, database format, and access API. The TAU project has used
PDT to implement a source-to-source instrumentor (tau instrumentor) that sup-
ports automatic instrumentation of C, C++, and Fortran 77/90 programs. TAU can also
use DyninstAPI [3] to construct calls to the TAU measurement library and then insert
these calls into the executable code. In both cases, a selective instrumentation list that
specifies a list of routines to be included or excluded from instrumentation can be pro-
vided. TAU uses PAPI to generate performance profiles with hardware counter data.
It also uses the MPI profiling interface to generate profile and/or trace data for MPI
operations.

Recently, the TAU project has focussed on how to measure and analyze larg-scale
application performance data. All of the instrumentation and measurement techniques
discussed above apply. In the case of parallel profiles, TAU suffers no limitations in
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Fig. 4. Performance Profile Visualization of 500 Uintah Threads

the ability to make low-overehead performance measurement. However, a significant
amount of performance data can be generated for large processor runs. The TAU Para-
Prof tool provide the user with means to navigate through the profile dataset. For ex-
ample, we applied ParaProf to TAU data obtained during the profiling of a SAMRAI
[8] application run on 512 processor nodes. Figure 3 shows a view of exclusive wall-
clock time for all events. The display is fully interactive, and can be “zoomed” in or out
to show local detail. Even so, some performance characteristics can still be difficult to
comprehend when presented with so much visual data.

We have also been experimenting with three-dimensional displays of large-scale
performance data. For instance, Figure 4 5 shows two visualizations of parallel profile
samples from a Uintah [7] application. The left visualization is for a 500 processor
run and shows the entire parallel profile measurement. The performance events (i.e.,
functions) are along the x-axis, the threads are along the y-axis, and the performance
metric (in this case, the exclusive execution time) is along the z-axis. This full perfor-
mance view enables the user to quickly identify major performance contributors. The
MPI Recv() function is highlighted. The right display is of the same dataset, but in
this case each thread is shown as a sphere at a coordinate point determined by the rela-
tive exclusive execution time of three significant events. The visualization gives a way
to see clustering relationships.

5 Conclusions

Terascale systems require a performance observation framework that supports a wide
range of instrumentation and measurement strategies. The PAPI and TAU projects are
addressing important research problems related to construction of such a framework.
The widespread adoption of PAPI by third-party tool developers demonstrates the value
of implementing low-level access to architecture-specific performance monitoring hard-
ware underneath a portable interface. Now tool developers can program to a single in-

5 Visualizations courtesy of Kai Li, University of Oregon
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terface, allowing them to focus their efforts on high-level tool design. Similarly, the
TAU framework provides portable mechanisms for instrumentation and measurement
of parallel software and systems.

Terascale systems require scalable low-overhead means of collecting relevant per-
formance data. Statistical sampling methods, such as used in the new PAPI substrates
for the Alpha Tru64 UNIX and Linux/Itanium/Itanium2 platforms, yield sufficiently ac-
curate results while incurring very little overhead. Filtering and feedback schemes such
as those use by TAU lower overhead while focusing instrumentation where it is most
needed. Both PAPI and TAU projects are developing online monitoring capabilities that
can be used to control instrumentation, measurement, and runtime performance data
analysis. This will be important for effective performance steering in highly parallel
environments.

Together, the PAPI 6 and TAU 7 projects have begun the construction of a portable
performance tool infrastructure for terascale systems designed for interoperability, flex-
ibility, and extensibility.
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