
P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 657–666, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Poor Scalability of Parallel Shared Memory Model:
Myth or Reality?

Mark Kremenetsky, Arthur Raefsky, and Steve Reinhardt

Supercomputer Applications, Silicon Graphics Inc.,
Mountain View, California 94043

{mdk,raefsky,spr}@sgi.com

Abstract. Large CFD models require memory sizes larger than can be
supported by today’s single 'node' computers. Using the memory of more than
one node can greatly complicate the creation of a well-performing program.
We believe that preserving globally addressable memory beyond the boundary
of a single node enables diversity of programming methods and provides
flexibility essential for optimum algorithm development. We isolate the effects
of algorithm and implementation by porting the same parallel CFD algorithm in
three styles: fine-grain shared memory, coarse-grain shared memory, and
coarse-grain distributed memory.
Despite some fundamental differences in programming implementation, both
distributed memory and coarse-grain shared memory code provide very close
parallel performance due to algorithmic similarities. At the same time fine-grain
shared memory code, despite use of the same programming paradigm as coarse-
grain shared memory program, falls far behind due to unavoidable parallel
performance penalties caused by Amdahl’s law and some other limitations.

1 Introduction

It has long been recognized that the two necessary elements for achieving scalability
in application performance are scalable hardware and software. Both these elements
have existed for some time. Scalable hardware in the context of physically distributed
memories connected through a scalable interconnection network has been
commercially available since the 1980’s. Such systems provide only an
interconnection network and the burden of scalability then falls on software. As a
result, scalable software for such systems will exist only in a message passing model.
There is another class of parallel architecture with scalable hardware support for
cache coherence. These are generally referred to as Shared Memory Multiprocessor or
SMP architectures. For SMP systems, the native programming model is shared
memory and message passing is built on a top of shared memory model. This
software environment provides multiple parallel programming methods and parallel
paradigms.
 This paper will demonstrate that the so-called “poor scalability” of shared memory
programming paradigm is “myth” rather than “reality” and that the impediments to

658 M. Kremenetsky, A. Raefsky, and S. Reinhardt

software scalability are not the programming model but rather parallel application
methods.
 Within this context we implement a single key CFD algorithm in multiple styles
(methods) to illustrate the benefits of a low-latency, high-bandwidth memory system
available via multiple programming methods. The first style is classic OpenMP loop-
level parallelism, the second is OpenMP directives used in a coarse-grain fashion with
ghost cells, and the third is a distributed memory version implemented with MPI. We
conclude that coarse-grain parallelism is required for strong scalability, and its
implementation via a shared memory approach or distributed memory paradigm
(MPI) provides similar parallel performance.

2 Parallel Programming Models (Paradigms)

This paper concerns itself with two different programming models, message passing
and shared memory. The message passing model assumes the underlying parallel
architecture is simply a collection of computers, or nodes, linked together by network.
Each individual node knows nothing about the memory of other nodes in the system.
The programmer must explicitly pass information between nodes by sending
messages. In addition, a message cannot be received by a node unless that node
explicitly posts a “receive”. This last restriction is relaxed for so-called “one-sided”
message passing as exemplified by Cray’s shmem model or MPI-2 standard. One–
sided message passing requires hardware support for good performance. In common
two-sided message passing, both sending and receiving node must coordinate to
successfully share data. Although each processor can execute a different program,
most often the “Single Program, Multiple Data” (SPMD) programming style is used;
all processors execute the same program, acting on different parts of data set. This
requires an appropriate partitioning of the data and operations. The partitioning of the
data must be done in such a manner that the workload is well balanced between
processors, and communications and synchronizations are minimized.
 In contrast, in the shared memory model every processor has direct access to the
memory of every other processor in the system. This means a processor can directly
load or store any shared address. The programmer can also declare certain pieces of
memory to be private to the processors. Parallelism in a shared memory model exists
in a form of multiple threads of execution. These threads typically fork from a master
thread, and throughout the course of execution may join and refork a number of times.
The fork/join execution model makes it easy to get loop level parallelism out of a
sequential program. Unlike the message passing model, where the program must be
completely decomposed for parallel execution, in a shared memory model it is
possible to parallelize just at the loop level without explicitly decomposing the data
structures.
 Unfortunately loop level parallelism is rarely scalable because it typically leaves
some constant fraction of sequential work in the program that, by Amdahl’s law, can
quickly decrease the gains from parallel execution. Loop level parallelism can easily
lead to race conditions and frequent synchronization. False sharing when two or more
processors want to write to the same cache line can be another negative factor. All
these deficiencies created a “myth” about poor scalability of the shared memory
programming model.

Poor Scalability of Parallel Shared Memory Model: Myth or Reality? 659

It is important, however, to distinguish between the style of parallelism (e.g. loop
level vs. coarse grained) and the programming model. Programming in the distributed
memory model can be done only with coarse grain parallelism. It is often much more
difficult than programming with loop level parallelism in the shared memory model,
but it provides a much higher level of scalability. The programmer must be aware of
the location of the data in the local memories and has to move or distribute these data
explicitly when needed. The partitioning of the data and all necessary communication
has to be included explicitly in the program. The sequential program often needs
significant changes in order to parallelize it.
 But there is nothing in the shared memory parallel model that prevents a
programmer from achieving coarse grained parallelism. In the remainder of this paper
we will show that the level of parallelism exposed in a program is dependent on the
algorithm and data structures employed and not on the programming model.
Therefore, given a parallel algorithm and SMP architecture, a shared memory
implementation should scale as well as a message passing implementation.

3 CFD Solver Algorithm

The most widely accepted methods for studying the transient behavior of the
compressible Euler and Navier-Stokes equations are implicit. Unfortunately when
solving realistic multi-dimensional problems, the system of equations that need to be
solved are often too large to apply direct methods to. Most codes resort to solving a
modified system of equations and employ techniques such as the implicit approximate
factorization [1,2] and the diagonal approximation [3,4], which reduce a block 3D
system to a serial sequence of one-dimensional blocked or scalar systems. These
techniques work adequately on structured orthogonal grids, but also have uncontrolled
factorization errors. Besides, these techniques do not apply for problems defined on
unstructured meshes.
 Here we employ the Bi-CGSTAB [5] algorithm and use it to solve a linear system
of original discretized equations without resorting to approximate factorization
techniques.

3.1 Notation

Consider the dimensionless Navier – Stokes equations in the strong conservative
form:

FFU
v

iiiit ,

1

,, Re
−=+ (1)

where:

U =

U

U

U

U

U

5

4

3

1

2

 =

e
u
u
u

ρ
ρ
ρ
ρ

ρ

3

2

1

(2)

660 M. Kremenetsky, A. Raefsky, and S. Reinhardt

The Euler flux Fi
 is given by

+=

u

pUuF

i

i

i

i

ii

δ
δ
δ

3

2

1

0 (3)

and the viscous flux F
v

i
 is given by

−
−

=

)(

0

2
)1(,

3

2

1

aPu

F

i
r

iij

i

i

i

v

i

γ
µ

τ

τ
τ
τ

(4)

where the viscous tensor τ ij
 is given by

)(
,,, uuu ijjiijkkij

++= µδλτ (5)

where λ and µ are the viscosity coefficients.

3.2 Discretization

To define the discrete form of the full Navier-Stokes equations we use a general three-
point implicit time-stepping method [3]

])
2

1
[(

111
321

ttUUUU O
t

t

t

t nnnn ∆+∆−−+∆
+

+
∂
∂

+
∆+∆

∂
∂

+
∆=∆ − φθ

φ
φ

φφ
θ (6)

where UUU
nnn −=∆ +1 and)(tnUU

n ∆= . The parameters θ and φ can be

chosen to produce different schemes of either first or second order accuracy in time.
We restrict ourselves to the first order in time scheme with 1=θ and 0=φ
(although what follows can easily be extended to second order accuracy). Applying
eq.(6) to eq.(1) with time step h = t∆ results in:

,,)(
1

11

,

1

FRFUU v
iihh

n

e

n

ii

nn +−++ =+− (7)

Poor Scalability of Parallel Shared Memory Model: Myth or Reality? 661

In order to evaluate (7) we must know the advective and diffusive flux vectors Fi

and F
v

i
at time t = (n+1) ∆ t. We see that Eq.(7) is nonlinear in U

n+
. The nonlinear

terms are linearized in Taylor series expansion about 0=∆U
n

,

),(
21

hUAFF O
nn

i

n

i

n

i
+∆+=+ (8)

and

),(
21

hUMFF Ov
i

v
i

nn

i

nn

+∆+=
+ (9)

where the Euler Jacobian is UFA ii
∂∂= and the diffusive Jacobian is

.UFM
v

ii
∂∂= The analytical form of Ai

 and M i
 can be found in [2].

Using (8) and (9) we rewrite (7) as:

FFRUMA
n

ii

n

e

nn

ii

n

ii
hv

iihhhI
,

1

,, ,][−=∆−+ − , (10)

For the space discretization of flux and Jacobian derivatives we use central
differences. Finally, to handle strong shock waves we added a second and fourth-
order explicit artificial dissipation terms to the right hand side of Eq.(10) and a
second-order implicit diffusive term to the left hand side.
 Such discretization leads to a large, sparse nonsymmetric system of linear equations
that must be solved at every time step. Thus the unfactored set of linear equations that
we solve using a parallel version of Bi-CGSTAB algorithm. With

][
,, hMhAIA

n

ii

n

ii
−+= and Ux

n∆= , and FhRb v
ii

n

e ,
1−= F

n

ii,
− we rewrite (9) in

the familiar linear equation form bAx= .

3.3 Iterative Algorithm

Several iterative algorithms [6] have been proposed for the solution of nonsymmetric
systems of linear equations. Here we employ an algorithm due to Van der Vorst [5]
which is fast and smoothly converging. The Bi-CGSTAB algorithm is described
below.

Bi-CGSTAB:

x0
 is an initial guess; ;

00 Axbr −=

y
0
 is an arbitrary vector, such that

0),(
00

≠ry , e.g. ;
00 ry =

;1
00

=== ωαρ

662 M. Kremenetsky, A. Raefsky, and S. Reinhardt

0
00

== ρv ;

for i = 1,2,3…

);)(();,(
1110 ωαρρβρ −−− ==

iiiii ry

;

);,(),(

;

;

);,(

;

);(

1

1

0

1111

spxx
ttst

sAt
vrs
vy

pAv

vprp

iiii

i

ii

ii

ii

iiiii

ωα
ω

α
ρα

ωβ

++=

=

=

−=

=

=

−+=

−

−

−−−−

if xi
 is accurate enough then quit;

;tsr ii ω−=
 end

We note that the iteration loop of Bi-CGSTAB involves two matrix vector
multiplications (Ap

i
(and)As . There are also four inner products as well as vector

updates which lead to an additional 12 N flops.

4 Implementation

We have implemented the algorithm described in the previous section entirely in
Fortran90. Using orthogonal coordinates in three spatial dimensions, the structure of
the matrix A is block-sparse. The global spatial structure of A is similar to any second
order operator (e.g., Laplacian operator) but additionally A has a local dense 5 by 5
block structure. After computing the Jacobians Ai

 and M i
which involve mostly

local computation with a bit of differencing, the heart of the algorithm involves
fetching 5 element vectors from neighboring grid points followed by a local 5 by 5
matrix multiplying a 5 element vector at every grid point.
 As is the case in most iterative algorithms, the computational time is dominated by
the matrix vector multiplication. Our linear solver has no knowledge of the structure
of the matrix and one need only modify the matrix_times_vector() subroutine to
support other spatial structures (e.g. high order and upwind schemes).

4.1 Parallel Methods

The algorithm described in the previous sections has been parallelized as follows:

Fine-Grain Method. This mode implements loop level parallelism within a shared
memory concept. Domain decomposition was applied through multithreading the

Poor Scalability of Parallel Shared Memory Model: Myth or Reality? 663

outer loops over the last spatial dimension using OpenMP parallel directives. All data
structures are shared. Such an approach can be described as one-dimensional domain
decomposition with edge dissection (non-overlapping domains, Fig.1a)

Coarse-Grain Method. This mode implements a shared memory paradigm with the
use of OpenMP directives. In contrast to the Fine-Grain Mode, this approach is based
on the Schwarz additive domain decomposition approach with overlapping local
regions (Fig.1b). Major data structures are declared “private” which means that they
are not explicitly shared between computational threads. There are only two parallel
directives in this mode: the first opens the parallel region in the very beginning of the
code and the second one closes the parallel region at the end of this code. In order to
use a shared memory paradigm in combination with local data structures, we created a
set of shared pointers to those local structures that allows any parallel thread to
address private data from other domains. This unusual approach allowed us to
implement the coarsest possible level of decomposition within a shared memory
paradigm. As a result of this implementation we were able to avoid typical hazards of
fine-grain (loop-level) parallelism such as frequent synchronization, false sharing of
cache lines and almost completely eliminate a sequential component of parallel code.

Distributed Mode. This mode is also based on Schwarz additive domain
decomposition but implements it within a distributed memory paradigm with the use
of the MPI (Message Passing Interface) protocol. Algorithmically, Coarse-Grain and
Distributed Methods are identical, but the implementation is very different.

The code was compiled with the Intel Linux compiler for the IPF/Linux platform. The
OpenMP library was supplied by Intel and the MPI library is the SGI implementation
of the MPI-1 protocol.

 (a) (b)

Fig. 1 (a). Partition of a domain in two subdomains

Edge dissection – non-overlapping regions
Vortex dissection – overlapping regions with one “ghost” cells layer

4.2 Flow Problem

We computed the three-dimensional transonic transient laminar flow, which includes
such interesting gas dynamic phenomena as shock and rare fraction waves. We
believe that such complex problems can be considered a reasonable test.

664 M. Kremenetsky, A. Raefsky, and S. Reinhardt

Fig. 2. Blast Waves transient flow (pressure iso - surface colored by velocity field)

The initial configuration consists of a high pressure and density region at the center of
the cubic cell with the low pressure gas at rest. Periodic boundary conditions are
applied to the array of cubic cells forming an infinite network. At the initial moment
the high pressure volume begins to expand in the radial direction as the shock waves
flows. At the same time the rare waves move to fill the void at the center of the cubic
cell. When the expanding flow reaches the boundaries it collides with its periodic
images creating a complicated structure of interfering shock waves (Fig.2). In the case
of viscous gas, these processes create a nonlinear damped periodic system with
energy being dissipated in time. Finally, the system will come to an equilibrated
steady state.

5 Performance Results

The layout of our benchmark suite looked like this:
− We tested 4 sets of input data with variable size in order to evaluate the parallel

scaling properties as a function of problem size. The first two dimensions of the
computational grid were kept constant but the last dimension along which the
parallel decomposition was performed was increased in powers of 2. All physical
and computational parameters other than grid size, were fixed for all test cases.

− At first we tested our models on a well known multiprocessor ccNUMA system,
the SGI Origin3000 with 128 MIPS R14000 processors running at 600 Mhz clock
rate

− The next set of tests was performed on a new SGI system – Altix3300 with 64
Itanium2 processors running at 900Mhz clock rate. This system belongs to the
same class of ccNUMA computers as the Origin3000, allowing global addressing
from every CPU. The internal network of this system is based on NumaFlex link
fabrics from SGI and provides extremely low latency and high bandwidth

Poor Scalability of Parallel Shared Memory Model: Myth or Reality? 665

55x55x256

0

100

200

300

400

500

600

700

800

1 2 4 8 16 32 64 128

nproc

Ti
m

e
(s

)

FG O3000

CG O3000

MPI O3000

FG A3000

CG AO3000

MPI A3000

Fig. 5.

communication layer that allows parallel applications to scale to the high count of
processors.

We observe the following about this algorithm:
• The easiest way to parallelize any technical application is through loop-level (fine-

grain) parallelism within the shared memory paradigm. OpenMP directives
provide all the necessary tools for such an approach. Unfortunately the parallel
performance of such codes will always be limited by Amdahl’s Law constraints.

• The coarse-grain parallel approach eliminates, or significantly reduces, the
sequential part of a code, which in turn provides much better parallel scaling.
Coarse-grain parallelism can be realized within either distributed or shared
memory paradigms. Either memory model requires a complete redesign of the
sequential code to expose the parallelism properly. This contrasts with the
incremental approach possible with loop-level parallelism. Domain decomposition
is one technique for exposing the parallelism.

• The coarse-grain shared memory and distributed memory code show
approximately the same level of parallel scaling. Both codes have essentially
identical algorithms, which proves that parallel performance of computer codes is
not defined by the nature of parallel paradigm in use but rather is a function of a
specific implementation algorithm.

• Large shared memory systems present a very capable platform for implementation
and production use of both shared memory and distributed memory parallel
programs.

55x55x512

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32 64 128

nproc

T
im

e
(s

)

FG O3000

CG O3000

MPI O3000

FG A3000

CG A3000

MPI A3000

Fig. 6.

55x55x64

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32

nproc

Ti
m

e
(s

)

FG O3000

CG O3000

MPI O3000

FG A3000

CG A3000

MPI O3000

Fig. 3.

55x55x128

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64

nproc

T
im

e(
s)

FG O3000

CG O3000

MPI O3000

FG A3000

CG A3000

MPI A3000

Fig. 4.

666 M. Kremenetsky, A. Raefsky, and S. Reinhardt

6 Conclusions

We demonstrated that scalable programs can be easily written in a shared memory
model under constraints of adequate parallel algorithm and data distribution. In order
to prove this statement we implemented and tested various parallel modes of a
complex CFD code and demonstrated good parallel scaling for a coarse grain parallel
implementation in both shared and distributed memory paradigms.

References

1. Beam, R. and Warming, R.F., An Implicit Finite-Difference Algorithm for Hyperbolic
Systems in Conservative Law Form, J. Comp. Phys. 22(1976), 87–110

2. Pulliam, T.H., Efficient Solution Methods for the Navier-Stokes Equations. Lecture Notes
for the Von Karman Institute for Fluid Dynamics Lecture Series: Numerical Techniques
for Viscous Flow Computation in Turbomachinery Blades. Jan 20–24, 1986, Brussels,
Belgium, pp.1–102

3. Warming, R.F. and Beam, R.M., On the Construction and Application of Implicit factored
Schemes for Conservation Laws in Computational Fluid Dynamics, SIAM-AMS
Proceedings Vol.11 ed. Herbert Keller, American Mathematical Society, Providence,
Rhode island, 1978

4. Jespersen, D. and Levitt, C., Numerical Simulation of Flow Past a Tapered Cylinder.
NASA Ames Technical Report RNR 90-021, October 1990,1–10

5. Van der Vorst, H.A., Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG
for the Solution of Nonsymmetric Linear Systems. SIAM J., Sci. Stat. Comput., Vol.13(2),
PP.631–644, 1992

	1 Introduction
	2 Parallel Programming Models (Paradigms)
	3 CFD Solver Algorithm
	3.1 Notation
	3.2 Discretization
	3.3 Iterative Algorithm

	4 Implementation
	4.1 Parallel Methods
	4.2 Flow Problem

	5 Performance Results
	6 Conclusions
	References

