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Abstract. This paper introduces a model for simulating regulatory net-
works that is capable of reproducing spatial and temporal expression pat-
terns in developmental processes. The model is a generalization of the
standard connectionist model used for modelling genetic interactions,
where the terms for the regulation of gene products and the diffusion
term have been separated. This model can be coupled with biomechani-
cal models of cell aggregates and used to study the formation of spatial
and temporal expression patterns of gene products during development
in cellular systems.

1 Introduction

One of the most important goals in biology is to understand the chemical and
cellular processes that govern the development of a fertilized egg cell to a fully-
grown organism. Currently the genetic regulation and the specification of the
body plan in development in a number of model organisms, as for example
Drosophila, is known in great detail [4,14]). The development of the body plan
is typically controlled by large networks of regulatory genes. And although there
are many examples available of how individual genes affect the developmental
process, there are no cases available where a line of causality can be mapped
from the genomic sequence to a developmental process [5]. An important issue
is therefore to understand the structure and dynamics of regulatory networks.
And in addition to experimental observations, the only other option to study how
genetic information is translated into a spatial-temporal expression pattern that
eventually gives rise to the complete morphology of the fully-grown organism, is
to use simulation models.

A number of different models have been proposed to capture the notion of
gene networks. And although most of these models were originally created for
the reverse engineering of genetic networks [1, 2,13, 15, 16], it is usually trivial to
adapt these models for simulation purposes. To date, the most frequently used
is the Boolean network model, introduced by Kauffman [11] in 1969 and used,
among others, by Jackson et al. [9] in 1986 to show that pattern formation in
both space and time is possible when using active feedback loops and limited
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communication among cells. But although these methods generally possess great
expressiveness, they use a high level of abstraction, which limits their biological
explanatory power. Also, examining gene expression data reveals that genes usu-
ally spend a great deal of their time at intermediate concentration levels. This
means that discritizing gene expression levels tends to result in a significant loss
of information. Furthermore, there are some concepts in control theory that seem
indispensable for genetic regulatory systems that either can not be implemented
using discrete variables or that have radically different dynamic behavior. This
includes amplification, subtraction and addition of signals, maintaining equi-
librium using negative feedback and smoothly varying the period of a periodic
phenomenon like the cell cycle. More recently, continuous models, also referred
to as connectionist [12] or additive models [6], have been proposed. These models
closely resemble neural-like connectionist architectures or biochemical networks
of interacting chemicals [10]. Reinitz and Sharp [16] have successfully used a
system of differential equations to reproduce the formation of stripes of expres-
sion of the pair-rule gene eve in the Drosophila embryo. Even more recently,
Salazar-Ciudad et al. [17, 18] used a very similar model to: (1) compare diffusion
and direct-contact induction processes as mechanisms of pattern formation, (2)
identify the possible range of behavior of real gene networks and (3) suggest
causal mechanisms to generate known patterns. With these models it was also
demonstrated that different types of body segmentation patterns during the de-
velopment of insects, a process which is basically controlled by an identical set
of genes, can be explained by 'rewiring’ the regulatory network. But a signifi-
cant limitation of the models by Reinitz and Sharp and Salazar-Ciudad et al. is
that cells are modelled as static discrete lattice sites on a grid. In for example
the work by Salazar-Ciudad et al. the Drosophila embryo is represented by a
linear cellular automaton, while in the actual developing organism the spatial
and temporal patterns of gene products during development will be formed in
an aggregate of cells with a usually highly complex geometry.

In this paper we describe a model for simulating regulatory networks that is
capable of reproducing spatial and temporal expression patterns as found dur-
ing embryonic development. The model is based on the standard connectionist
model proposed by Mjolness et al. [12] and is to some extend similar in approach
to the models used by Salazar-Ciudad and Reinitz and Sharp. Yet, our model
does not represent cells as static discrete lattice sites on a grid. Cells are mod-
elled as independent objects, treating the intra- and extracellular environment
as explicitly separated chemical spaces. Basically this model can be combined
with a biomechanical model of a cell aggregate. In our current version cells are
represented as point shaped sources and sinks in the space of the extracellu-
lar matrix. As a test case we use the formation of stripes of expression of the
pair-rule gene eve in the Drosophila embryo.
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2 Methods

2.1 The Case Study: Eve Stripe Formation in Drosophila

As a proof of concept we tried to replicate the basic pattern forming processes
that are known to occur during early embryonic bodyplan formation and selected
the well- studied regulatory network for the generation of Eve stripe two of
Drosophila for this purpose [3,4, 14, 20]. The bodyplan of Drosophila is, like all
arthropods, segmented. It contains 14 segments, of which three make up the
head, including its antennae and mouth parts. The next three segments make
up the thorax and each of these segments will develop a set of legs. The last
eight segments will develop into the abdominal. The initial gradients that guide
the developmental process are a result of the presence of mRNA molecules in
the anterior and posterior poles of the embryo. These are deposited in the egg
by the mother before it was fertilized. After fertilization the anterior mRNA
molecules activate the transcription of the Bicoid protein, while the posterior
mRNA activates the translation of the Nanos protein. In the initial phase of the
developmental process of Drosophila all cells are in a syncytium. This means
that cells lack a cell membrane and it is therefore that during this stage all
gene products can diffuse freely throughout the embryo. Diffusion of the Bicoid
proteins forms a gradient going from a high concentration on the anterior pole to
a low concentration on the posterior pole. The Nanos protein forms a gradient in
exactly the opposite direction, going from a high concentration on the posterior
pole to a low concentration on the anterior pole. In turn a Hunchback protein
gradient is formed through the activation of Hunchback by Bicoid in the anterior
region and the repression of Hunchback in the posterior pole by Nanos. This
leads to the formation of a high concentration of Hunchback in the anterior
region with a sharp cut-off towards the posterior. Also Caudal mRNA molecules
can be found throughout the embryo and as Bicoid represses its transcription a
final posterior-anterior gradient is formed.

Once the main anterior-posterior gradients are formed, other proteins get
activated that produce more finely tuned patterns. The Eve protein is expressed
in a pattern of seven stripes. It has been shown [3,4] that the expression of
each of these stripes is regulated independently. For example, the expression of
Eve stripe two is regulated by the activating and repressing influences of four
proteins: Bicoid, Hunchback, Giant and Kriippel. The binding of Bicoid and
Hunchback stimulates the transcription of Eve, while the expression of Giant
and Kriippel have a negative influence on its translation. Right in between a
gap of high levels of Giant and Kriippel the expression of the second Eve stripe
finally becomes a narrow band of cells. This is also illustrated in figure 1.

2.2 The Model

Biological cells are modelled as independent objects that can absorb and exude
chemical substances from and into the extracellular space. The model makes
no assumption on the shape of cells and treats them as point shaped sources
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Fig. 1. The location of Eve stripe two is specified by four proteins. Bicoid and Hunch-
back activate Eve, while Giant and Kriippel have a repressing influence. Trapped be-
tween high concentrations of Giant and Kriippel Eve stripe two narrows down to a
band of only a few cells thick. Modified after [3]

and sinks on the extracellular matrix. The extracellular matrix is represented by
a grid that is overlaid on the cells and the space between them. Furthermore,
protein levels are maintained within each cell. Paracrine protein levels are also
maintained in the extracellular matrix, where they are allowed to diffuse. Note
that we assume that these gene substances do not go into direct chemical interac-
tion with each other. This means that we prohibit the formation of Turing-like
reaction-diffusion patterns and that in our model chemical patterns can only
arise through (modelled) genetic regulation. The model allows proteins to acti-
vate and inhibit each other and also makes a distinction between proteins that
stay within a cell and only function for intracellular regulation (non-paracrine
factors) and proteins that can diffuse into the extracellular matrix and are mem-
bers of signaling pathways and exercise short- and long-range effects (paracrine
factors).

For our model we adapt the equations as used by Salazar-Ciudad et al. [17, 18]
to explicitly separate the intra- and extracellular environment. This separation is
accomplished by removing the diffusion term from the intracellular equation and
introducing extra equations that model the extracellular diffusion of paracrine
gene substances. This separation does not necessarily preserve the exact dynam-
ics of the equations as proposed by Salazar-Ciudad et al. but does preserve its
pattern forming ability. The extracellular matrix is represented by a simple grid
on which the diffusion equation is solved. This allows gene substances that are
exuded from cells to diffuse through the extracellular matrix. The change in
concentration for all intracellular gene products over time, whether paracrine or
non-paracrine, is described by:
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Here g;; is the intracellular concentration of gene substance j within cell i.
Here kj, A\; and h; are respectively the binding rate constant of gene j, the
intrinsic rate of degradation of gene j and the activation threshold level of gene
j. All enhancers and protein binding sites are described by the matrix W. Each
element Wy, of W characterizes the regulatory effect of one gene on another by
a single real number for each possible pair a and b. A positive value for Wy,
meaning that gene b activates gene a while a negative value represses gene a. In
the case that W, is zero, gene b has no effect on gene a. N, is the total number
of cells in the system and N, is the total number of genes. ¢ is introduced to
ensure that inhibiting interactions do not lead to negative concentration values.
In our case ¢ is chosen to be:

r Vx>0
0 otherwise

o) = { 2)

In the model we make a distinction between paracrine (diffusing) and non-
paracrine (non-diffusing or transcription) factors. Non-paracrine factors stay
within the boundaries of a cell, while paracrine products are allowed to be trans-
ported through the cell membrane and diffuse through the extracellular matrix.
The dynamics of the extracellular proteins is governed by a set of partial differ-
ential equations:
i(x

W :'DjVQCj(m,t) —/\jCj(.’B,t) (3)
Here c; is the concentration of the paracrine gene product j, D; is the diffusion
velocity and \; is the rate of degradation of ¢;. Equations (1) and (3) are coupled
by the constraint

9ij (t) = ¢j(xi, 1) (4)

which defines the exchange of paracrine gene products between the intra- and
extracellular environment. Here ¢;(x;,t) expresses the concentration of the ex-
tracellular paracrine gene substance j at the location «; of cell i at time ¢. The
implicit assumption here is that the timescale of the rate of exchange of gene
substances between the extracellular matrix and the intracellular environment
of a cell is much smaller than the timescale at which the extracellular diffusion
of substances occurs.

For the spatial discretization of the equation (3) on the extracellular grid
we use a straightforward finite difference approximation. As an integrator we
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use in all cases an explicit forward Euler scheme. Because of the fact that cells
can be positioned freely throughout the extracellular matrix there is no longer
a one-to-one correspondence between grid points and biological cells. We there-
fore need to interpolate gene substances from the cell locations to the grid and
vice versa. First the concentration ¢ of gene substance j at position x; of
cell 7 is determined. This is done by calculating the average of the intracellular
concentration g;;(t) and the extracellular concentration ¢;(x;,t), which in turn
is determined using linear interpolation. Then the mass m;; of the absorbed or
exuded substance is determined by multiplying the difference between the in-
tracellular concentration g;;(t) and the newly-found average concentration c}:*"
with the volume v; of the corresponding cell. Finally, all that is left to do is set-
ting the new concentration values. The new intracellular concentration of gene
J of cell i becomes ¢j*, while the new concentration values in the grid can
be found by linearly distributing the concentration m;;/volumeg ideen over the

neighboring lattice points.

The algorithm starts by integrating the time dependent diffusion equation
(3) over one time step. Thereafter the new grid values are used to update the
paracrine protein concentration levels at the positions of the cells using the
interpolation method described earlier (4). Then the intracellular variables are
advanced one timestep using equation (1). Finally all paracrine gene substances
are updated once again.

Model parameters consisted mainly of regulatory relationships between genes
and activation threshold levels and were tuned to correspond roughly to known
interaction properties of the regulatory network of Drosophila. For reasons of
simplicity only a subset of the proteins known to be involved in generation of
Eve stripe two were taken into account (see also figure 2). All systems were
simulated until an equilibrium was reached.
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Fig. 2. A selection of important regulatory interactions between genes involved in the
generation of Eve stripe two. An arrow indicates a positive regulatory relationship,
while a line crossed at its end indicates a repressive relationship. Black interactions
were taken into account, while interactions colored gray where not simulated. Modified
after [3]
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3 Results

As can be seen in figure 3 for a one- and in figure 4 for a two-dimensional
domain we are able to reproduce expression patterns that resemble the speci-
fication of Eve stripe two. Differences when compared to biological data in the
expression of the Giant and Kriippel protein are in part due to the fact that not
all proteins involved in the specification of Eve stripe two have been taken into
account. The Kriippel protein should only be expressed in the exact center of
the embryo. This deviation probably comes from the absence of the repressive
influence of the Knirps (kni) protein in the posterior region. Another difference
with biological data comes from the Giant protein. This may be caused by the
absence of the repressive influence of the Huckebien (hkb) protein on both of
the poles. This last deviation is nevertheless quite significant. Giant does not
form sharp borders, resulting in a band of cell expressing Eve stripe two that is
too wide when compared to biological data. In two dimensional simulations this
error becomes even more dominant. Yet, it is important to note here that the
regulatory relationships were tuned by hand. And it should therefor come as no
surprise that it is likely that a much better match can be found when using a
more sophisticated parameter tuning method.
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Fig. 3. One-dimensional concentration gradients showing an approximation of the spec-
ification of Eve stripe two. The Bicoid, Nanos and Hunchback gradients are shown in
gray, while the Giant, Kriippel and Eve gradients are black. When comparing this fig-
ure to figure 1 some significant differences are observed. These difference can in part
be explained by the absence of certain proteins that do have regulatory relationships
with some of simulated proteins but were not taken into account during the simulation



Modelling Developmental Regulatory Networks 695

Bicoid
i
A
ﬁs
T
LS
Hunchback
Giant bt Eve
AINTE 4
:’ﬁ’ I
[ s os’S 3
03: {\ .i{
8 S .m.t

Fig. 4. Two-dimensional concentration gradients for six proteins involved in the spec-
ification of Eve stripe two. These graphs were produced using the same parameters as
used for figure 3

4 Discussion

The examples in Figure 3 and 4 show that our model of regulatory networks is
capable of forming relatively complex and one- and two-dimensional spatial and
temporal morphogene expression patterns that correspond to morphogene gra-
dients generated during early embryonic development of Drosophila. This model
was coupled with a model of cells (or in the case of Drosophila nuclei) that
can be positioned freely throughout the extracellular matrix, meaning there is
no longer a one-to-one correlation between grid points and biological cells, as
in many previous models [15-18]. This combination results in a more flexible
model that can be used to simulate spatial and temporal expression patterns
in a variety of cellular systems. The flexibility of the model mainly comes from
the fact that we separated the terms that model the genetic regulation from the
term that equates the diffusion of gene substances. This in contrast to many of
the previous projects where connectionist models where used to simulate gene
regulation [6,12, 16-18]. Yet this simple modification allows us to perform much
more realistic simulations. For example, it elegantly solves the strange correla-
tion found in many previous connectionist models for gene interactions were a
grid cell corresponds directly to a biological cell, meaning that increasing the
accuracy of the generated pattern by using a finer grid, automatically results in
an increase of the total number of simulated cells. In our model the biological
cells and grid points are separated so that using a finer grid will result in an
increased accuracy of the pattern. There is a catch however. We model cells as
volume-less objects in the extracellular matrix, meaning that gene substances are
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allowed to diffuse throughout the space unhindered by cells. Yet this also means
that decreasing the size of the grid increases the effect of the error introduced
by this simplification. We also showed that the model can be extended to more
dimensions. Simulations have been carried out on both one and two-dimensional
domains using exactly the same parameters for the regulatory network. Cur-
rently we are extending these simulations to three dimensions, a major problem
here are the computational requirements. Because of the separation between the
cells and the extracellular space it is possible to extend the model in such a way
that it also models the effect of physical interactions between cells and their
environment. One of our future plans is to combine our model of regulatory net-
work for development with a bio-mechanical model of moving and interacting
cells. In the simulation results shown in this paper, the model parameters de-
scribing regulatory relationships between genes and activation threshold levels,
were tuned to correspond roughly to known interaction properties of the regu-
latory network of Drosophila. Currently we are investigating a method based on
genetic algorithms to do a guided search through parameter spaces (see also [15,
17,18]).
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