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Abstract. Adaptive algorithms are an important technique to achieve
portable high performance They choose among solution methods and
optimizations according to expected performance on a particular ma
chine Grid environments make the adaptation problem harder, because
the optimal decision may change across runs and even during runtime
Therefore, the performance model used by an adaptive algorithm must
be able to change decisions without high overhead In this paper, we
present work that is modifying previous research into rapid performance
modeling to support adaptive grid applications through sampling and
high granularity modeling We also outline preliminary results that show
the ability to predict differences in performance among algorithms in the
same program

1 Introduction

Grid environments [1] present novel performance challenges, adding variabil
ity to many characteristics of high performance code Heterogeneous platforms
and varying network performance mean that the best algorithm for an appli
cation may change between runs of an application, and even during execution
Adaptive algorithms, developed to support portable performance in libraries,
present an excellent opportunity to deal with these challenges by switching al
gorithms based on runtime information To choose the optimal algorithm, a
performance prediction must be made based on this information and the per
formance characteristics of the candidate algorithms Because it is important to
keep the combined overhead of measurement, modeling, prediction, and adapta
tion low, current time consuming modeling techniques are not suitable for grid
environments We propose using a combination of ongoing research into rapid
performance modeling and new development of a general adaptive algorithm
framework to support exploration of portable performance on Grids

We will initially focus our research on data intensive applications running on
Virtual Private Grids (VPGs), which combine the heterogeneity and physically
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distributed qualities of a public Grid, without the complication of distributed ad
ministration Examples of important VPGs that this work is applicable to include
GAMESS (General Atomic Molecular Electronic Structure Systems) Portal [2,
3], Encyclopedia of Life (EOL) [4], Biomedical Informatics Research Network
(BIRN) [5], GriPhyn (Grid Physics Network) [6] projects, and Real time obser
vatories, applications, and data management (ROADNet) [7]

2 Rapid Performance Modeling

Performance modeling is the science of constructing analytical and empirical
models to predict and explain the performance of applications Past techniques
involve very detailed low level predictions on a single architecture, as in [8 10],
or developing custom models for single applications, for example [11] Our goal is
to develop general methods fast enough to update models at runtime, therefore
such methods requiring expensive cycle accurate simulation, slow evaluation, or
human intervention are not suitable Because it is sometimes possible to amortize
the cost of more detailed analysis, we are investigating the tradeoff between
analysis speed and prediction accuracy

Current techniques for rapid performance modeling include convolution and
Petri net methods These approaches combine properties of abstraction and rapid
computability Only the most significant properties of an application are mea
sured to facilitate building a model quickly Our current approach uses convolu
tion methods to model node level performance, and Petri nets to model network
performance Current work using these methods has had success with HPC ap
plication modeling [12], so we propose to use a similar approach for VPGs

2.1 Convolution Methods

It is now feasible to rapidly estimate the performance of an application across
several candidate platforms, using techniques shown in [12 14] We have de
veloped a framework for automatic generation of performance models for whole
HPC applications through convolution of application signatures with system pro
files Application signatures are summaries of the operations performed during
execution Ideally, signatures are machine independent System profiles are mea
surements of the rates at which machines can carry out fundamental operations
such as floating point operations, memory accesses, message transfers, and disk
accesses Convolution methods are techniques for mapping signatures to profiles
for predicting and understanding performance The separation of signatures and
profiles means that signatures need only be gathered once to support prediction
on multiple machines Convolutions are fast and allow exploration of varying
accuracy by adding detail to application signatures

2.2 Petri Net Methods

A Petri net is a tool for modeling concurrent systems Details about Petri Nets
are available in the references of [15], which describes Petri nets applied to Grid
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performance prediction In previous work with Petri nets using the DIMEMAS
tool [16], we found that the performance of many data intensive HPC applica
tions is bottlenecked by their interaction with the memory hierarchy while their
scalability is mostly a function of their interaction with the interconnect Thus
our application signatures focused on memory access patterns and communica
tions patterns

Our focus on rapid modeling of deep memory hierarchies and multi tiered
networks makes our previous modeling work most pertinent for modern HPC
architectures The fact that these same architectural factors are even more influ
ential in Grid performance, along with the need to rapidly respond to changing
network conditions and data sparsity, suggests that our methods will be useful
to predict performance on Grids rapidly and cheaply

3 Algorithmic Selection and Adaptation

Adaptive algorithms, also called poly algorithms, encapsulate a number of al
gorithms for solution of the same numerical problem, along with a mechanism
for selecting the best algorithm amongst the available alternatives [17 19] The
software mechanism responsible for making the determination of the best avail
able choices at run time is known as a switching function The optimal choice
of algorithm, can be determined at run time, typically using data such as mea
surements of hardware characteristics, system load, and input data dependent
properties of the application Prototypes for adaptive dense matrix multiplica
tion such as ATLAS [19], and FFTs [20, 21] show that adaptive algorithms can
frequently do as well as or even better than hand tuned vendor code

Currently, adaptive algorithms and the switching functions employed by them
run within standard HPC computing environments such as a tightly coupled
cluster of SMP nodes [22] The next generation of adaptive algorithms must be
able to run within distributed computational environments such as the TeraGrid
[23], the NASA Information Power Grid (IPG) [24], or the Grid Physics Network
(GriPhyN) [6], with heterogeneous compute resources and varied and fluctuating
network bandwidths and latencies Therefore, the ability to update algorithms
choices automatically at runtime will become more important,

4 Applications of Performance Modeling in Adaptive
Grid Software

Rapid performance modeling techniques can be used to enable real time adaptive
decisions in VPG environments Such environments require rapid decisions about
the best combination of software and hardware resources for the given application
at a particular time We are extending current rapid modeling techniques to
grid applications, by identifying additional performance factors which must be
measured to model grid applications These include machine availability and
heterogeneity, increased variance in network characteristics, and grid middleware
service overhead
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We will continue to use convolution based modeling to capture compute node
level characteristics of the VPGs such as expected CPU and memory subsystem
performance Petri net modeling will be used to model higher level characteris
tics such as varying network load, middleware service overheads, and machine
availability As our previous modeling work assumed a relatively fixed state com
puting platform, our new research will explore how to make performance mod
els capture changing conditions Possible approaches we are evaluating include
sampling of performance characteristics We are currently extending the trac
ing technology to use the Dynlnst run time code patching API [25] to allow
sampling

Present convolution methods gather signatures for an entire application Us
ing DynlInst, we are extending the signatures to describe individual procedures
and loops This additional capability will allow us to use the convolution method
to predict performance of candidate algorithms within an adaptive program

5 Preliminary Results

Current investigations have already shown promising results in whole application
performance modeling with rapid evaluation [13] To support modeling at a finer
granularity to enable comparisons of candidate algorithms, we have extended
the convolution method to the loop level We are developing a tool similar to
MetaSim [12] that gathers information at the loop level

In order to validate that the convolution approach can work at the loop level,
we show the results of predicting performance of a set of 8 synthetic loops which
represent a range of memory usage and computational intensity The loops were
padded to avoid cache conflicts, and compiled using the IBM compiler with
the following options: x1f90 03 qtune=pwr3 bmaxdata:0x40000000 Table
1 shows a summary of the loops studied The experiments were performed on
the SDSC Blue Horizon IBM SP, with 375 MHz Power3 processors

Figure 1 shows the results of our convolution under development for use
with loops A simple linear fit using the L1 and L2 cache miss rates predicts
the efficiency of a loop very well The units are efficiency in terms of the lim
iting operation, which is either memory references or floating point operations,
depending on the loop This set of loops will be expanded in ongoing work to
include strided access, tiling optimizations, and then on to loops from applica
tion kernel benchmarks, to support building a robust convolution for modeling
These results were generated by hand and show that the dynamic instrumenta
tion tool under development, which includes the fitted variables among those it
measures, has the potential to support useful performance models

6 Related Work

Past related work in the areas of performance modeling and adaptive algorithms
are outlined in the following sections



Performance Modeling for Dynamic Algorithm Selection 753

Table 1. Loops studied

Loop Memory FP Computational
References operations Intensity
per Iteration per Iteration

fill

a(i) = s 1 0 0
copy

a(i) = b(i) 2 0 0
vadd

a(i) = b(i) + c(i) 3 1 033
sum

s=s+ali) 1 1 10
daxpy

a(i) = a(i) + s * b(i) 3 2 067
dot

s=s+a(i) xb(i) 2 2 10
poly2 2 4 20

a(i) = (2 b(i) + cl)

xb(i) + 0

poly5 2 10 50

a(@) = ((((cb * b(z) + c4)
xb(1) + ¢3) x b(i) + ¢2)
*b(1) + c1) * b(2) + c0

6.1 Performance Modeling

Gustafson and Todi first proposed the convolution method in [26] Because cycle
accurate simulation is slow, there is a range of techniques that have been de
veloped to improve its efficiency [10,27 31] These techniques are useful in do
mains such as architecture design but fall short of the rapid estimation capability
needed for adaptable grid applications To enable more rapid performance es
timation, Saavedra [32 34] proposed to model applications as a collection of
independent Abstract Fortran Machine tasks For parallel system predictions,
Mendes [35,36] has proposed a cross platform approach Traces are used to
record the explicit communications among nodes and to build a directed graph
based on the trace Then sub graph isomorphism is used to study trace stabil
ity and to transform the trace for different machine specifications Simon [37]
proposed to use a Concurrent Task Graph to model applications using the de
pendence relationship between nodes

Scheduling using performance contracts is a current topic of grid research
which requires models of expected performance The GrADS Project [38] work
on performance contracts measures the intrinsic application signature, monitors
system processing and communication rates, and uses fuzzy logic to determine
whether the application processing and communication speeds for each task are
within the bounds defined by the user specified performance contracts However,
algorithms for adjusting the application and/or system resource configuration
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Fig. 1. Efficiency vs. predicted efficiency for loops in Table 1.

when the performance contract is violated are not yet addressed in those works
Furthermore, the performance models developed so far for GrADS are ad hoc
and application specific, for example the model developed for ScaLAPACK in
[39] Heymann et al [40] measure task execution times and worker node efficien
cies in each iteration of an executing Condor Master Worker (MW) application
Results from previously measured synthetic MW applications provide a table of
the estimated number of worker nodes to allocate, as a fraction of the number of
parallel tasks, to achieve 80% efficiency with no more than a 10% increase in it
eration execution time, based on the relative processing times of the largest 20%
of the tasks This algorithm assumes homogeneous processing nodes, that each
task performs (approximately) the same work in successive iterations, homoge
neous processing nodes, and that the application is synchronous (i e , the results
from one iteration are completed before a new iteration executes) while our tar
get VPGs are heterogeneous and many of our applications are asynchronous
Hollingsworth and Keleher [41] propose an approach in the Harmony system, in
which the application developer specifies the processing time and communication
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time, or provides a model to predict these values at runtime, for each possible
multidimensional configuration of the application The Harmony system then
dynamically allocates resources to each executing application to achieve a par
ticular system objective (rather than application objective), such as maximizing
throughput By contrast our work is applications centric

The Delphi project [42] uses a language directed whole system approach to
performance prediction and analysis Compilers, instrumentation, custom li
braries, and analysis tools all work together to support performance modeling
In contrast, our work does not require the same extensive system support We
focus on developing tools that are as lightweight as possible, specifically requir
ing minimal change in the application workflow This focus will allow us to build
performance models of existing applications and enhance decisions made by their
adaptive libraries transparently

6.2 Adaptive Algorithms

Some of the well known numerical software packages with adaptive algorithms
are the Linear Solver package (LINSOL) [43], ATLAS [19], HPL [44], Lapack
for Clusters (LFC) [22], FFTW [20], and UHFFT [21] The primary issue is
how some of these packages use parameters for switching functions In LINSOL,
adaptive algorithms are chosen based on different numerical characteristics and
their effect on convergence All of these packages modify computation patterns in
order to deliver high performance Other aspects on which algorithms may adapt
are data storage and communication patterns All of these packages differ on
criteria for switching functions based on functionality and goals specific to their
application In an alternative approach, Brewer made an extensive treatment of
adaptive algorithms to achieve portable high performance sensitive to machine
and instance issues [45] The switching functions employed by Brewer are based
upon statistically generated data from a database of empirical performance data

This approach, though highly accurate, is expensive, as shown by Sussman [46]

7 Conclusions and Future Work

Our targeted data intensive Grid applications make substantial use of libraries,
some of which already have adaptive features Switching functions for Grid ap
plications will need additional capabilities beyond those currently available on
HPC platforms to deal with heterogeneity in compute resources and varying net
work conditions Future work will investigate generalizing adaptive algorithms’
switching functions to use output from general purpose performance models
These new switching functions will need access to a wider range of data, includ
ing past performance history, available machine characteristics, and configura
tion information about the Grid environment, including topology and network
conditions Custom development of performance models for each application is
already time consuming, and this additional data will make it more so There
fore, adaptive algorithms will benefit from separate development of automatic
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performance models Switching functions will then easily employ runtime perfor
mance estimates for making algorithm and machine selections, using the present
work on rapid performance modeling
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