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Abstract. Self-Adapting Numerical Software (sans) systems aim to
bridge the knowledge gap that exists between the expertise of domain
scientists, and the know-how that is needed to fulfill efficiently their com-
putational demands. This know-how extends to algorith choice, compu-
tational grid utilization, and use of properly optimized kernels. A sans
system is a piece of meta software that mediates between the application
program and the computational platform so that application scientists
– with disparate levels of knowledge of algorithmic and programmatic
complexities of the underlying numerical software – can easily realize
numerical solvers and efficiently solve their problem.
The main component of a sans system is an Intelligent Agent that auto-
mates method selection based on data, algorithm and system attributes.
The IA uses heuristics to make its decisions. In this paper we explain
how the heuristics of the IA can be tuned over time by redundant testing
and using the nature of many applications.

1 Introduction

In numerous technologically important areas, such as aerodynamics (vehicle de-
sign), electrodynamics (semiconductor device design), magnetohydrodynamics
(fusion energy device design), and porous media (petroleum recovery), produc-
tion runs on expensive, high-end systems last for hours or days, and a major
portion of the execution time is usually spent inside of numerical routines, such
as for the solution of large-scale nonlinear and linear systems that derive from
discretized systems of nonlinear partial differential equations. These numerical
parts of the code can contain a large number of tuning parameters, the choice
of which greatly influences the efficiency of the total code, or can even make the
difference between obtaining a solution and obtaining none.

Such numerical concerns, however, are artifactual from the perspective of the
scientific and engineering users, who are usually more concerned with modeling
and discretization issues. The classic response to numerics was to encode the req-
uisite mathematical, algorithmic and programming expertise into libraries that
could be easily reused by a broad spectrum of domain scientists. However, in
high-performance computing this solution is no longer sufficient. There is typi-
cally more than one algorithm for the stated purpose, and since several levels of
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algorithms are needed in a large-scale application; the different algorithms can
have interlocking parameter settings, and the availability of parallel computing
platforms influences algorithmic decisions. Since the difference in performance
between an optimal choice of algorithm and hardware, and a less than optimal
one, can span orders of magnitude, it is unfortunate that selecting the right so-
lution strategy requires specialized knowledge of both numerical analysis and of
computing platform characteristics. Our sans system aims to assist the appli-
cation user to navigate this maze of computational possibilities.

This discrepancy in expertises can of course be bridged with manpower based
solution: a large enough project can afford to hire a post-doc from computational
science, or have a post-doc of its own cross-train in computational science. We
believe, however, that it is possible have meta-software – software operating on
software – to deliver as good a solution, without the wasted manpower. Self-
adapting Numerical Software (sans) systems have several levels on which they
automate the computational choices for the application scientist.

1.1 Components of a sans System

We will now describe the various aspects of a sans system; we will go into details
in the following sections. A sans system comprises the following:

– An Intelligent Agent that includes an automated data analyzer to uncover
necessary information about logical and numerical structure of the user’s
data, a data model for expressing this information as structured metadata,
and a self-adapting decision engine that can combine this problem metadata
with other information (e.g. about past performance of the system) in order
to choose the best library and algorithmic strategy for solving the current
problem at hand;

– A history database that not only records all the information that the intel-
ligent component creates or acquires, but also all the data (e.g., algorithm,
hardware, or performance related) that each interaction with a numerical
routine produces;

– A system component that provides the interface to the available computa-
tional resources (whether on a desktop, in a cluster or on a Grid), combining
the decision of the intelligent component with both historical information
and its own knowledge of available resources in order to schedule the given
problem for execution;

– A metadata vocabulary that expresses properties of the user data and of per-
formance profiles, and that will be used to build the performance history
database. By considering this as behavioural metadata, we are led to intelli-
gent software components as an extension of the CCA [1,9] framework. The
metadata associated with user input makes it possible for the user to pass
various degrees of information about the problem to be solved. In the cases
where the user passes little information, the Intelligent Agent uses heuristics
to uncover as much of this information as is possible.
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– One or more prototype libraries, for instance for sparse matrix computations,
that accept information about the structure of the user’s data in order to
optimize for execution on different hardware platforms.

One of the more interesting aspects of a sans system is that it will gradually
increase its intelligence. To this end, the IA needs to tune its heuristics, and
build new ones over time. In this article we will outline various approaches that
can be taken to this end.

1.2 Further Outline of This Paper

We start off with a brief inventory of earlier research into adaptive systems in
section 2. Section 3 further describes the metadata that is used internally and
externally to store information about problems and algorithms. In section 4 we
will go into further details on the Intelligent Agent, in particular describing the
heuristic building process. Finally, in section 5 we briefly describe the system
components of a sans system.

2 Related Work

We note the following examples of earlier research into numerical poly-
algorithms [20] and adaptive numerical software, focusing mainly on how our
proposed research differs from, or often goes beyond, earlier approaches.

– Brewer [6] and Sussman [22] find an a priori model, accurately predicting
runtime of their algorithms, for which they tune the parameters by measuring
specific runs. By contrast, in our application no actual prediction of runtime
is possible; we can only weight options against each other as more or less
likely to solve the problem faster. Also, they have only a very finite number
of algorithms to choose from, whereas our search space is for all practical
purposes infinite.

– ATLAS [24] and Sparsity [16] optimize the dense and sparse BLAS [17],
respectively. ATLAS relies on a one-time expensive installation, after which
its use at runtime engenders no overhead. Sparsity has a runtime component
that needs to be amortized, for instance over multiple systems with identical
structure. These packages, and in particular ATLAS, are to a large extent
independent of the nature of the user data, so no runtime decisions are
needed.

– The LINSOL package of Weiss et al. [23] includes a poly-algorithm that
picks one among a small number of iterative solvers through backtracking.
No analysis of the linear system is performed prior to the iteration process;
all decision making is done during the iteration and based on tracking the
error norm. Also, any backtracking is only through the space of iterative
methods; no ordering of preconditioners is attempted.



762 J. Dongarra and V. Eijkhout

– LSA [12,18] is a project for componentizing linear solver software into a prob-
lem solving environment. Its stated goal is a visually programmed testbed,
rather than an adaptive, intelligent, solver, although there is mention of
integrating Case-Based Reasoning for some intelligent assistance.

– Houstis et al. [13] consider the problem of building a ‘recommender system’
out of a database of performance results. As a case study of their PYTHIA II
system they consider solving PDEs with PELLPACK. However, their choices
in linear system solvers are extremely limited.

– Some compilers already make use of trace data about previous executions in
making decisions about compile-time optimization for code generation. Our
approach extends this to both algorithmic choices and to runtime optimiza-
tions.

3 Metadata and User Interaction

The operations typically performed by traditional libraries are on data that has
been abstracted from the original problem. For instance, one may solve a linear
system in order to solve a system of ODEs. However, the fact that the linear
system comes from ODEs is lost once the library receives the matrix and right
hand side. By introducing metadata, we gain the facility of annotating problem
data with information that is typically lost, but which may inform a decision
making process. A sans system will have the facility for the user to pass such
metadata explicitly in order to guide the intelligent library. However, one needs
to design heuristics for uncovering such lost data, taking the burden completely
off the user.

3.1 Types of Metadata

The metadata passed by the user can not only be of varying levels of detail
and sophistication, it can also lie on various points of a scale between purely
numerical specification on the one extreme, and user application terms on the
other. The former corresponds to the traditional parameter-passing approach of
numerical libraries: users who are well-versed in numerics can express guidelines
regarding the method to be used. However, most users are not knowledgeable
about numerics; they can at most be expected to have expert knowledge of their
application area. By building in a – heuristic – translation from application
domain concepts to numerical concepts we allow the user to annotate the data
in problem-native terms, while still assisting the sans system in decision making.

3.2 Usage Modes of a sans System

sans systems can be employed in various ways, depending for instance on the
level of expertise of the application user, and on the way the system is called
from the application code.
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– For a non-expert user, a sans system acts like an expert system, fully taking
the burden of finding the best solver off the user’s hands. In this scenario,
the user knows little or nothing about the problem – or is perhaps unable to
formulate and pass on such information – and leaves it up to the intelligent
software to analyze structural and numerical properties of the problem data.

– Users willing and able to supply information about their problem data can
benefit from a sans system in two ways. Firstly, decisions that are made
heuristically by the system in expert mode can now be put on firmer ground
by the system interrogating the user or the user passing on the information
in the call. Secondly, users themselves can search for appropriate solution
methods by using the system in ‘testbed’ mode.

– Finally, expert users, who know by what method they want to solve their
problem, can benefit from a sans system in that it offers a simplified and
unified interface to the underlying libraries. Even then, the system offer
advantages over the straightforward use of existing libraries in that it can
supply primitives that are optimized for the available hardware, and indeed,
choose the best available hardware.

4 The SaNS Agent

4.1 The Intelligent Component

The Intelligent Component of a sans system is the software that accepts the
user data and performs a numerical and structural analysis on it to determine
what feasible algorithms and data structures for the user problem are. We allow
the users to annotate their problem data with ‘metadata’ (section 3), but in the
most general case the Intelligent Component will do this by means of automated
analysis (section 4.2). Moreover, any rules used in analyzing the user data and
determining solution strategies are subject to tuning (section 4.3) based on per-
formance data (section 4.4) gained from solving the problems. Below we present
each of these aspects of the sans agent in turn.

4.2 Automated Analysis of Problem Data

Users making a request of a sans system pass to it both data and an opera-
tion to be performed on the data. The data can be stored in any of a number
of formats, and the intended operation can be expressed in a very global sense
(‘solve this linear system’) or with more detail (‘solve this system by an itera-
tive method, using an additive Schwarz preconditioner’). The fewer such details
the user specifies, the more the sans will have to determine the appropriate
algorithm, computational kernels, and computing platform. This determination
can be done with user guidance, or fully automated. Thus, a major component
of a sans system is an intelligence component that performs various tests to
determine the nature of the input data, and makes choices accordingly.

Some of these tests are simple and give an unambiguous answer (‘is this ma-
trix symmetric’), others are simple but have an answer that involves a tuning
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parameter (‘is this matrix sparse’); still others are not simple at all but may in-
volve considerable computation (‘is this matrix positive definite’). For the tests
with an answer on a continuous scale, the appropriateness of certain algorithms
as a function of the tested value can only be preprogrammed to a limited extent.
Here the self-adaptivity of the system comes into play: the intelligence compo-
nent will consult the history database of previous runs in judging the match
between algorithms and test values, and after the problem has been solved, data
reflecting this run will be added to the database.

4.3 Self-Tuning Rules for Software Adaptation

The Intelligent Component can be characterized as self-tuning in the following
sense: The automated analysis of problem data concerns both questions that can
be settled quickly and decisively, and ones that can not be settled decisively, or
only at prohibitive cost. For the latter category we will use heuristic algorithms.
Such algorithms typically involve a weighing of options, that is, parameters that
need to be tuned over time by the experience gained from problem runs. Since we
record performance data in the history database (section 4.4) of the sans Agent,
we have a mechanism to provide feedback for the adaptation of the analysis
rules used by the Intelligent Component, thus leading to a gradual increase in
its intelligence.

4.4 History Database

We can gather statistics during the actual problem solving process on a number
of levels. There are tools for gathering hardware statistics, such as PAPI [7]. The
vocabulary of statistics is also relatively well established in this case.

For the algorithmic level there is no standardization of this vocabulary. In
the case of systems solving the obvious measure is the time to solution. However,
this time is obviously influenced by hardware considerations (did the problem
fit in memory or was page swapping a substantial part of the solution time) so
these may need to be recorded too. In iterative methods there is the number of
iterations to record, but more detail is obtained if we store the full convergence
history. In fact, even more informative is storing the convergence history of the
individual Ritz values. This of course requires a solver package (such as Petsc [2])
that allows such sophisticated iteration monitors to be installed.

4.5 Heuristic Building

We may view heuristics as a mapping from the space of problem properties to
the space of possible algorithms and algorithm parameters. For each input, this
mapping can yield either a specific output, or several outputs with a plausibility
ranking; if one method fails, one can fall back one the next ranked.

Heuristics can be based on a single problem parameter, where reaching a cer-
tain value triggers a switch over from method to another, or a related variant of
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it. Such a heuristic can be discovered by performing statistical analysis, correlat-
ing a range of the parameter against a range of performance results. For this to
be possible, preferably we need performance results on a sequence of problems
where only the parameter under investigation varies. There are several ways in
which uch an analysis is possible.

– We can, given enough time, for instance during a setup phase of the system,
run exhaustive tests, where a collection of test matrices is subjected to every
available method.

– In a production system with only modest time criticality we can occasionally
let a system be solved by two methods that only differ in one variable.
Note that, given the right software setup, such redundant solving need not
come at a 100% overhead cost. For instance, it was shown in [3] how many
iterative methods have the same structure, so in running two methods side-
by-side their communication stages can be combined, largely eliminating
the communication cost of the second method. Even on a single processor,
combining two methods can be efficient due to cache effects when a matrix
that is operating on two vectors need not be reloaded for the second vector.

– In time-dependent problems and nonlinear solvers linear system occur that
are of a gradually evolving nature. This also gives data from which statistical
correlations can be harvested.

Heuristics based on multiple problem parameters are not so intuitively
straightforward to construct, but the statistical techniques sketched above will
still hold. However, since the method parameters usually vary discretely rather
than continuously, the performance data stored will likewise be coarse grained.
Finding correlations in a multi-dimensional space then requires more confirma-
tion before we trust a thusly tuned heuristic.

5 System Components

5.1 Scheduler

The System Component of the sans agent manages the different available com-
putation resources (hardware and software), which in today’s environment can
range from a single workstation, to a cluster, to a Computational Grid. This
means that after the intelligent component has analyzed the user’s data regard-
ing its structural and numerical properties the system component will take the
user data, the metadata generated by the intelligent component, and the rec-
ommendations regarding algorithms it has made, and based on its knowledge of
available resources farm the problem out to a chosen computational server and a
software library implemented on that server. Eventually the results are returned
to the user. Empirical data is also extracted from the run and inserted into the
database; see section 4.4.

However, this process is not a one-way street. The intelligent component and
system component can actually engage in a dialogue as they weigh preferred al-
gorithms against, for instance, network conditions that would make the available
implementation of the preferred algorithm less computationally feasible.
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Part of the System Component is scheduling operations and querying net-
work resources. Software for this part of a sans system already exists, in the
Netsolve [8], GrADS [4,19], and LFC [21] packages.

5.2 Libraries

Automation of the process of architecture-dependent tuning of numerical ker-
nels can replace the current hand-tuning process with a semiautomated search
procedure. Current limited prototypes for dense matrix-multiplication (AT-
LAS [24] and PHIPAC [5]) sparse matrix-vector-multiplication (Sparsity [15,
14], and FFTs (FFTW [11,10]) show that we can frequently do as well as or
even better than hand-tuned vendor code on the kernels attempted.

Current projects use a hand-written search-directed code generator (SDCG)
to produce many different C implementations of, say, matrix-multiplication,
which are all run on each architecture, and the fastest one selected. Simple
performance models are used to limit the search space of implementations to
generate and time. Since C is generated very machine specific optimizations like
instruction selection can be left to the compiler. This approach can be extended
to a much wider range of computational kernels by using compiler technology to
automate the production of these SDCGs.
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3. Richard Barrett, Michael Berry, Jack Dongarra, Victor Eijkhout, and Charles
Romine. Algorithmic bombardment for the iterative solution of linear systems:
a poly-iterative approach. J. Comp. Appl. Math., 74:91–109, 1996.

4. F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johns-
son, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and
R. Wolski. The GrADS Project: Software Support for High-Level Grid Applica-
tion Development. International Journal of High Performance Applications and
Supercomputing, 15(4):327–344, Winter 2001.
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