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Abstract. Estimating stock market output depends mainly on identifying non-
linear relationships of input variables. To forecast such systems a non-linear
modeling tool is required. This paper describes the experimental approaches for
developing an Artificial Neural Network for the purpose of modeling the
Australian All Ordinaries Index movement over a prediction horizon of 1 year.
Network parameters such as network architectures, input data sizing and
periodicity are considered in the development of the network.  The evaluation
criterion for the Neural Network output is the R Square Statistic.

1   Introduction

Previously, [3] questioned the validity of Artificial Neural Networks (ANN) as a
forecasting tool. He pointed out that few comparisons with standard statistical
techniques had been made. However, in recent years, Neural Networks have perhaps
become the most significant forecasting tools to be applied to time series data and also
to model financial markets.

The interest in the ANN capabilities to forecast has resulted in a significant amount of
research in comparing how well it performs compared to previous statistical
techniques. Flitman [4] modeled the Australian All Ordinaries Index using a Back
Propagation Neural Network and compared those results with statistical methods. He
used combinations of five explanatory variables to predict the index twelve months in
advance. Often the Neural Network performed as well, if not better than traditional
methods. Barnes [2] also modeled the Australian All Ordinaries Index, however, in
that paper the prediction forecasts were 1, 3 and 6 months. This model included a
‘sliding window’, which allowed the models to be retrained with the most recently
available data while maintaining the training size. It was found that the explanatory
variables improved the predictive power of the Neural Network when predicting 3 and
6 months into the future, but they didn’t assist in predicting one-month ahead. At this
stage, not all factors that influence the forecasting performance of Neural Networks
are known. As a result, issues of methodology for development of any ANN for
specific purposes become increasingly important. This paper extends previous work
of Flitman [4] and Barnes [2] focusing on iterating data sizing, periodicity and
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network architectures, for development of an ANN in trying to predict the movement
of the Australian All Ordinaries Index. Development factors were evaluated by
comparing the performance of different Neural Network architectures using the same
input data set and the performance of a single Neural Network by varying and scaling
the input data.

This paper is organized into four main sections. In section 2 a discussion of the All
Ordinaries Index is presented. This is followed by a discussion on the selection of
variables, section 3. Then a description of Neural Networks is section 4. In section 5
we describe the network architecture and its results. The final section 6 concludes the
paper and discusses some further research.

2   All Ordinaries Index

The All Ordinaries Index is a weighted average of more than 250 share prices. It is an
example of a price index, in that no account is taken of dividend payouts. As such it
only measures the capital gain or loss resulting from investing in the stock market. In
a wider context the All Ordinaries Index can be thought of as a reflection of the
current and future health and wealth of the economy.

The All Ordinaries works by following the changes in the aggregate market values
(AMVs) of companies covered by the index. For each company, the number of listed
shares is multiplied by the market price. The AMV for the index portfolio is then
calculated with the index calculated as:

AMVday -of-Start

AMV)day -of-(End  closing) s’(Yesterday
Index Closing Todays

×
=                    (1)

The number of companies on the index is not fixed, and alters as company eligibility
for inclusion changes. It is comparable to Standard and Poors 500, The Toronto 300
Composite and the Topix Index (Japan).

Peters [9] showed that a historical plot of the S&P 500 looked very similar
irrespective of whether plotted on a monthly, weekly or daily basis. This shows that
non-linear dynamic (NLD) systems demonstrate self-similarity, which means that the
variability of the time series would look similar when viewed with different time
scales. The AOI is assumed to belong to the same family as the S&P 500 and hence
exhibit non-linear dynamic and self-similarity characteristics. Theoretical work by [9]
indicated that three inputs were required to predict the pattern of the S&P index.
Whilst this result may imply a relatively simple time series, the reality is that no
attempt was made to identify what the variables were. Thus, given the imperfection of
the input variables that are actually available to us, we will need somewhat more than
the theoretical minimum. As discussed below our models utilised five input variables.
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3   Selection of Variables

Flitman [4], used ten different variables in combinations of five to locate the five
variables that had the most influence in improving his predictions. This was guided by
texts such as [7] where variables demonstrated the statistical relevance of the data. We
compared the predictive power of the models using lagged AOI values and the
inclusion of the extra four explanatory variables as suggested by [4]. We also looked
at all combinations of the four explanatory variables using the Neural Network and
Linear Regression techniques to observe the importance, individually and collectively
that they had on the models. The constant variable used in all models was the historic
movements in the all ordinaries.

Historic Movements in the All Ordinaries (AOI): is included since the past history of
the data often can give a guide to the future.
The four explanatory variables are as follows:

Producer Prices (Manufactoring)(PP): are used in preference to Consumer Prices.
Producer prices provide a leading indicator to consumer prices, and also reflect more
accurately the changing prices of doing business.

Money Supply (M3): is regulated by the Government to provide sustainable economic
growth. If the supply is shrinking very quickly there is a possible deflationary cycle
with consequent effect on the All Ordinaries. When the rate of change is slowing
down very quickly this implies a slowdown in economic activity with a consequent
effect on stocks. Similarly, too rapid growth implies inflationary pressures with
natural knock-on effects for stocks.

Price Earning Ratio (PE): is an excellent indicator of how cheap or expensive the
stock market is. Of particular interest are real P/Es. In general the higher the market’s
average real P/E, the worse stocks have performed over the next twelve months [7].

Treasury 10 Year Bonds (TB): is used as an indicator of interest rates. When used
independently, interest rates are only of use in predicting the stock market when
expressed in real rather than nominal terms [7].

3.1   The Data Sets

Data on the above indicators were readily obtained from http://www.finance.yahoo,
Australian Bureau of Statistics and www.economagic.com. Figures at the start of the
month were obtained from May 1987 to May 2001. This is an extension of the data
set [4] used previously and a subset of the data set [2] used. The data set consists of a
total of 169 observations and divided into three categories for the Neural Network:

The data that was being used as input to develop the Neural Network model consisted
of the training and test sets. Thus the network was trained using training data, with the
network being saved each time an improvement was registered on the test data.
Extraction of the test data from the training data was undertaken using sampling. The



Investigating Neural Network Modeling Decisions         933

remainder of the data that was not used to train the network was used for validating
the output (production set). The production data was not exposed to the network prior
to this. The production set was simply used to compare the actual index to the results
produced by the model. It is the result against this validation set which are of
particular interest. The Neural Network modeling approach can be applied to fit
historic data with good R-square.

4   Neural Networks

Neural Networks are built from elements that behave somewhat like individual nerve
cells (or neurons). Much research has been conducted looking at the application of
this technology for classifying and forecasting for various time series such as options
pricing and demand forecasts and prediction of thrift failures [10]. This paper
investigates the development of a Neural Network system to predict the Australian All
Ordinaries Index from the explanatory variables (input drivers).

To ensure the non-linear aspect of the problem is catered for the networks have a
minimum of three levels. The reader is referred to [8] for an overview of Neural
Network theory.

In designing a neural network, there are a number of variable parameters that need to
be selected. These include Learning Rate, Momentum, Initial Interconnection Weights
(all to do with learning), architecture selection, number of internal neurons in the
hidden layer, input data manipulations and data smoothing (We shall explore some of
these design parameters later in the next section). The choice of these parameters can
greatly influence the network’s performance.

5   Network Architectures

As indicated above, there are many parameters that have to be decided upon when
developing a network model to predict the All Ordinaries Index. Parameters such as
interconnection rate, learning rate, momentum, neurons interconnections, number of
hidden neurons, activation functions, architectures, input data and so forth have to be
considered.

It is not intended here to discuss all of the above influencing factors. The reader is
referred to texts such as [5] and [11] for details. Specifically, two of the most
superficial but most important parameters, architecture selection (number of hidden
neurons and neurons interconnection will be considered as part of the architecture)
and input data will be developed as a basis for the development of the other
influencing factors.

Guided by authors such as [6] and the preliminary results of Flitman [4] and Barnes
[2] financial modeling applications seemed to be facilitated using tanh activation
function, thus we have used that as our benchmark.
Interconnection weights, learning rate and momentum were set to defaulted values
and will be kept a constant throughout the development process.
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Table 1. Constant Network Parameters

Network Parameters Value
Interconnection Weights 0.3
Learning Rate 0.1
Momentum 0.1

The main architectures that were considered consisted of between 3 and 5 layers.
Layer connection was either standard backpropagation or a modified version with
each layer connected to each other (Jump Connection networks).

We conducted a number of structured experiments to investigate Network
Architectures and Data Set Size. This can be summarized into a simple flow diagram.

Architecture Selection

Data Size and Period Selection

Fig. 1.

Define Input Variables to
Develop Network

Test Different Network
Architecture

Adjust Maximum and
Minimum Input Data Range

Increase Internal Neurons of
selected Architecture and Train
using Data with Adjusted Range

Select the Architecture that
Produced the Best R Square

Conclude the Network
Selection by Accepting the
Output with the Best R Square

Train the selected network architecture
by using data of varying size of periods

Expanding the
production set

Expanding training
and test sets

Sliding data
windows
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5.1   Determining Network Architectures

The data set used to train the network was kept constant in order to investigate
network architectures as well as the number of internal neurons. Determining the size
of the network (the number of neurons) has important consequences for its
performance [11]. Too small a network may not reach an acceptable level of
accuracy. Too many neurons may result in an inability for the network to generalise;
it may be rote learning the patterns. The training set consisting of 5 inputs and a single
output (109 observations) were applied to all the different network architectures. The
data was normalised in the range of [-1,1]. This required knowledge of the expected
maximums and minimums for the entire data set including the test and variation set.
The scaling was to keep the inputs and outputs to figures relative to its maximum and
minimum. This will minimise the effects of input magnitudes as well as aid network
learning.

We decided to present the training sets to the network in a random order rather than
rotate through the training set, so that bias could be minimized (the network could end
up learning based on the position of the training data rather than the data itself).

Each time a number (200) of complete passes (epochs) of the training data passed
through the network, we applied the partially trained network to the test data set and
recorded the average forecast error. The network parameters that recorded the lowest
error would be saved, overwriting previous saved parameters. This, however, lends
itself to the risk of saving a network that has memorized the training set without the
ability to generate new data.

This process will continue until a number of successive tests using the test data
yielded no further improvement. We allowed 300 tests on the test data without any
improvements before concluding the results.

Once the training was completed, the network was applied to the production set for
validation. The production set was represented by 60 consecutive months of data. We
relied entirely on the R square statistic when comparing the network quality.

We decided that the data normalization based on the minimum and maximum values
of the data set was far too broad. We therefore decided to normalize based on standard
deviations from the mean. Initially the maximum and minimum values for the data set
were reset to 2 standard deviations from the mean and the network was retrained
using the same architectures as above.

The results of the R square of all networks except for network Run 11, trained by
setting the maximum and minimum of the input variables to 2 standard deviation of
their mean, have recorded improved results. The best result was produced by the 3-
layer jump connection network with 10 internal neurons with an R square of 44.38%.
Further exploration found that increasing the number of neurons didn’t improve the
Neural Networks predictive power.
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Table 2. Varying architectures by adjusting the input data (Min/Max)

Network Architecture Internal
Neurons

R Square
Default

Min/Max

R Square
Min/Max 2 SD

1 3 layer BPN 5 0.0871 0.2051
2 3 layer BPN 10 0.089 0.4382
3 4 layer BPN 5 0.0758 0.1984
4 4 layer BPN 10 0.0332 0.2718
5 5 layer BPN 5 0.066 0.2741
6 5 layer BPN 10 0.0012 0.0744
7 3 layer jump connection 5 0.0557 0.1076
8 3 layer jump connection 10 0.1527 0.4438
9 4 layer jump connection 5 0.0223 0.2798
10 4 layer jump connection 10 0.1048 0.2864
11 5 layer jump connection 5 0.1726 0.1328
12 5 layer jump connection 10 0.0156 0.1134

Results have shown that the maximum and minimum values of the input variables
clearly affect the Neural Network’s output. We therefore next varied the maximum
and minimum values of the inputs in multiples of 2 +/- 0.25 standard deviations from
the mean. The 3-layer jump connection with 10 neurons (best R Square) was then
trained using the varied data:

Table 3. Maximum and Minimum of input variables

Standard Deviations
from the Mean

R Square

1.25 0.1794
1.5 0.4256

1.75 0.3950
2 0.4438

2.25 0.2313
2.5 0.1753
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2.75 0.1788

The best R Squared still remained with the network trained using input data with their
maximum and minimum values set to 2 standard deviations from the mean.

At this stage in our experiment we narrowed down the vast parameters in the
development of the neural network model for predicting the All Ordinaries Index to
the following (based on the above results):

• Network Architecture: 3-layer Jump Connection with 10 Neurons
• Input Variables Max and Min: 2 Standard Deviations from the

Mean
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5.2   Determining the Input Data Set Size and Period

The input data set were figures at the start of the month obtained from May 1997 to
May 2001 ([4] used data from May 1987 to October 1993). The data set consists of a
total of 169 observations. The data was divided into 3 categories for the Neural
Network (training, testing and production sets).

5.2.1 Expanding the Production Set: We trained the data set using an expanding
production set. The training and test set were kept constant while the production set
was being expanded from a period of 12 months (12 observations) up to 60 months in
multiples of 12.

Table 4. Expanding the Production Set

Production
Set

R Square

1 12 0.3930
2 24 0.6724
3 36 0.2423
4 48 0.2484
5 60 0.4438

The best result in this exploration is produced by training the 3 layer jump connection
with 10 neurons, with a training and test set of 109 observations and a production set
of 24 observations. The R Square is 67.24%. The data set was from May 1987 to May
1998.

5.2.2 Expanding Training and Test Sets: We applied the former approach to the
training and test data. The production set was kept constant at 12 observations while
the training set was expanded from 109 observations up till 157 observations in
multiples of 12.

Table 5. Expanding Training and Test Sets

Training
Set

Test Set R Square

1 87 22 0.3930
2 96 25 0.5036
3 106 27 0.2423
4 115 30 0.0290
5 125 32 0.2685

The best result was again obtained using input data from May 1987 to May 1998 with
an R Square of 50.36. Therefore with a constant production set size it was found that
this technique did not improve the predictive power of the Neural Network. It was
noted that the results were significantly worse after the Run 2. This tends to suggest
that the increased training and test set size doesn’t generally improve the model.
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To confirm this point a different architecture was tried. The best result again were
obtained by training the network with data from May 1987 to May 1998 and the
larger training and test sets did not improve its predictive power. This is shown below.

Table 6. Expanding Training and Test Sets(Cyclical)

Training
Set

Test Set R Square

1 87 22 0.0068
2 96 25 0.6709
3 106 27 0.6069
4 115 30 0.0414
5 125 32 0.3743

5.2.3 Sliding Data Windows: Finally, we applied the ‘sliding window’ approach to
the input data. The data set was fixed to a period of 10 years (121 observations in all).
All the training set, test set and production sets were constant in size. Only the time
periods were varied.

Table 7. Sliding Data Windows

Data Range R Square
1 May 1987 – May 1997 0.3930
2 May 1988 – May 1998 0.7569
3 May 1989 – May 1999 0.5250
4 May 1990 – May 2000 0.0038
5 May 1991 – May 2001 0.6140

It was found the sliding window approach gave the best results of the techniques tried
in this paper. The best result was found to have an R Square of 75.69% for the
forward 12-month forecast of the All Ordinaries Index movement produced by
training input data from May 1988 to May 1997 and validating the forecast with data
from June 1997 to May 1998. As with each of the previous techniques, Run 4 gave
very poor results, so it can be concluded that predicting this period (i.e. the 12 months
leading up to May 2000) was very volatile and difficult to make accurate predictions.
The model was developed using a 3-layer jump connection with 10 internal neurons
with the input data range set to 2 standard deviations from the mean.

6   Conclusions and Further Research

From the investigations conducted, it is clear that the iterative development greatly
aided the production of the ‘best’ Neural Network for the purpose of modeling the
Australian All-Ordinaries Index.

It was found that the 3 Layer Jump Connection Neural Network with 10 internal
neurons produces the best result in terms of R Square. Results also show that the input
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data range of 2 standard deviations (maximum and minimum) along with the sliding
window technique produced the best R Square output.

With data manipulation, it was found that different periods of the same data that was
used to train the network produced significantly different results. The best R Square
(trained using 3 layer feed forward neural network) for the entire experiment was
obtained using data from May 1988 to May 1998.

There are of course many other factors that affect the learning ability of a neural
network. With the consideration of ‘Network Architectures’ and ‘Data Sizing and
Periodicity’ already considered, it would be useful to broaden this research to
encompass other parameters such as momentum, learning rate and interconnection
rate.

Further work is also being undertaken to improve sensitivity by looking at input data
of shorter time periods (weekly or daily).
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