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Abstra
t

We present two theoreti
ally interesting and empiri
ally su

essful te
hniques

for improving the linear programming approa
hes, namely graph transfor-

mation and lo
al 
uts, in the 
ontext of the Steiner problem. We show the

impa
t of these te
hniques on the solution of the largest ben
hmark instan
es

ever solved.
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1 Introdu
tion

In 
ombinatorial optimization many algorithms are based (expli
itly or impli
itly) on lin-

ear programming approa
hes. A typi
al appli
ation of linear programming to optimization

problems works as follows: First, the 
ombinatorial problem is reformulated as an integer

linear program. Then, some integrality 
onstraints are relaxed and one of the numerous

methods for solving (or approximating) a linear program is applied. For NP-hard op-

timization problems, any linear relaxation of polynomial size (and any polynomial time

solvable relaxation) is bound to have an integrality gap (unless P = NP). So the quality

of the underlying relaxation 
an have a de
isive impa
t on the performan
e of the overall

algorithm. As a 
onsequen
e, methods for generating tight lower bounds are signi�
ant


ontributions to elaborated algorithms for 
ombinatorial optimization problems, see for

example the long history of resear
h for the Traveling Salesman Problem (TSP) fo
using

on linear programming [2, 3, 13, 14℄.

In this work, we improve the linear programming based te
hniques for the Steiner tree

problem in networks, whi
h is the problem of 
onne
ting a given subset of the verti
es

of a weighted graph at minimum 
ost. It is a 
lassi
al NP-hard problem [11℄ with many

important appli
ations in network design in general and VLSI design in parti
ular. For

ba
kground information on this problem, see [5, 10℄.

For the Steiner problem, linear programming approa
hes are parti
ularly important,

sin
e the best known pra
ti
al algorithms for optimal solutions, for heuristi
 Steiner trees,

and for prepro
essing te
hniques, whi
h redu
e the size of the problem instan
e without


hanging an optimal solution, all make frequent use of linear programming te
hniques

[16, 17, 18, 19℄. Typi
al situations where linear programming is used are the 
omputation

of lower bounds in the 
ontext of an exa
t algorithm, bound-based redu
tion te
hniques

[16℄, and partitioning-based redu
tion te
hniques [17℄. Espe
ially for large and 
omplex

problem instan
es, very small di�eren
es in the integrality gap 
an 
ause an enormous

additional 
omputational e�ort in the 
ontext of an exa
t algorithm. Therefore, methods

for improving the quality of the lower bounds are very important.

In Se
tion 2, we give some de�nitions, in
luding the dire
ted 
ut relaxation, whi
h is

the basis for many linear programming approa
hes for the Steiner problem. Then, we will

present two approa
hes for improving the lower bound provided by this relaxation:

� In Se
tion 3, we introdu
e the \vertex splitting" te
hnique: We identify lo
ations in

the network that 
ontribute to the integrality gap and split up the de
isive verti
es

in these lo
ations. Thereby, we transform the problem instan
e into one that is

equivalent with respe
t to the integral solution, but the solution of the relaxation

may improve.

This idea is inspired by the 
olumn repla
ement te
hniques that were introdu
ed

by Balas and Padberg [4℄ and generalized by Haus et. al. [9℄ and Gentile et. al.

[8℄. In these and other papers a general te
hnique for solving integer programs is

developed. However, these te
hniques are mainly viewed as primal algorithms, and

extensions for 
ombinatorial optimization problems are presented for the Stable Set

problem only. Furthermore, these extensions are not yet part of a pra
ti
al algorithm

(the general integer programming te
hniques have been applied su

essfully). Thus,
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we are the �rst to apply this basi
 idea in a pra
ti
al algorithm for a 
on
rete


ombinatorial optimization problem.

� In Se
tion 4, we show how to adopt the \lo
al 
uts" approa
h, introdu
ed by Apple-

gate, Bixby, Chv�atal, and Cook [3℄ in the 
ontext of the TSP: Additional 
onstraints

are generated using proje
tion, lifting and optimal solutions of subinstan
es of the

problem. To apply this approa
h to the Steiner problem, we develop new shrinking

operations and separation te
hniques.

In Se
tion 5, we embed these two approa
hes into our su

essful algorithm for solving

Steiner tree problems and present some experimental results. Like many other elaborated

optimization pa
kages our program 
onsists of many parts (the sour
e 
ode has approxi-

mately 30000 instru
tions, not in
luding the LP-solver 
ode). Thus, this paper des
ribes

only a small part of the whole program. However, among other results, we will show

that this part is de
isive for the solution of the problem instan
e d15112, whi
h is to our

knowledge the largest ben
hmark Steiner tree instan
e ever solved. Furthermore, we be-

lieve that these new te
hniques are also interesting for other 
ombinatorial optimization

problems.

The other parts of the program pa
kage are des
ribed in a series of papers [16, 17, 18,

19℄. Note that there is no overlapping between these papers and the work presented here.

2 De�nitions

The Steiner problem in networks 
an be stated as follows (see [10℄ for details): Given an

(undire
ted, 
onne
ted) network G = (V;E; 
) (with verti
es V = fv

1

; : : : ; v

n

g, edges E

and edge weights 


e

> 0 for all e 2 E) and a set R; ; 6= R � V , of required verti
es (or

terminals), �nd a minimum weight tree in G that spans R (a Steiner minimal tree). If

we want to stress that v

i

is a terminal, we will write z

i

instead of v

i

. We also look at a

reformulation of this problem using the (bi-)dire
ted version of the graph, be
ause it yields

stronger relaxations: Given G = (V;E; 
) and R, �nd a minimum weight arbores
en
e in

~

G = (V;A; 
) (A := f[v

i

; v

j

℄; [v

j

; v

i

℄ j (v

i

; v

j

) 2 Eg, 
 de�ned a

ordingly) with a terminal

(say z

1

) as the root that spans R

z

1

:= R n fz

1

g.

A 
ut in

~

G = (V;A; 
) (or in G = (V;E; 
)) is de�ned as a partition C = fW;Wg of

V (; � W � V ;V = W

_

[W ). We use Æ

�

(W ) to denote the set of ar
s [v

i

; v

j

℄ 2 A with

v

i

2 W and v

j

2 W . For simpli
ity, we write Æ

�

(v

i

) instead of Æ

�

(fv

i

g). The sets Æ

+

(W )

and, for the undire
ted version, Æ(W ) are de�ned similarly.

In the integer programming formulations we use (binary) variables x

[v

i

;v

j

℄

for ea
h ar


[v

i

; v

j

℄ 2 A, indi
ating whether this ar
 is in the solution (x

[v

i

;v

j

℄

= 1) or not (x

[v

i

;v

j

℄

= 0).

For any B � A, x(B) is short for

P

a2B

x

a

.

For every integer program P , LP denotes the linear relaxation of P , and v(LP ) denotes

the value of an optimal solution for LP .

Other de�nitions 
an be found in [7, 10℄.
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2.1 The Dire
ted Cut Formulation

The dire
ted 
ut formulation P

C

was stated in [24℄. An undire
ted version was already

introdu
ed in [1℄, but the dire
ted variant yields a stronger relaxation.


 � x ! min;

x(Æ

�

(W )) � 1 (z

1

62 W;R \W 6= ;); (1)

x 2 f0; 1g

jAj

: (2)

The 
onstraints (1) are 
alled Steiner 
ut 
onstraints. They guarantee that in any ar
 set


orresponding to a feasible solution, there is a path from z

1

to any other terminal.

There is a group of 
onstraints (see for example [12℄) that 
an make LP

C

stronger.

We 
all them 
ow-balan
e 
onstraints:

x(Æ

�

(v

i

)) � x(Æ

+

(v

i

)) (v

i

2 V nR): (3)

We denote the linear program that 
onsists of LP

C

and (3) by LP

C+FB

. In [15℄ we

gave a 
omprehensive overview on relaxations for the Steiner tree problem.

3 Graph Transformation: Vertex Splitting

In this se
tion, we des
ribe a new te
hnique for e�e
tively improving the lower bound


orresponding to the dire
ted 
ut relaxation by manipulating the underlying network.
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Figure 1: Splitting of vertex v

j

. The �lled 
ir
les are terminals, z

1

is the root, all ar
s have


ost 1. An optimal Steiner arbores
en
e has value 6 in ea
h network. In the left network

v(LP

C+FB

) is 5.5 (set the x-values of the dashed ar
s to 0.5 and of [v

j

; z

4

℄ to 1), but 6 in

the right network (again, set the x-values of the dashed ar
s and of [v

a

j

; z

4

℄ and [v

b

j

; z

4

℄ to

0.5). The di�eren
e is that in the left network, there is a situation that is 
alled \rejoining

of 
ows": Flows from z

1

to z

2

and from z

1

to z

3

enter v

j

on di�erent ar
s, but leave on

the same ar
, so they are a

ounted in the x variables only on
e. Before splitting, the

x-value 
orresponding to the ar
 [v

j

; v




℄ is 0.5, after splitting the 
orresponding x-values

sum up to 1.

We use the property that in an optimal dire
ted Steiner tree, ea
h vertex has in-degree

at most 1. Impli
itly, we realize a 
ase distin
tion: If an ar
 [v

i

; v

j

℄ is in an optimal Steiner
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tree, we know that other ar
s in Æ

�

(v

j

) 
annot be in the tree. The only ne
essary operation

to realize this 
ase distin
tion for the Steiner problem is the splitting of a vertex. A vertex

v

j

is repla
ed by several verti
es v

i

j

, one for ea
h ar
 [v

i

; v

j

℄ entering v

j

. Ea
h new vertex

v

i

j

has only one in
oming ar
 [v

i

; v

i

j

℄, and essentially the same outgoing ar
s as v

j

. In

Figure 1, the splitting of vertex v

j

is depi
ted. The explanation of the �gure also provides

some intuition how splitting 
an be useful. In Se
tion 3.3 we des
ribe how we identify


andidates for splitting.

The splitting operation is des
ribed formally by the pseudo
ode below. We maintain

an array orig that points for ea
h vertex in the transformed network to the vertex in

the original network that it derives from. Initially, orig[v

j

℄ = v

j

for all v

j

2 V . With

P (v

i

) we denote the longest 
ommon suÆx of all paths from z

1

to v

i

after every path is

translated ba
k to the original network. The intuition behind this de�nition is that if v

i

is in an optimal Steiner arbores
en
e, P (v

i

) must also be in the arbores
en
e after it is

translated into the original network. Note that the path P (v

i

) 
onsists of verti
es in the

original network and may 
ontain 
y
les; in this 
ase, v

i


annot be part of an optimal

arbores
en
e. In Figure 1, P (v

a

) 
onsists of v

a

and P (v

a

j

) is the path of length 1 from v

a

to v

j

. To 
ompute P (v

i

), one 
an reverse all ar
s and use breadth-�rst-sear
h. The main

purpose of using P (v

i

) is to avoid inserting unne
essary ar
s. This 
an improve the value

of and the 
omputation times for the lower bound. It is also ne
essary for the proof of

termination in Se
tion 3.2.

For the ease of presentation, we assume that the root terminal z

1

has no in
oming

ar
s, and that all other terminals have no outgoing ar
s. If this is not the 
ase, we simply

add 
opies of the terminals and 
onne
t them with appropriate zero 
ost ar
s to the old

terminals.

SPLIT-VERTEX(G; v

j

;orig) : (assuming v

j

62 R)

1 forall [v

i

; v

j

℄ 2 Æ

�

(v

j

) :

2 if P (v

i

) 
ontains a 
y
le or orig [v

j

℄ in P (v

i

) :

3 
ontinue with next ar
 in Æ

�

(v

j

)

4 insert a new vertex v

i

j

into G, orig[v

i

j

℄ := orig [v

j

℄

5 insert an ar
 [v

i

; v

i

j

℄ with 
ost 
(v

i

; v

j

) into G

6 forall [v

j

; v

k

℄ 2 Æ

+

(v

j

) :

7 if orig[v

k

℄ not in P (v

i

) :

8 insert an ar
 [v

i

j

; v

k

℄ with 
ost 
(v

j

; v

k

) into G

9 delete v

j

10 delete all verti
es that are not rea
hable from z

1

3.1 Corre
tness

In this se
tion, we prove that the transformation is valid, i.e., it does not 
hange the value

of an optimal Steiner arbores
en
e.

Lemma 1 Any optimal Steiner arbores
en
e with root z

1

in the original network 
an be

transformed into a feasible Steiner arbores
en
e with root z

1

in the transformed network

with the same 
ost and vi
e versa.
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Proof We 
onsider one splitting operation on vertex v

j

2 V nR, transforming a network

G into G

0

. Repeating the argumentation extends the result to multiple splits. We use a


ondition (y) for a tree T denoting that for every v

k

; v

l

in T; it holds: orig[v

k

℄ = orig [v

l

℄,

v

k

= v

l

. Note that 
ondition (y) holds for an optimal Steiner arbores
en
e in the original

network.

Let T be an optimal Steiner arbores
en
e with root z

1

for G satisfying (y). If v

j

62 T ,

T is part of G

0

and we are done. If v

j

2 T , there is exa
tly one ar
 [v

i

; v

j

℄ 2 T . When

[v

i

; v

j

℄ is 
onsidered in the splitting, P (v

i

) is a subpath of the path from z

1

to v

i

in T after

it is translated to the original network. Together with (y) follows that neither orig [v

j

℄,

nor orig[v

k

℄ for any [v

j

; v

k

℄ 2 T is in P (v

i

). Therefore, all ar
s [v

j

; v

k

℄ 2 T 
an be repla
ed

by ar
s [v

i

j

; v

k

℄ and the ar
 [v

i

; v

j

℄ 
an be repla
ed by [v

i

; v

i

j

℄. The transformed T is part

of G

0

, 
onne
ts all terminals, has the same 
ost as T and satis�es 
ondition (y).

Now, let T

0

be an optimal Steiner arbores
en
e for G

0

. Obviously, T

0


an be trans-

formed into a feasible solution T with no higher 
ost for G.

3.2 Termination

In this se
tion, we show that iterating the splitting operation will terminate.

Lemma 2 For all non-terminals v

j

, P (v

j

) is the 
ommon suÆx of all paths P (v

i

) ap-

pended by orig[v

j

℄ for all v

i

; [v

i

; v

j

℄ 2 Æ

�

(v

j

).

Proof As the Line 10 of SPLIT-VERTEX guarantees that there is always a path from

z

1

to v

j

, the 
laim follows dire
tly from the de�nition of P (v

j

).

Lemma 3 For any two non-terminals v

s

and v

t

; v

s

6= v

t

; P (v

s

) is not a suÆx of P (v

t

).

Proof Assume the lemma is not true. We 
hoose two verti
es v

s

and v

t

; v

s

6= v

t

; P (v

s

) is

a suÆx of P (v

t

) su
h that the length of P (v

s

) is minimal. Obviously, orig [v

s

℄ = orig[v

t

℄.

Thus, v

s

and v

t

were inserted in some splits. After these splits, v

s

and v

t

have in-degree

1. Only splitting a vertex v

0

s

with [v

0

s

; v

s

℄ 2 Æ

�

(v

s

) 
an in
rease the in-degree of v

s

, but

orig[v

0

s

℄ is the same for all [v

0

s

; v

s

℄ 2 Æ

�

(v

s

). Together with Lemma 2 for P (v

s

) follows that

P (v

s

) 
ontains at least two verti
es. As it is a suÆx of P (v

t

), this also holds for P (v

t

).

For any two verti
es v

0

s

; v

0

t

with [v

0

s

; v

s

℄ 2 Æ

�

(v

s

) and [v

0

t

; v

t

℄ 2 Æ

�

(v

t

) it holds that v

0

s

6= v

0

t

,

P (v

0

s

) is a suÆx of P (v

0

t

) and it is shorter than P (v

s

), a 
ontradi
tion.

Lemma 4 After splitting a vertex v

j

with in-degree greater than 1, for any newly inserted

vertex v

i

j

it holds that P (v

i

j

) is longer than P (v

j

) was before the split.

Proof Assume that there is a newly inserted vertex v

a

j

su
h that P (v

a

j

) is not longer

than P (v

j

). From Lemma 2 for P (v

a

j

) and P (v

j

) follows that P (v

a

j

) = P (v

a

) appended

by orig[v

j

℄ and that P (v

j

) is a suÆx of P (v

a

j

). Together with the assumption follows

P (v

j

) = P (v

a

j

). As v

j

had in-degree greater than 1 before the split, we know that there

was a vertex v

b

; v

b

6= v

a

; [v

b

; v

j

℄ 2 Æ

�

(v

j

). From Lemma 3 follows that P (v

a

) was not

a suÆx of P (v

b

). Thus, the 
ommon suÆx of P (v

a

) and P (v

b

) did not 
ontain P (v

a

).

Using Lemma 2 for P (v

j

), it follows that P (v

j

) did not 
ontain P (v

a

), a 
ontradi
tion to

P (v

j

) = P (v

a

j

).

5



Lemma 5 Repeated splitting of verti
es with in-degree greater than 1 will stop with a

network in whi
h all non-terminals have in-degree 1. As a 
onsequen
e, there is exa
tly

one path from z

1

to v

i

for all non-terminals v

i

.

Proof As long as there is a non-terminal with in-degree greater than 1, we 
an split it,

whi
h will delete the vertex and possibly repla
e it by some verti
es with in-degree 1. We

only have to show that this pro
edure terminates, as a split may in
rease the in-degree

of other verti
es.

If splitting a vertex v

j

deletes it without inserting any new vertex, we label v

j

as

invalid.

Now, we examine the 
hanges in the network as an arbitrary vertex v

j

with in-degree

greater than 1 is split. Let v

m

be any non-terminal after the split that was not newly

inserted. From the de�nition of P (v

m

) follows that P (v

m

) 
an only 
hange if some vertex

or ar
 is not inserted be
ause of the 
onditions in lines 2 and 7 of SPLIT-VERTEX and

some paths from z

1

to v

m

do not exist any longer. Sin
e there is sill a path from z

1

to

v

m

left, P (v

m

) 
an only be
ome longer, it may even visit some vertex twi
e (i.e., P (v

m

)


ontains a 
y
le). In the latter 
ase, v

m

be
omes invalid.

From Lemma 1 follows that a transformed optimal tree will always be 
ontained in

the 
urrent network, thus after at most jV j splits, there will be a split of a valid vertex. If

a split is performed on a valid vertex v

j

, at least one new vertex v

i

j

will be inserted. From

Lemma 4 follows that P (v

i

j

) is longer than P (v

j

) was before the split. But as P (v

i

j

) does

not 
ontain a 
y
le (Line 2 of SPLIT-VERTEX ), its length is bounded by the number of

verti
es in the original network. Thus, the pro
edure terminates.

3.3 Implementation Issues

Of 
ourse, for a pra
ti
al appli
ation one does not want to split all verti
es, whi
h 
ould

blow up the network exponentially. In a 
utting plane algorithm one �rst adds violated

Steiner 
ut or 
ow-balan
e 
onstraints. They 
an be found by min-
ut 
omputations

[16℄, respe
tively with a summation of the in
oming and outgoing ar
s variables of non-

terminals. If no su
h 
onstraint 
an be found, we sear
h for good 
andidates for the

splitting pro
edure, i.e., verti
es where more than one in
oming ar
 and at least one

outgoing ar
 have an x-value greater than zero. After splitting these verti
es, the modi�ed

network will be used for the 
omputation of new 
onstraints, using the same algorithms

as before. To represent this transformation in the linear program, we add new variables

for the newly added ar
s, and additional 
onstraints that the x-values for all newly added

ar
s 
orresponding to an original ar
 [v

i

; v

j

℄ must sum up to x

[v

i

;v

j

℄

. Using this pro
edure

the 
onstraints 
al
ulated for the original network 
an still be used.

4 Proje
t, Separate, and Lift: Lo
al Cuts

Let S = (G;R) = (V;E; 
; R) be an instan
e of the Steiner problem. Let ST (S) be

the set of all in
iden
e ve
tors of Steiner trees of S and SG(S) = ST (S) + R

jEj

+

. We


all the elements of SG(S) the Steiner graphs of S. We 
onsider Steiner graphs, sin
e

Steiner graphs are invariant under the shrink operation (de�ned in Se
tion 4.1). Note that

6



l

1

l

2

Figure 2: The feasible integer solutions are marked as dots, the fra
tional solution to

separate by the 
ross. If we proje
t the solutions to the line l

1

, we 
an obtain a valid

violated inequality and lift it ba
k to the original spa
e. If we proje
t to the line l

2

, the

fra
tional solution falls into the 
onvex hull of the integer solutions and no su
h inequality


an be found.

the values x

(v

i

;v

j

)

are not restri
ted to be integral or bounded. It is obvious that if the

obje
tive fun
tion is non-negative, there exists a minimum Steiner graph that is a Steiner

tree. Thus all verti
es of the polyhedron 
onv(SG(S)) are Steiner trees. Furthermore,


onv(SG(S)) is full dimensional if G is 
onne
ted.

From a high level view, lo
al 
uts 
an be des
ribed as follows. Assume we want to sep-

arate x

�

from 
onv(SG(S)). Using a linear mapping �, we proje
t the given point x

�

into

a small-dimensional ve
tor �(x

�

) and solve the separation problem over 
onv(�(SG(S))).

If we 
an �nd a violated inequality a � ~x � b that separates �(x

�

) from 
onv(�(SG(S))), we

know that the linear inequality a � �(x) � b separates x

�

from 
onv(SG(S)). The method

is illustrated in Figure 2.

To make this method work, we have to 
hoose � su
h that

1. there is a good 
han
e that �(x

�

) =2 
onv(�(SG(S))) if x

�

=2 
onv(SG(S)),

2. we 
an solve the separation problem over 
onv(�(SG(S))) eÆ
iently and

3. the inequalities a � �(x) � b are strong.

We 
hoose � in su
h a way that for every solution x 2 SG(S) of our Steiner problem

instan
e S, the proje
ted �(x) is a Steiner graph of a small Steiner problem instan
e S

�

,

i.e., 
onv(�(SG(S))) = 
onv(SG(S

�

)) for an instan
e S

�

of the Steiner problem. Sin
e our

Steiner tree program pa
kage tends to be very eÆ
ient for solving small Steiner problem

instan
es, we 
an handle the separation problem, as we will see in Se
tion 4.2.

We use iterative shrinking to obtain the linear mappings. We review the well-known


on
ept of shrinking in the next se
tion. After that, we introdu
e our separation algorithm

for small Steiner graph instan
es. So far, we always assumed that we are looking at the

undire
ted version of the Steiner problem, sin
e our separation algorithm is mu
h faster

for this variant. As seen above, the dire
ted 
ut relaxation is stronger than the undire
ted

variant. In Se
tion 4.3, we dis
uss how we 
an use the dire
ted formulation without solving

dire
ted Steiner graph instan
es in the separation algorithm.
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4.1 Shrinking

We de�ne our linear mappings as an iterative appli
ation of the following simple, well-

known mapping, 
alled shrinking. For the Steiner problem, shrinking was indrodu
ed by

Chopra and Rao [6℄.

Shrinking means to repla
e two verti
es v

a

and v

b

by a new vertex hv

a

; v

b

i and repla
e

edges (v

i

; v

a

) and (v

i

; v

b

) by an edge (v

i

; hv

a

; v

b

i) with value x

�

(v

i

;v

a

)

+ x

�

(v

i

;v

b

)

(We assume

x

�

(v

i

;v

j

)

= 0 if (v

i

; v

j

) =2 E). The new vertex hv

a

; v

b

i is in the set of terminals R if v

a

or

v

b

(or both) are in R. This informally de�nes the mapping � and the instan
e S

�

. Note

that for any in
iden
e ve
tor of a Steiner graph for the original problem, the new ve
tor

is the in
iden
e ve
tor of a Steiner graph in the redu
ed problem. Furthermore, for every

Steiner graph ~x in S

�

there is a Steiner graph x 2 SG(S) su
h that �(x) = ~x. Thus


onv(�(SG(S))) = 
onv(SG(S

�

)).

Note that if we iteratively shrink a set of verti
es W � V into one vertex hW i, the

obtained linear mapping is independent of the order in whi
h we apply the shrinks. We

denote the unique linear mapping whi
h shrinks a subset W � V into one vertex by �

W

:

We have developed 
onditions on x

�

under whi
h we 
an prove that �(x

�

) is not in

the 
onvex hull of SG(S

�

) if x

�

is not in the 
onvex hull of SG(S).

Lemma 6 Let x

�

� 0.

1. (edge of value 1): Let x

�

(v

a

;v

b

)

� 1 and W = fv

a

; v

b

g. x

�

2 
onv(SG(S)), �

W

(x

�

) 2


onv(SG(S

�

W

)).

2. (non-terminal of degree 2): Let v

a

be in V n R and the verti
es (v

1

; : : : v

k

) in V

be ordered a

ording to their x

�

(�;v

a

)

value (in de
reasing order). Furthermore, let

W = fv

a

; v

1

g. If x

�

(v

3

;v

a

)

= 0, then x

�

2 
onv(SG(S)), �

W

(x

�

) 2 
onv(SG(S

�

W

)).

3. (
ut of value 1): Let W be su
h that x

�

(Æ(W )) = 1 and ; 6= R \W 6= R. Let W =

V nW . x

�

2 
onv(SG(S)), �

W

(x

�

) 2 
onv(SG(S

�

W

))^�

W

(x

�

) 2 
onv(SG(S

�

W

)).

4. (bi
onne
ted 
omponents): Let U;W � V and v

a

2 V be su
h that U [W = V ,

U \W = fv

a

g and x

�

(v

k

;v

l

)

= 0 for all v

k

2 U nfv

a

g and v

l

2 W nfv

a

g. Furthermore,

let ; 6= R \W 6= R. x

�

2 
onv(SG(S)) , �

U

(x

�

) 2 
onv(SG(S

�

U

)) ^ �

W

(x

�

) 2


onv(SG(S

�

W

)).

5. (tri
onne
ted 
omponents): Let U;W � V and v

a

; v

b

2 V be su
h that U [W =

V n fv

a

g, U \W = fv

b

g and x

�

(v

k

;v

l

)

= 0 for all v

k

2 U n fv

b

g and v

l

2 W n fv

b

g.

Let furthermore x

�

(Æ(v

a

)) = 1 and v

a

; v

b

2 R. x

�

2 
onv(SG(S)) , �

U

(x

�

) 2


onv(SG(S

�

U

)) ^ �

W

(x

�

) 2 
onv(SG(S

�

W

)).

Proof We already argued that if x

�

2 
onv(SG(S)) then �(x

�

) 2 
onv(SG(S

�

)) for every

linear mapping obtained by iterative shrinking independent of x

�

. Thus we only have to

show the reverse dire
tion of the 
laims, i.e., if �(x

�

) 2 
onv(SG(S

�

)) (for the last three


laims, if both proje
tions are in the 
onvex hull) then x

�

2 
onv(SG(S)).

It suÆ
es to prove the 
laims for the 
ase that x

�

is rational.
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1. We 
an �nd a large integer N and, for 1 � i � N , in
iden
e ve
tors of Steiner trees

~

t

i

in S

�

W

su
h that N�

W

(x

�

) �

P

1�i�N

~

t

i

.

The idea is as follows: We will 
reate Steiner trees t

i;j

out of

~

t

i

by in
luding the edge

(v

a

; v

b

) in every tree and for every edge (v

k

; hW i) in

~

t

i

we use either the edge (v

k

; v

a

)

or (v

k

; v

b

). The number of Steiner trees in whi
h we use a spe
i�
 edge (v

k

; v

a

) or

(v

k

; v

b

) is determined by the ratio between x

�

(v

k

;v

a

)

and x

�

(v

k

;v

b

)

.

Let M be a large integer su
h that Mx

�

(v

k

;v

l

)

=�

W

(x

�

)

(v

k

;hW i)

is integral for every

v

k

2 V nW and v

l

2 W . We know that �

W

(x

�

)

(hW i;v

k

)

= x

�

(v

a

;v

k

)

+ x

�

(v

b

;v

k

)

for all

v

k

2 V nW . For every

~

t

i

and 1 � j �M we de�ne t

i;j

with

� t

i;j

(v

a

;v

b

)

= 1,

� t

i;j

(v

k

;v

l

)

=

~

t

i

(v

k

;v

l

)

for v

k

; v

l

2 V n fv

a

; v

b

g,

� for v

k

2 V n fv

a

; v

b

g we make a 
ase distin
tion:

If j �Mx

�

(v

a

;v

k

)

=�

W

(x

�

)

(hW i;v

k

)

: t

i;j

(v

a

;v

k

)

=

~

t

i

(hW i;v

k

)

; t

i;j

(v

b

;v

k

)

= 0,

otherwise: t

i;j

(v

a

;v

k

)

= 0; t

i;j

(v

b

;v

k

)

=

~

t

i

(hW i;v

k

)

:

As t

i;j

(v

a

;v

k

)

+ t

i;j

(v

b

;v

k

)

=

~

t

i

(hW i;v

k

)

, it 
an be veri�ed that NMx

�

�

P

1�i�N

P

1�j�M

t

i;j

.

It also follows that if

~

t

i


ontained a path from a vertex v

k

to v

hW i

, ea
h t

i;j


ontains

a path from v

k

to v

a

and to v

b

. As a 
onsequen
e, ea
h pair of terminals is 
onne
ted

in t

i;j

.

2. We 
an �nd a large integer N and, for 1 � i � N , in
iden
e ve
tors of Steiner trees

~

t

i

in S

�

W

; su
h that N�

W

(x

�

) �

P

1�i�N

~

t

i

.

The idea is as follows: We only need to 
onsider the 
ase that hW i is used in a tree

~

t

i

. Sin
e there are at most two edges with positive x

�

-values adja
ent to v

a

, we 
an

repla
e all edges in the tree

~

t

i

adja
ent to hW i (ex
ept (v

2

; hW i)) by edges adja
ent

to v

1

. Further, we have to take 
are of the edge (v

2

; hW i), if it is in

~

t

i

. In this


ase, we 
reate trees t

i;j

using either the edge (v

2

; v

1

) or the two edges (v

2

; v

a

) and

(v

a

; v

1

). Again the number of trees in whi
h we use the two alternatives is given by

the ratio of x

�

(v

2

;v

1

)

and x

�

(v

2

;v

a

)

.

Let M be a large integer su
h that Mx

�

(v

2

;v

l

)

=�

W

(x

�

)

(v

2

;hW i)

is integral for v

l

2

fv

1

; v

a

g. For every

~

t

i

and 1 � j �M we de�ne t

i;j

with

� t

i;j

(v

k

;v

l

)

=

~

t

i

(v

k

;v

l

)

for every v

k

; v

l

2 V n fv

a

; v

1

g,

� t

i;j

(v

k

;v

1

)

=

~

t

i

(v

k

;hW i)

for v

k

2 V n fv

2

g,

� t

i;j

(v

k

;v

a

)

= 0 for v

k

2 V n fv

2

g,

� If j �Mx

�

(v

1

;v

2

)

=�

W

(x

�

)

(hW i;v

2

)

: t

i;j

(v

2

;v

1

)

=

~

t

i

(v

2

;hW i)

, t

i;j

(v

2

;v

a

)

= 0,

otherwise: t

i;j

(v

2

;v

1

)

= 0, t

i;j

(v

2

;v

a

)

=

~

t

i

(v

2

;hW i)

,

� t

i;j

(v

a

;v

1

)

= t

i;j

(v

2

;v

a

)

.
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As x

�

(v

a

;v

1

)

� x

�

(v

a

;v

2

)

, it 
an be veri�ed that NMx

�

�

P

1�i�N

P

1�j�M

t

i;j

.

If there is an edge (v

k

; hW i) in

~

t

i

, then in ea
h t

i;j

there is either the edge (v

k

; v

1

)

or (in the 
ase that k = 2 and j is large enough) the two edges (v

k

; v

a

) and (v

1

; v

a

).

Thus t

i;j

is a Steiner tree.

3. We 
an �nd a large integer N and, for 1 � i � N , Steiner trees t

i

in S

�

W

and

Steiner trees

�

t

i

in S

�

W

su
h that N�

W

(x

�

) �

P

1�i�N

t

i

and N�

W

(x

�

) �

P

1�i�N

�

t

i

.

Sin
e x

�

(Æ(W )) = 1, it follows that in ea
h tree t

i

there is exa
tly one edge in

Æ(hW i) and in ea
h tree

�

t

i

there is exa
tly one edge in Æ(hW i). For ea
h edge

(v

k

; hW i); v

k

2 W , there are N�

W

(x

�

)

(v

k

;hW i)

trees t

i


ontaining this edge. We

assign ea
h su
h tree t

i

to one edge (v

k

; v

l

); v

l

2 W su
h that there are Nx

�

(v

k

;v

l

)

trees

assigned to this edge. This is possible be
ause �

W

(x

�

)

(v

k

;hW i)

=

P

v

l

2W

x

�

(v

k

;v

l

)

. We

do the same for all trees

�

t

i

. Now, we join the trees t

a

nf(v

k

; hW i)g and

�

t

b

nf(v

l

; hW i)g

by an edge (v

k

; v

l

) to a new tree

^

t

i

if they are assigned to this edge.

It 
an be veri�ed that Nx

�

�

P

1�i�N

^

t

i

.

It remains to show that there is a path between ea
h pair of terminals z

1

; z

2

in ea
h

tree

^

t

i

, originating from t

a

and

�

t

b

, both assigned to an edge (v

k

; v

l

). If z

1

; z

2

2 W ,

they were 
onne
ted in t

a

and as t

a


ontained only one edge (v

k

; hW i), they are still


onne
ted in

^

t

i

. The 
ase z

1

; z

2

2 W is similar. For z

1

2 W; z

2

2 W , we 
an use the

path between z

1

and hW i in t

a

, the edge (v

k

; v

l

) and the path between hW i and z

2

in

�

t

b

.

4. We 
an �nd a large integer N and, for 1 � i � N , Steiner trees t

i

in S

�

W

and

Steiner trees s

i

in S

�

U

su
h that N�

W

(x

�

) �

P

1�i�N

t

i

and N�

U

(x

�

) �

P

1�i�N

s

i

.

We join the trees t

i

with hW i repla
ed by v

a

and s

i

with hUi repla
ed by v

a

to a

new tree

^

t

i

.

It 
an be veri�ed that Nx

�

�

P

1�i�N

^

t

i

.

Sin
e

^

t

i


ontains the 
omplete Steiner trees t

i

and s

i

with the respe
tive shrunken

vertex repla
ed by v

a

, we know that

^

t

i

is a Steiner tree.

5. We 
an �nd a large integer N and, for 1 � i � N , Steiner trees t

i

in S

�

W

and

Steiner trees s

i

in S

�

U

su
h that N�

W

(x

�

) �

P

1�i�N

t

i

and N�

U

(x

�

) �

P

1�i�N

s

i

.

Note that �

W

(x

�

)(Æ(v

a

)) = 1 and thus every t

i

has exa
tly one edge adja
ent to

v

a

. Thus there are i

0

= N � N�

W

(x

�

)

(v

a

;hW i)

Steiner trees t

i

that do not use the

edge (v

a

; hW i). Let these be the Steiner trees 1 to i

0

. Analogously there are i

00

=

N �N�

U

(x

�

)

(v

a

;hUi)

Steiner trees s

i

that do not use the edge (v

a

; hUi). Let these be

the Steiner trees i

0

+ 1 to i

0

+ i

00

. First, we repla
e hW i and hUi by v

b

in all t

i

and

s

i

.

For i � i

0

we join t

i

and the subgraph s

i

n f(v

a

; hUi)g to

^

t

i

.

For i

0

< i � i

00

we join the subgraph t

i

n f(v

a

; hW i)g and s

i

to

^

t

i

.

Finally, for i > i

0

+ i

00

we join the subgraph t

i

n f(v

a

; hW i)g, the subgraph s

i

n

f(v

a

; hUi)g, and the edge (v

a

; v

b

) to

^

t

i

.
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As

P

1�i�N

^

t

i

(v

a

;v

b

)

= N(�

W

(x

�

)

(v

a

;hW i)

+�

U

(x

�

)

(v

a

;hUi)

�1) = N(x

�

(Æ(v

a

))+x

�

(v

a

;v

b

)

�

1) = Nx

�

(v

a

;v

b

)

, it 
an be veri�ed that Nx

�

�

P

1�i�N

^

t

i

.

Finally, we show that all

^

t

i

are Steiner trees. If i � i

0

,

^

t

i


ontains the 
omplete Steiner

tree t

i

with hW i repla
ed by v

b

. Thus all terminals in U [fv

a

g are 
onne
ted. Sin
e

s

i


ontains (v

a

; hUi) and two subtrees 
onne
ting ea
h terminal inW nfv

b

g either to

v

a

or to v

b

and sin
e v

a

and v

b

are 
onne
ted in t

i

, we know that

^

t

i

is a Steiner tree.

A similar argument holds for i

0

< i � i

0

+ i

00

. For i > i

0

+ i

00

, we know that v

a

and

v

b

are 
onne
ted dire
tly by the edge (v

a

; v

b

) and every other terminal is 
onne
ted

either to v

a

or to v

b

. Thus

^

t

i

is a Steiner tree.

Applying these \exa
t" shrinks does not proje
t the solution of the 
urrent linear

program into the proje
ted 
onvex hull of all integer solutions, i.e., if the solution of

the 
urrent linear program has not rea
hed the value of the integer optimum, we 
an

�nd a valid, violated 
onstraint in the shrunken graphs. Unfortunately, in many 
ases

the graphs are still too large after applying these shrinks and we have to apply some

\heuristi
" shrinks afterwards.

In the implementation, we use a parameter max-
omponent-size, whi
h is initially

15. If the number of verti
es in a graph after applying all \exa
t" shrinks is not higher

than max-
omponent-size, we start FIND-FACET (see Se
tion 4.2), otherwise, we start

a breadth-�rst-sear
h from di�erent starting positions, shrink everything ex
ept the �rst

max-
omponent-size verti
es visited by the BFS, try the \exa
t" shrinks again and start

FIND-FACET. If it turns out that we 
ould not �nd a valid, violated 
onstraint, we

in
rease max-
omponent-size. We also tried other \heuristi
" shrinks by relaxing \exa
t"

shrinks, e.g., a

epting minimum Steiner 
uts with value above 1, or edges that have an

x-value 
lose to 1. But we 
ould not 
ome up with a de�nitive 
on
lusion whi
h shrinks

are best, and we believe that there is still room for improvement.

As we will see in the next se
tion, our separation algorithm �nds a fa
et of 
onv(SG(S

�

)).

As shown in Theorem 4.1 of [6℄, the lifted inequality is then a fa
et of 
onv(SG(S)).

4.2 Separation: Finding Fa
ets

Assume we want to separate x

�

from 
onv(SG(S)). Note that we a
tually separate �(x

�

)

from 
onv(SG(S

�

)), but this problem 
an be solved with the same algorithm.

As we will see, the separation problem 
an be formulated as a linear program with a

row for every Steiner graph. Trying to solve this linear program using 
utting planes, we

have the problem that the number of Steiner graphs (
ontrary to the 
ase of Steiner trees)

is in�nite and optimal Steiner graphs need not exist. Note that the same 
ompli
ation

arises when applying lo
al 
uts to the Traveling Salesman Problem.

The solution for the separation problem is mu
h simpler and more elegant for the

Steiner tree 
ase than for the Traveling Salesman 
ase. The key is the following Lemma,

a slight variation of Lemma 3.1.2 in [6℄.

Lemma 7 All fa
ets of 
onv(SG(S)) di�erent from x

(v

a

;v

b

)

� 0 for an edge (v

a

; v

b

) 2 E


an be written in the form a � x � 1 with a � 0.
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Thus, if x

�

=2 
onv(SG(S)), we 
an �nd an inequality of the form a � x � 1, a � 0,

that separates x

�

from 
onv(SG(S)). Note that if a � 0, there is a Steiner tree t 2 SG(S)

minimizing a � t.

Thus an exa
t separation algorithm 
an be stated as follows (the name arises from the

fa
t that the algorithm will �nd a fa
et of 
onv(SG(S)), as we will see later).

FIND-FACET (G = (V;E); R; x

�

)

1 T := in
iden
e ve
tor of a Steiner tree for G;R

2 repeat:

3 solve LP: minx

�

� �; T� � 1; � � 0 (basi
 solution)

4 if x

�

� � � 1 : return \x

�

2 
onv(SG(S))"

5 �nd minimum Steiner tree t for G = (V;E; �); R

6 if t � � < 1 : add t as a new row to matrix T

7 else: return � � x � 1

The algorithm terminates, sin
e there are only a �nite number of Steiner trees in

ST (S) and as soon as the minimum Steiner tree t 
omputed in Line 5 is already in T , we

terminate be
ause � � t � 1 is an inequality of the linear program solved in Line 3.

Lemma 8 If FIND-FACET does not return an inequality, x

�

2 
onv(SG(S)).

Proof Consider the dual of the linear program in Line 3: max

P

i

�

i

; T

T

� � x

�

, whi
h has

the optimal value x

�

� � � 1. We divide � by x

�

� �, with the 
onsequen
e that

P

i

�

i

= 1.

Now, T

T

� is a 
onvex 
ombination of Steiner trees and it still holds T

T

� � x

�

.

Lemma 9 If FIND-FACET returns an inequality � � x � 1, this inequality is a valid,

separating, and fa
et-de�ning inequality.

Proof The value of the last 
omputed minimum Steiner tree t is t � � � 1. Therefore, if

x 2 SG(S), the value 
an only be greater and it holds x � � � t � � � 1.

As x

�

� � < 1, the inequality is separating.

From the basi
 solution of the linear program, we 
an extra
t jEj linearly independent

rows that are satis�ed with equality. For ea
h su
h row of the form � � t � 1, we add

the tree t to a set S

�

and for ea
h row �

e

� 0, we add the edge e to a set S

�

. Note

that jS

�

j + jS

�

j = jEj and the in
iden
e ve
tors 
orresponding to S

�

[ S

�

are linearly

independent.

There is at least one tree t

j

in S

�

. For ea
h edge e 2 S

�

we add to S

�

a new Steiner

graph t

k

that 
onsists of t

j

added by the edge e. Sin
e �

e

= 0 we know that � � t

k

= 1.

Sin
e the in
iden
e ve
tors 
orresponding to S

�

[S

�

were linearly independent, repla
ing

e with the t

k

yields a new set of linearly independent ve
tors.

Repeating this pro
edure yields jEj linearly independent t

i

2 S

�

with � � t

i

= 1. Thus,

� � x � 1 is a fa
et.

As in [3℄, we 
an improve the running time of the algorithm by using the following

fa
t. If we know some valid inequalities a �x � b with a �x

�

= b then x

�

2 
onv(SG(S)),

x

�

2 
onv(SG(S) \ fx 2 R

jEj

j a � x = bg). Thus we 
an temporarily remove all edges

12



(v

i

; v

j

) with x

�

(v

i

;v

j

)

= 0, sin
e x

�

(v

i

;v

j

)

� 0 is a valid inequality. Call the resulting instan
e

S

0

. We use our algorithm to �nd a fa
et of 
onv(SG(S

0

)). We 
an use sequential lifting

to obtain a fa
et of 
onv(SG(S)). For details see [3℄ and Theorem 4.2 of [6℄.

4.3 Dire
ted versus Undire
ted Formulations

For 
omputing the lower bounds, we fo
us on the dire
ted 
ut formulation, be
ause its

relaxation is stronger than the undire
ted variant. However, in the lo
al 
ut separation

algorithm we want to solve undire
ted Steiner graph instan
es, sin
e they 
an be solved

mu
h faster.

The solution is to use another linear mapping that maps ar
-values of a bidire
ted

Steiner graph instan
e

~

S = (V;A; 
; R) to edge-values of an undire
ted Steiner graph

instan
e S = (V;E; 


0

; R).

We de�ne S by E = f(v

i

; v

j

) j [v

i

; v

j

℄ 2 Ag and 


0

(v

i

;v

j

)

= 


[v

i

;v

j

℄

= 


[v

j

;v

i

℄

. For a ve
tor

x 2 R

jAj

we de�ne  (x) 2 R

jEj

by  (x)

(v

i

;v

j

)

= x

[v

i

;v

j

℄

+ x

[v

j

;v

i

℄

.

Lemma 10 x

�

2 
onv(SG(

~

S)))  (x

�

) 2 
onv(SG(S)).

�x 2 
onv(SG(S))) 9x

�

2 
onv(SG(

~

S)) with  (x

�

) = �x.

If 
 � x

�

is smaller than the 
ost of an optimal Steiner arbores
en
e, then  (x

�

) =2


onv(SG(S)).

Proof Let z

1

be the root in the dire
ted formulation. It suÆ
es to prove the 
laims for

the 
ase that x

�

is rational. We show the two 
laims in turn.

If x

�

2 
onv(SG(

~

S)), we 
an �nd a large integer N and dire
ted Steiner trees t

i

2

ST (

~

S) su
h that Nx

�

�

P

1�i�N

t

i

. Clearly N (x

�

) �

P

1�i�N

 (t

i

). Furthermore,  (t

i

)

are Steiner graphs, sin
e ea
h dire
ted path in t

i

from the root z

1

to a terminal z

k

gives

an undire
ted path between z

1

and z

k

in  (t

i

).

If �x 2 
onv(SG(S)), we 
an �nd a large integer N and undire
ted Steiner trees t

i

2

ST (S) su
h that N �x �

P

1�i�N

t

i

. Let

~

t

i

be the dire
ted tree obtained by rooting t

i

at

z

1

. Clearly

~

t

i

is a dire
ted Steiner tree and  (

~

t

i

) = t

i

. Let x

0

= N

�1

P

1�i�N

~

t

i

. We know

that x

0

2 
onv(SG(

~

S)) and  (x

0

) � �x. Thus there exists x

�

� x

0

with x

�

2 
onv(SG(

~

S))

and  (x

�

) = �x.

Note that we have de�ned the obje
tive fun
tion 


0

of the undire
ted Steiner graph

instan
e su
h that 


0

�  (x) = 
 � x for all x 2 R

jAj

. Assume  (x

�

) 2 
onv(SG(S)). We

know that there is x

0

2 
onv(SG(

~

S)) with  (x

0

) =  (x

�

). Thus there is a Steiner tree

t 2 SG(

~

S) with 
 � t � 
 � x

0

= 


0

�  (x

0

) = 


0

�  (x

�

) = 
 � x

�

.

For lifting the undire
ted edges to dire
ted ar
s, one 
an use the 
omputation of

optimal Steiner arbores
en
es. For the a
tual implementation, we used a faster lifting

using a lower bound to the value of an optimal Steiner arbores
en
e, provided by the

fast algorithm DUAL-ASCENT [16, 24℄. For produ
ing fa
ets for the dire
ted Steiner

problem, one 
ould 
ompute optimal Steiner arbores
en
es in the FIND-FACET algorithm

of Se
tion 4.2.
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5 Some Experimental Results

In this se
tion, we present experimental results showing the impa
t of the methods de-

s
ribed before. In this paper we 
on�ne ourselves to the presentation of some highlights,

namely the largest ben
hmark instan
es ever solved (Table 1). Experiments on smaller

instan
es show that vertex splitting 
an also signi�
antly improve the solution time (Ta-

ble 2). Note that in the TSP 
ontext, lo
al 
uts were helpful parti
ularly for the solution

of very large instan
es.

We have 
hosen the approa
h of applying these te
hniques together with the redu
tion

methods [16℄, be
ause this is the way they are a
tually used in our program pa
kage.

Note that without the redu
tions, the impa
t of these te
hniques would be even more

impressive, but then these instan
es 
ould not be handled in reasonable time.

All results were obtained with a single-threaded run on a Sun�re 15000 with 900 MHz

SPARC III+ CPUs, using the operating system SunOS 5.9. We used the GNU g++

2.95.3 
ompiler with the -O4 
ag and the LP-solver CPLEX version 8.0.

Instan
e Orig. Size Red. Red. Size LP

C+FB

+ vertex splitting + lo
al 
uts

jV j jRj time jV j jRj val time val time val time

d15112 51886 15112 5h 22666 7465 1553831.5 20.4h 1553995 21.9h 1553998 21.9h

es10000 27019 10000 988s 4061 1563 716141953.5 251s 716174280 284s |

fnl4461 17127 4461 995s 8483 2682 182330.8 5299s 182361 6353s |

lin37 38418 172 28h 2529 106 99554.5 1810s 99560 1860s |

Table 1: Results on large ben
hmark instan
es. In all 
ases, the lower bound rea
hed the value

of the integer optimum (and a tree with the same value was found). A dash means that the

instan
e was already solved to optimality without lo
al 
uts. For the instan
e d15112, we used

the program pa
kage GeoSteiner-3.1 [23℄ to translate the TSPLIB [20℄ instan
e into an instan
e

of the Steiner problem in networks with re
tilinear metri
. No ben
hmark instan
e of this size

has been solved before. The SteinLib [21℄ instan
es es10000 and fnl4461 were obtained in the

same way. Warme et. al. solved the es10000 instan
e using the MSTH-approa
h [22℄ and

lo
al 
uts. They needed months of 
pu time. The instan
e fnl4461 was the largest previously

unsolved geometri
 instan
e in SteinLib. The SteinLib instan
e lin37 originates from some VLSI-

layout problem, is not geometri
, and was not solved by other authors. Without lower bound

improvement te
hniques, the solution of the instan
es would take mu
h longer (or was not even

possible in 
ase of d15112). The number of vertex splits varied between 8 (lin37), 21 (es10000),

173 (fnl4461) and 321 (d15112). For d15112 only one additional lo
al 
ut 
omputation was

ne
essary.

6 Con
luding Remarks

We presented two theoreti
ally interesting and empiri
ally su

essful approa
hes for im-

proving lower bounds for the Steiner tree problem: vertex splitting and lo
al 
uts. Vertex

splitting is a new te
hnique and improves the lower bounds mu
h faster than the lo
al 
ut

method, but the lo
al 
ut method has the potential of produ
ing tighter bounds. Vertex

splitting, although inspired by a general approa
h (see Se
tion 1), is not dire
tly transfer-

able to other problems, while lo
al 
uts are a more general paradigm. On the other hand,

the appli
ation needs some e�ort, e.g., developing proofs for shrinks and implementation

using exa
t arithmeti
. A 
ru
ial point is the development of heuristi
 shrinks, where a lot
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instan
e LP

C+FB

LP

C+FB

LP

C+FB

+ vertex splitting + lo
al 
uts

es1000fst01 23.8 13.7 21.8

es1000fst02 34.4 33.5 33.5

es1000fst03 9.5 9.5 9.4

es1000fst04 15.1 13.7 15.4

es1000fst05 11.4 11.3 11.3

es1000fst06 41.8 20.2 516.2

es1000fst07 5.7 5.7 5.7

es1000fst08 22.2 17.7 17.5

es1000fst09 17.5 14.5 18.6

es1000fst10 5.5 5.6 5.6

es1000fst11 18.9 18.9 18.6

es1000fst12 23.9 19.0 19.4

es1000fst13 6.5 6.5 6.5

es1000fst14 23.9 16.4 65.9

es1000fst15 13.7 13.9 13.7

Average: 18.3 14.7 51.9

Table 2: Average times for optimal solution of instan
es of the instan
e group ES1000FST,

using our program pa
kage for Steiner trees with di�erent variants of lower bound 
omputation.

For ea
h instan
e and ea
h variant the numbers give the average times of 5 runs. Note that using

lo
al 
uts may slow down the solution, as in some 
ases the bound-based redu
tion te
hniques

solve the instan
e faster using weaker but faster bounds. In the TSP 
ontext lo
al 
uts were

applied su

essfully only on large instan
es with long solution times. Looking at the results

for ea
h instan
e one 
an see that enabling vertex splitting never deteriorates the running time

signi�
antly, but sometimes improves it by 50%. For those instan
es where vertex splitting

had a visible impa
t, there have been 7.6 vertex splits on the average. If lo
al 
uts had a

visible impa
t, on the average 28.5 su

essful and 229.2 unsu

essful FIND-FACET 
alls were

performed. Adding lo
al 
uts to vertex splitting did not 
hange the empiri
al results as in the

relevant 
ases LP

C+FB

+vertex splitting was strong enough to solve the instan
es.

of intuition 
omes into play and we believe that there is room for improvement. Although

the lo
al 
ut method was originally developed for the Traveling Salesman Problem, its

appli
ation is mu
h 
learer for the Steiner tree problem.

Both methods are parti
ularly su

essful if there are some lo
al de�
ien
ies in the

linear programming solution. On 
onstru
ted pathologi
al instan
es the lower bounds are

still improved signi�
antly, but the progress is not fast enough to solve su
h instan
es

eÆ
iently.

Another interesting observation is that the power of the vertex splitting approa
h 
an

be improved by looking at multiple roots simultaneously. In fa
t, we do not know any

instan
e where repeated vertex splittings would not bring the lower bound to the integer

optimum if multiple roots are used. It remains an open problem to �nd out if this is

always the 
ase.
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al reports of the Max-Plan
k-Institut f�ur Informatik. They

are available by anonymous ftp from ftp.mpi-sb.mpg.de under the dire
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of the reports are also a

essible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
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erning ftp or WWW a
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t reports�mpi-sb.mpg.de. Paper 
opies (whi
h

are not ne
essarily free of 
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an be ordered either by regular mail or by e-mail at the address below.

Max-Plan
k-Institut f�ur Informatik

Library

attn. Anja Be
ker

Stuhlsatzenhausweg 85

66123 Saarbr�u
ken

GERMANY

e-mail: library�mpi-sb.mpg.de
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H.P.A. Lens
h, H. Seidel

Tutorial Notes ACM SM 02 A Framework for the

A
quisition, Pro
essing and Intera
tive Display of High

Quality 3D Models
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MPI-I-2002-1-003 I. Katriel, P. Sanders, J.L. Tr� A Pra
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MPI-I-2002-1-002 F. Grandoni In
rementally maintaining the number of l-
liques

MPI-I-2002-1-001 T. Polzin, S. Vahdati Using (sub)graphs of small width for solving the Steiner

problem

MPI-I-2001-4-005 H.P.A. Lens
h, M. Goesele, H. Seidel A Framework for the A
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Intera
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