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Abstract

We present two theoretically interesting and empirically successful techniques
for improving the linear programming approaches, namely graph transfor-
mation and local cuts, in the context of the Steiner problem. We show the
impact of these techniques on the solution of the largest benchmark instances
ever solved.
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1 Introduction

In combinatorial optimization many algorithms are based (explicitly or implicitly) on lin-
ear programming approaches. A typical application of linear programming to optimization
problems works as follows: First, the combinatorial problem is reformulated as an integer
linear program. Then, some integrality constraints are relaxed and one of the numerous
methods for solving (or approximating) a linear program is applied. For NP-hard op-
timization problems, any linear relaxation of polynomial size (and any polynomial time
solvable relaxation) is bound to have an integrality gap (unless P = N'P). So the quality
of the underlying relaxation can have a decisive impact on the performance of the overall
algorithm. As a consequence, methods for generating tight lower bounds are significant
contributions to elaborated algorithms for combinatorial optimization problems, see for
example the long history of research for the Traveling Salesman Problem (TSP) focusing
on linear programming [2, 3, 13, 14].

In this work, we improve the linear programming based techniques for the Steiner tree
problem in networks, which is the problem of connecting a given subset of the vertices
of a weighted graph at minimum cost. It is a classical N'P-hard problem [11] with many
important applications in network design in general and VLSI design in particular. For
background information on this problem, see [5, 10].

For the Steiner problem, linear programming approaches are particularly important,
since the best known practical algorithms for optimal solutions, for heuristic Steiner trees,
and for preprocessing techniques, which reduce the size of the problem instance without
changing an optimal solution, all make frequent use of linear programming techniques
[16, 17, 18, 19]. Typical situations where linear programming is used are the computation
of lower bounds in the context of an exact algorithm, bound-based reduction techniques
[16], and partitioning-based reduction techniques [17]. Especially for large and complex
problem instances, very small differences in the integrality gap can cause an enormous
additional computational effort in the context of an exact algorithm. Therefore, methods
for improving the quality of the lower bounds are very important.

In Section 2, we give some definitions, including the directed cut relaxation, which is
the basis for many linear programming approaches for the Steiner problem. Then, we will
present two approaches for improving the lower bound provided by this relaxation:

e In Section 3, we introduce the “vertex splitting” technique: We identify locations in
the network that contribute to the integrality gap and split up the decisive vertices
in these locations. Thereby, we transform the problem instance into one that is
equivalent with respect to the integral solution, but the solution of the relaxation
may improve.

This idea is inspired by the column replacement techniques that were introduced
by Balas and Padberg [4] and generalized by Haus et. al. [9] and Gentile et. al.
[8]. In these and other papers a general technique for solving integer programs is
developed. However, these techniques are mainly viewed as primal algorithms, and
extensions for combinatorial optimization problems are presented for the Stable Set
problem only. Furthermore, these extensions are not yet part of a practical algorithm
(the general integer programming techniques have been applied successfully). Thus,



we are the first to apply this basic idea in a practical algorithm for a concrete
combinatorial optimization problem.

e In Section 4, we show how to adopt the “local cuts” approach, introduced by Apple-
gate, Bixby, Chvétal, and Cook [3] in the context of the TSP: Additional constraints
are generated using projection, lifting and optimal solutions of subinstances of the
problem. To apply this approach to the Steiner problem, we develop new shrinking
operations and separation techniques.

In Section 5, we embed these two approaches into our successful algorithm for solving
Steiner tree problems and present some experimental results. Like many other elaborated
optimization packages our program consists of many parts (the source code has approxi-
mately 30000 instructions, not including the LP-solver code). Thus, this paper describes
only a small part of the whole program. However, among other results, we will show
that this part is decisive for the solution of the problem instance d15112, which is to our
knowledge the largest benchmark Steiner tree instance ever solved. Furthermore, we be-
lieve that these new techniques are also interesting for other combinatorial optimization
problems.

The other parts of the program package are described in a series of papers [16, 17, 18,
19]. Note that there is no overlapping between these papers and the work presented here.

2 Definitions

The Steiner problem in networks can be stated as follows (see [10] for details): Given an
(undirected, connected) network G = (V, E, ¢) (with vertices V' = {vy,...,v,}, edges F
and edge weights ¢, > 0 for all e € F) and a set R, () # R C V, of required vertices (or
terminals), find a minimum weight tree in G that spans R (a Steiner minimal tree). If
we want to stress that v; is a terminal, we will write z; instead of v;. We also look at a
reformulation of this problem using the (bi-)directed version of the graph, because it yields
stronger relaxations: Given G = (V, E,¢) and R, find a minimum weight arborescence in
G=(V,Ac) (A:={[u, v;], [vj,vi] | (vi,v5) € E}, ¢ defined accordingly) with a terminal
(say z1) as the root that spans R* := R\ {z}.

A cutin G = (V,A,¢) (orin G = (V,E,c)) is defined as a partition C = {W, W} of
V(0cWcV;V=WUW). We use §~ (W) to denote the set of arcs [v;,v;] € A with
v; € W and v; € W. For simplicity, we write 6~ (v;) instead of 6~ ({v;}). The sets 67 (1)
and, for the undirected version, §(W) are defined similarly.

In the integer programming formulations we use (binary) variables wr,, ,.] for each arc
[vi,v;] € A, indicating whether this arc is in the solution ([, = 1) or not (2,,;) = 0).
For any B C A, z(B) is short for Y ,cp 4.

For every integer program P, L P denotes the linear relaxation of P, and v(LP) denotes
the value of an optimal solution for LP.

Other definitions can be found in [7, 10].



2.1 The Directed Cut Formulation

The directed cut formulation Py was stated in [24]. An undirected version was already
introduced in [1], but the directed variant yields a stronger relaxation.

c-r — min,
z(@~(W)) = 1 (n €W, ROW #0), (1)
z € {0,114 (2)

The constraints (1) are called Steiner cut constraints. They guarantee that in any arc set
corresponding to a feasible solution, there is a path from 2; to any other terminal.

There is a group of constraints (see for example [12]) that can make LPq stronger.
We call them flow-balance constraints:

2(07(03) <2(6(vi)) (v €V\R). (3)

We denote the linear program that consists of LP: and (3) by LPcypg. In [15] we
gave a comprehensive overview on relaxations for the Steiner tree problem.

3 Graph Transformation: Vertex Splitting

In this section, we describe a new technique for effectively improving the lower bound
corresponding to the directed cut relaxation by manipulating the underlying network.

Figure 1: Splitting of vertex v;. The filled circles are terminals, z; is the root, all arcs have
cost 1. An optimal Steiner arborescence has value 6 in each network. In the left network
v(LPcyrp) is 5.5 (set the z-values of the dashed arcs to 0.5 and of [v;, z4] to 1), but 6 in
the right network (again, set the z-values of the dashed arcs and of [vf, z4] and [v], 2] to
0.5). The difference is that in the left network, there is a situation that is called “rejoining
of flows”: Flows from z; to 2, and from z; to 23 enter v; on different arcs, but leave on
the same arc, so they are accounted in the x variables only once. Before splitting, the
z-value corresponding to the arc [v;,v.] is 0.5, after splitting the corresponding z-values
sum up to 1.

We use the property that in an optimal directed Steiner tree, each vertex has in-degree
at most 1. Implicitly, we realize a case distinction: If an arc [v;, v;] is in an optimal Steiner
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tree, we know that other arcs in 6~ (v;) cannot be in the tree. The only necessary operation
to realize this case distinction for the Steiner problem is the splitting of a vertex. A vertex
v; is replaced by several vertices v;, one for each arc [v;, v;] entering v;. Each new vertex
v;- has only one incoming arc [vi,v;'-], and essentially the same outgoing arcs as v;. In
Figure 1, the splitting of vertex v; is depicted. The explanation of the figure also provides
some intuition how splitting can be useful. In Section 3.3 we describe how we identify
candidates for splitting.

The splitting operation is described formally by the pseudocode below. We maintain
an array orig that points for each vertex in the transformed network to the vertex in
the original network that it derives from. Initially, origlv;] = v; for all v; € V. With
P(v;) we denote the longest common suffix of all paths from 2; to v; after every path is
translated back to the original network. The intuition behind this definition is that if v;
is in an optimal Steiner arborescence, P(v;) must also be in the arborescence after it is
translated into the original network. Note that the path P(v;) consists of vertices in the
original network and may contain cycles; in this case, v; cannot be part of an optimal
arborescence. In Figure 1, P(v,) consists of v, and P(v?) is the path of length 1 from v,
to vj. To compute P(v;), one can reverse all arcs and use breadth-first-search. The main
purpose of using P(v;) is to avoid inserting unnecessary arcs. This can improve the value
of and the computation times for the lower bound. It is also necessary for the proof of
termination in Section 3.2.

For the ease of presentation, we assume that the root terminal z; has no incoming
arcs, and that all other terminals have no outgoing arcs. If this is not the case, we simply
add copies of the terminals and connect them with appropriate zero cost arcs to the old
terminals.

SPLIT-VERTEX(G,v;,orig) : (assuming v; € R)
forall [v;, v;] € 6~ (v;) :
if P(v;) contains a cycle or orig[v;] in P(v;) :
continue with next arc in 6~ (v;)
insert a new verter vl into G, orig[vi] := orig[v;]
insert an arc [vy, ] with cost c(v;,v;) into G
forall [v;, v € 67 (v;) :
if orig[vy] not in P(v;) :
insert an arc [v}, vp] with cost c(v;, vy) into G
delete v;
0 delete all vertices that are not reachable from z,

~ O G 3 D GuAs o DS

3.1 Correctness

In this section, we prove that the transformation is valid, i.e., it does not change the value
of an optimal Steiner arborescence.

Lemma 1 Any optimal Steiner arborescence with root zy in the original network can be
transformed into a feasible Steiner arborescence with root z; in the transformed network
with the same cost and vice versa.



Proof We consider one splitting operation on vertex v; € V' \ R, transforming a network
G into G'. Repeating the argumentation extends the result to multiple splits. We use a
condition () for a tree T" denoting that for every vg, v; in T', it holds: origlvg] = orig[v] &
v, = v;. Note that condition () holds for an optimal Steiner arborescence in the original
network.

Let T be an optimal Steiner arborescence with root 2, for G satisfying (1). If v; ¢ T,
T is part of G' and we are done. If v; € T, there is exactly one arc [v;,v;] € T. When
[vi,v,] is considered in the splitting, P(v;) is a subpath of the path from z; to v; in T" after
it is translated to the original network. Together with (1) follows that neither origv,],
nor orig[vg] for any [v;, v;] € T is in P(v;). Therefore, all arcs [v;,v;] € T can be replaced
by arcs [v;'-, vg] and the arc [v;, v;] can be replaced by [v;, v;] The transformed T is part
of G, connects all terminals, has the same cost as T and satisfies condition (7).

Now, let T" be an optimal Steiner arborescence for G'. Obviously, 7" can be trans-
formed into a feasible solution 7" with no higher cost for G.

3.2 Termination

In this section, we show that iterating the splitting operation will terminate.

Lemma 2 For all non-terminals vj, P(v;) is the common suffiz of all paths P(v;) ap-
pended by origlv;] for all v;, [v;,v;] € 6~ (v;).

Proof As the Line 10 of SPLIT-VERTEX guarantees that there is always a path from
21 to v;, the claim follows directly from the definition of P(v;).

Lemma 3 For any two non-terminals vy and vy, vy # vy, P(vg) is not a suffix of P(uvy).

Proof Assume the lemma is not true. We choose two vertices v and vy, vs # vy, P(vy) is
a suffix of P(v;) such that the length of P(v,) is minimal. Obviously, orig[vs] = orig[v].
Thus, vy and v; were inserted in some splits. After these splits, vs and v; have in-degree
1. Only splitting a vertex v with [v},vs] € §~(vs) can increase the in-degree of v, but
origvl] is the same for all [v}, vs] € 6 (vs). Together with Lemma 2 for P(v,) follows that
P(vs) contains at least two vertices. As it is a suffix of P(v;), this also holds for P(v;).
For any two vertices vl, v; with [v],vs] € 67 (vs) and [v}, v¢] € 6~ (v;) it holds that v) # v},
P(v!) is a suffix of P(v}) and it is shorter than P(vy), a contradiction.

Lemma 4 After splitting a vertex v; with in-degree greater than 1, for any newly inserted
vertex v} it holds that P(v}) is longer than P(v;) was before the split.

Proof Assume that there is a newly inserted vertex v such that P(vf) is not longer
than P(v;). From Lemma 2 for P(v§) and P(v;) follows that P(v{) = P(v,) appended
by orig[v;] and that P(v;) is a suffix of P(vf). Together with the assumption follows
P(vj) = P(v§). As v; had in-degree greater than 1 before the split, we know that there
was a vertex vy, vp 7# Vg, [Up,vj] € 07 (v;). From Lemma 3 follows that P(v,) was not
a suffix of P(v,). Thus, the common suffix of P(v,) and P(v) did not contain P(v,).
Using Lemma 2 for P(v;), it follows that P(v;) did not contain P(v,), a contradiction to
P(v;) = P(v%).
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Lemma 5 Repeated splitting of vertices with in-degree greater than 1 will stop with a
network in which all non-terminals have in-degree 1. As a consequence, there is exactly
one path from z; to v; for all non-terminals v;.

Proof As long as there is a non-terminal with in-degree greater than 1, we can split it,
which will delete the vertex and possibly replace it by some vertices with in-degree 1. We
only have to show that this procedure terminates, as a split may increase the in-degree
of other vertices.

If splitting a vertex v; deletes it without inserting any new vertex, we label v; as
inwvalid.

Now, we examine the changes in the network as an arbitrary vertex v; with in-degree
greater than 1 is split. Let v, be any non-terminal after the split that was not newly
inserted. From the definition of P(v,,) follows that P(v,,) can only change if some vertex
or arc is not inserted because of the conditions in lines 2 and 7 of SPLIT-VERTEX and
some paths from z; to v, do not exist any longer. Since there is sill a path from 2; to
Um left, P(v,,) can only become longer, it may even visit some vertex twice (i.e., P(vy,)
contains a cycle). In the latter case, v, becomes invalid.

From Lemma 1 follows that a transformed optimal tree will always be contained in
the current network, thus after at most |V| splits, there will be a split of a valid vertex. If
a split is performed on a valid vertex v;, at least one new vertex vj- will be inserted.. From
Lemma 4 follows that P(v;) is longer than P(v;) was before the split. But as P(v}) does
not contain a cycle (Line 2 of SPLIT-VERTEX ), its length is bounded by the number of
vertices in the original network. Thus, the procedure terminates.

3.3 Implementation Issues

Of course, for a practical application one does not want to split all vertices, which could
blow up the network exponentially. In a cutting plane algorithm one first adds violated
Steiner cut or flow-balance constraints. They can be found by min-cut computations
[16], respectively with a summation of the incoming and outgoing arcs variables of non-
terminals. If no such constraint can be found, we search for good candidates for the
splitting procedure, i.e., vertices where more than one incoming arc and at least one
outgoing arc have an x-value greater than zero. After splitting these vertices, the modified
network will be used for the computation of new constraints, using the same algorithms
as before. To represent this transformation in the linear program, we add new variables
for the newly added arcs, and additional constraints that the z-values for all newly added
arcs corresponding to an original arc [v;, v;] must sum up to T[y; 0;]- Using this procedure
the constraints calculated for the original network can still be used.

4 Project, Separate, and Lift: Local Cuts

Let S = (G,R) = (V,E,c,R) be an instance of the Steiner problem. Let ST(S) be

the set of all incidence vectors of Steiner trees of S and SG(S) = ST(S) + R, We
call the elements of SG(S) the Steiner graphs of S. We consider Steiner graphs, since
Steiner graphs are invariant under the shrink operation (defined in Section 4.1). Note that
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Figure 2: The feasible integer solutions are marked as dots, the fractional solution to
separate by the cross. If we project the solutions to the line /;, we can obtain a valid
violated inequality and lift it back to the original space. If we project to the line 5, the
fractional solution falls into the convex hull of the integer solutions and no such inequality
can be found.

the values x(,, ,,) are not restricted to be integral or bounded. It is obvious that if the
objective function is non-negative, there exists a minimum Steiner graph that is a Steiner
tree. Thus all vertices of the polyhedron conv(SG(S)) are Steiner trees. Furthermore,
conv(S8G(S)) is full dimensional if G is connected.

From a high level view, local cuts can be described as follows. Assume we want to sep-
arate z* from conv(SG(S)). Using a linear mapping ¢, we project the given point z* into
a small-dimensional vector ¢(z*) and solve the separation problem over conv(¢(SG(S5))).
If we can find a violated inequality a-Z > b that separates ¢(z*) from conv(4(SG(S5))), we
know that the linear inequality a - ¢(x) > b separates z* from conv(SG(S)). The method
is illustrated in Figure 2.

To make this method work, we have to choose ¢ such that

1. there is a good chance that ¢(z*) ¢ conv(p(SG(S))) if z* ¢ conv(SG(S5)),
2. we can solve the separation problem over conv(¢p(SG(S))) efficiently and
3. the inequalities a - ¢(x) > b are strong.

We choose ¢ in such a way that for every solution 2z € SG(S) of our Steiner problem
instance S, the projected ¢(z) is a Steiner graph of a small Steiner problem instance S?,
i.e., conv(4(SG(S))) = conv(8G(S?)) for an instance S? of the Steiner problem. Since our
Steiner tree program package tends to be very efficient for solving small Steiner problem
instances, we can handle the separation problem, as we will see in Section 4.2.

We use iterative shrinking to obtain the linear mappings. We review the well-known
concept of shrinking in the next section. After that, we introduce our separation algorithm
for small Steiner graph instances. So far, we always assumed that we are looking at the
undirected version of the Steiner problem, since our separation algorithm is much faster
for this variant. As seen above, the directed cut relaxation is stronger than the undirected
variant. In Section 4.3, we discuss how we can use the directed formulation without solving
directed Steiner graph instances in the separation algorithm.



4.1 Shrinking

We define our linear mappings as an iterative application of the following simple, well-
known mapping, called shrinking. For the Steiner problem, shrinking was indroduced by
Chopra and Rao [6].

Shrinking means to replace two vertices v, and v, by a new vertex (v,, vy) and replace
edges (vi,va) and (v;,vp) by an edge (vj, (va, vp)) with value zf, , »+ 2, ., (We assume
Tly ) = 0 if (vi,v;) € E). The new vertex (v,, vy) is in the set of terminals R if Vg Or
vy (or both) are in R. This informally defines the mapping ¢ and the instance S?. Note
that for any incidence vector of a Steiner graph for the original problem, the new vector
is the incidence vector of a Steiner graph in the reduced problem. Furthermore, for every
Steiner graph 7 in S¢ there is a Steiner graph x € SG(S) such that ¢(z) = #. Thus
conv(p(SG(S))) = conv(SG(S5?)).

Note that if we iteratively shrink a set of vertices W C V into one vertex (W), the
obtained linear mapping is independent of the order in which we apply the shrinks. We
denote the unique linear mapping which shrinks a subset W C V into one vertex by ¢".

We have developed conditions on z* under which we can prove that ¢(z*) is not in
the convex hull of SG(S?) if z* is not in the convex hull of SG(9).

Lemma 6 Let z* > 0.

1. (edge of value 1): Let xf,, v > 1 and W = {vg,v,}. 2* € conv(8G(S)) & ¢" (%) €
conv(8G(S?")).

2. (non-terminal of degree 2): Let v, be in V \ R and the vertices (vq,...vy) in V
be ordered according to their L. pa) value (in decreasing order). Furthermore, let

W = {va, 01} If xf,, ) = 0, then 2* € conv(SG(S)) & @' (2*) € conv(SG(S*")).

Va

3. (cut of value 1): Let W be such that x*(§(W)) =1 and 0 # RNW # R. Let W =
V\W. z* € conv(8G(S)) < ¢V (z*) € conv(SG(S" ) A" (z*) € conv(Sg(S¢W))

4. (biconnected components): Let UW C V and v, € V be such that UUW =V,
UNW ={v.} and 7, ) =0 for allvy € U\{v.} and v € W\{v,}. Furthermore,
let ) # RNW # R. z* € conv(SG(S)) & ¢V(z*) € conv(SG(S?")) A ¢V (2*) €
conv(SG(S9™)).

5. (triconnected components): Let UW C V and vg, vy € V' be such that UUW =
VA\A{va}, UNW = {u} and x{,, .y =0 for all vy € U\ {vp} and v € W\ {v;}.

Let furthermore x*(5(v,)) = 1 and vy, vy € R. 2* € conv(8G(S)) & ¢V(z*) €
conv(SG(59)) A 6V (2*) € conv(SG(S9™)).

Proof We already argued that if z* € conv(S8G(S)) then ¢(z*) € conv(SG(S?)) for every
linear mapping obtained by iterative shrinking independent of z*. Thus we only have to
show the reverse direction of the claims, i.e., if ¢(z*) € conv(SG(S?)) (for the last three
claims, if both projections are in the convex hull) then z* € conv(SG(5)).

It suffices to prove the claims for the case that x* is rational.



1. We can find a large integer N and, for 1 < ¢ < N, incidence vectors of Steiner trees
" in S?" such that N¢"W (z*) > Yicicn

The idea is as follows: We will create Steiner trees ¢/ out of #* by including the edge
(v, vp) in every tree and for every edge (vg, (WW)) in ¢ we use either the edge (vy, v,)
or (vg,vy). The number of Steiner trees in which we use a specific edge (vg,v,) or

(vk, vp) is determined by the ratio between zf,, , , and zf,, .

Let M be a large integer such that Mx(vk’m/qﬁ (:r*)(vk,<W>) is integral for every
vy € V\W and v, € W. We know that ¢" (z*)w) ) = + 7] for all

vy € V\ W. For every £ and 1 < j < M we define #*/ with

(va k) Vp,Uk)

i,J _
* t(zU]k-aUl) - tévk,vl) for ve, v € V\ {va, v},

e for v, € V' \ {v,, vy} we make a case distinction:
- « W (. Sl i —
I j < My, /07 () (w0 Ho ) = By o) t(vb o) = O

otherwise: t(va wp) 0 t(v,, vg) tz(W>,vk)'

As t + t( = f&W)’Uk), it can be verified that NMz* > ¥ icn Sicjan t™.

(va Uk) Vb,V )
It also follows that if #* contained a path from a vertex vy, to vy, each %/ contains
a path from v to v, and to v,. As a consequence, each pair of terminals is connected

in %7,

2. We can find a large integer N and, for 1 <7 < N, incidence vectors of Steiner trees
#in S?, such that No" (z*) > ¥y e £

The idea is as follows: We only need to consider the case that (J¥) is used in a tree
t. Since there are at most two edges with positive z*-values adjacent to v,, we can
replace all edges in the tree #* adjacent to (W) (except (vy, (WW))) by edges adjacent
to v;. Further, we have to take care of the edge (v, (W)), if it is in #. In this
case, we create trees %/ using either the edge (vy,v;) or the two edges (vs,v,) and
(Vayv1)- Again the number of trees in which we use the two alternatives is given by

the ratio of ¥ and x¥
(v2,01) (

V2,0q)"

Let M be a large integer such that Mx(,, /6" (%), mvy) is integral for v, €
{v1,v,}. For every #* and 1 < j < M we define t* with

. té;fk’vl) = Névk ) for every v, v € V'\ {g, 01},
té;f;’vl) = NE y for v € VA {va},
o t(v” —Ofor v € V\ {v2},
o I < Mafy, ) /0" () (W)n)t Ty = Flum, v t(32) — 0,
otherwise: t(;fz’vl) =0, t(vz,va) = tzU%(W»,
© ) = L)



As 7 > a7, .y, it can be verified that NMz* > 3 oy Yicjan 7.

(’Ua!U?)

If there is an edge (vg, (W)) in #, then in each t there is either the edge (vg,v;)
or (in the case that k = 2 and j is large enough) the two edges (vk, v,) and (v, v,).
Thus ¢“ is a Steiner tree.

. We can find a large integer N and, for 1 < i < N, Steiner trees ¢’ in 5" and
Steiner trees ¢ in S%" such that N¢" (z*) > Yicien t and NoW(z*) > ¥ ien 1.
Since 2*(0(W)) = 1, it follows that in each tree ' there is exactly one edge in
6((W)) and in each tree * there is exactly one edge in §((I)). For each edge
(vk, (W), v € W, there are N (2*), wy) trees ¢* containing this edge. We
assign each such tree t* to one edge (vg,v;), v; € W such that there are N:L'Z‘ L) brees
assigned to this edge. T_his is possible because ¢W(x*)(vk,<w>) = 2onew LT(py p)- W
do the same for all trees 7. Now, we join the trees t*\ { (v, (W))} and £\ {(v;, (W))}
by an edge (v, v;) to a new tree # if they are assigned to this edge.

It can be verified that Nz* > ¥, ;e v 1.

It remains to show that there is a path between each pair of terminals 2y, 2o in each
tree ', originating from ¢* and 7, both assigned to an edge (vg,v;). If 21,20 € W,
they were connected in t* and as t* contained only one edge (vg, (W)), they are still
connected in #*. The case 21,29 € W is similar. For z; € W, 2, € W, we can use the
path between z; and (W) in ¢%, the edge (vk, v;) and the path between (W) and 2,
in #°.

. We can find a large integer N and, for 1 < i < N, Steiner trees ¢ in S¢" and
Steiner trees s' in ¢ such that N¢" (z*) > Yicien tt and No¥(2*) > T cien s*
We join the trees ¢ with (W) replaced by v, and s' with (U) replaced by v, to a
new tree #'.

It can be verified that Nz* > Y,y £'.

Since #* contains the complete Steiner trees ¢ and s* with the respective shrunken
vertex replaced by v,, we know that #* is a Steiner tree.

. We can find a large integer N and, for 1 < i < N, Steiner trees ¢ in S¢" and
Steiner trees s¢ in S9” such that NV (2*) > ¥ cen t' and NoU(z*) > 3 cien S°
Note that ¢" (2*)(6(v,)) = 1 and thus every #* has exactly one edge adjacent to
Vq. Thus there are i/ = N — N¢" (2*),, wy) Steiner trees ¢ that do not use the
edge (vq, (W)). Let these be the Steiner trees 1 to 7’. Analogously there are i =
N — NV (x*)(, y) Steiner trees s* that do not use the edge (v4, (U)). Let these be
the Steiner trees ¢/ + 1 to ¢ + ¢". First, we replace (W) and (U) by v in all #* and

st

For i < i’ we join ' and the subgraph s’ \ {(v,, (U))} to #.
For i’ < i < i" we join the subgraph '\ {(vs, (W))} and s to #'.

Finally, for ¢ > i’ + i we join the subgraph ¢\ {(v,, (IW))}, the subgraph s\
{(va, (U))}, and the edge (v,,v3) to £

10
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AS Cician thuy wy = N (@) o owy) + 87 (%) a,0y) - 1) = N(@"(0(va)) +Z(y, ) —
1) = Nz, ,,, it can be verified that Na* > 37,y 1.

(Ua,svb)

Finally, we show that all £ are Steiner trees. If i < i, ' contains the complete Steiner
tree t* with (W) replaced by v,. Thus all terminals in U U {v,} are connected. Since
s' contains (vg, (U)) and two subtrees connecting each terminal in W\ {vy} either to
v, or to v, and since v, and v, are connected in ', we know that #* is a Steiner tree.
A similar argument holds for ¢/ < i < ¢ +4". For i > ' + 4", we know that v, and
v, are connected directly by the edge (v,, ) and every other terminal is connected
either to v, or to v,. Thus ¢ is a Steiner tree.

Applying these “exact” shrinks does not project the solution of the current linear
program into the projected convex hull of all integer solutions, i.e., if the solution of
the current linear program has not reached the value of the integer optimum, we can
find a valid, violated constraint in the shrunken graphs. Unfortunately, in many cases
the graphs are still too large after applying these shrinks and we have to apply some
“heuristic” shrinks afterwards.

In the implementation, we use a parameter maz-component-size, which is initially
15. If the number of vertices in a graph after applying all “exact” shrinks is not higher
than maz-component-size, we start FIND-FACET (see Section 4.2), otherwise, we start
a breadth-first-search from different starting positions, shrink everything except the first
max-component-size vertices visited by the BFS, try the “exact” shrinks again and start
FIND-FACET. If it turns out that we could not find a wvalid, violated constraint, we
increase maz-component-size. We also tried other “heuristic” shrinks by relaxing “exact”
shrinks, e.g., accepting minimum Steiner cuts with value above 1, or edges that have an
z-value close to 1. But we could not come up with a definitive conclusion which shrinks
are best, and we believe that there is still room for improvement.

As we will see in the next section, our separation algorithm finds a facet of conv(SG(S?)).
As shown in Theorem 4.1 of [6], the lifted inequality is then a facet of conv(SG(S)).

4.2 Separation: Finding Facets

Assume we want to separate z* from conv(SG(S)). Note that we actually separate ¢(z*)
from conv(SG(S?)), but this problem can be solved with the same algorithm.

As we will see, the separation problem can be formulated as a linear program with a
row for every Steiner graph. Trying to solve this linear program using cutting planes, we
have the problem that the number of Steiner graphs (contrary to the case of Steiner trees)
is infinite and optimal Steiner graphs need not exist. Note that the same complication
arises when applying local cuts to the Traveling Salesman Problem.

The solution for the separation problem is much simpler and more elegant for the
Steiner tree case than for the Traveling Salesman case. The key is the following Lemma,
a slight variation of Lemma 3.1.2 in [6].

Lemma 7 All facets of conv(SG(S)) different from x(y, v,y > 0 for an edge (ve,v) € E
can be written in the form a-x > 1 with a > 0.
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Thus, if z* ¢ conv(SG(S)), we can find an inequality of the form a -z > 1, a > 0,
that separates z* from conv(SG(S)). Note that if a > 0, there is a Steiner tree ¢t € SG(S5)
minimizing a - t.

Thus an exact separation algorithm can be stated as follows (the name arises from the
fact that the algorithm will find a facet of conv(SG(S)), as we will see later).

FIND-FACET (G = (V, E), R, z*)

1 T := incidence vector of a Steiner tree for G, R

2 repeat:

3 solve LP: minz* - oo, Taw > 1, > 0 (basic solution)
4 ifr*-a>1: return “z* € conv(SG(S))”

5 find minimum Steiner tree t for G = (V,E,a), R

6 ift-a<1: add t as a new row to matriz T

7 else: return o-x > 1

The algorithm terminates, since there are only a finite number of Steiner trees in
ST (S) and as soon as the minimum Steiner tree ¢ computed in Line 5 is already in 7', we
terminate because o -t > 1 is an inequality of the linear program solved in Line 3.

Lemma 8 If FIND-FACET does not return an inequality, * € conv(SG(S)).

Proof Consider the dual of the linear program in Line 3: max ¥, \;, 77\ < 2*, which has
the optimal value x* - @ > 1. We divide A by x* - v, with the consequence that >, A\; = 1.
Now, TT X is a convex combination of Steiner trees and it still holds 77\ < z*.

Lemma 9 If FIND-FACET returns an inequality o - x > 1, this inequality is a valid,
separating, and facet-defining inequality.

Proof The value of the last computed minimum Steiner tree ¢ is t - a > 1. Therefore, if
x € 8G(S), the value can only be greater and it holds z - > ¢ -« > 1.

As x* - a < 1, the inequality is separating.

From the basic solution of the linear program, we can extract |F| linearly independent
rows that are satisfied with equality. For each such row of the form o -t > 1, we add
the tree t to a set Sy and for each row a, > 0, we add the edge e to a set S,. Note
that |Sy| + |S,| = |E| and the incidence vectors corresponding to Sy U S, are linearly
independent.

There is at least one tree ¢; in Sy. For each edge e € S, we add to S\ a new Steiner
graph ¢, that consists of ¢; added by the edge e. Since a, = 0 we know that o - ¢, = 1.
Since the incidence vectors corresponding to Sy U.S, were linearly independent, replacing
e with the #; yields a new set of linearly independent vectors.

Repeating this procedure yields |E| linearly independent ¢; € Sy with a.-¢; = 1. Thus,
a-x > 11s a facet.

As in [3], we can improve the running time of the algorithm by using the following
fact. If we know some valid inequalities a-z > b with a-2* = b then z* € conv(SG(9)) <
r* € conv(SG(S) N {zr € R¥/|a-2=b}). Thus we can temporarily remove all edges

12



*

(vi, vj) with zf, |
S’. We use our algorithm to find a facet of conv(SG(S’)). We can use sequential lifting
to obtain a facet of conv(SG(S)). For details see [3] and Theorem 4.2 of [6].

= (), since xz‘vi’vj) > 0 is a valid inequality. Call the resulting instance

4.3 Directed versus Undirected Formulations

For computing the lower bounds, we focus on the directed cut formulation, because its
relaxation is stronger than the undirected variant. However, in the local cut separation
algorithm we want to solve undirected Steiner graph instances, since they can be solved
much faster.

The solution is to use another linear mapping that maps arc-values of a bidirected
Steiner graph instance S = (V, A, ¢, R) to edge-values of an undirected Steiner graph
instance S = (V, E, ¢, R).

We define S by E = {(v;,v)) | [vi,v;] € A} and ¢(,,, .y = Cpu;0;] = Cpo;0]- For a vector
r € RM we define ¢(z) € RI by V() (wi05) = Tlos;] T Tlog i)

Lemma 10 z* € conv(SG(S)) = ¢(z*) € conv(SG(S)).
Z € conv(8G(S)) = Jz* € conv(SG(S)) with Y(x*) = Z.
If ¢ - x* is smaller than the cost of an optimal Steiner arborescence, then (x*) ¢

conv(S8G(S)).

Proof Let z; be the root in the directed formulation. It suffices to prove the claims for
the case that x* is rational. We show the two claims in turn.

If z* € conv(Sg(g)), we can find a large integer N and directed Steiner trees t' €
ST(S) such that Nz* > ¥, c;cn ti. Clearly Nop(z*) > ¥ ;e n 1(t). Furthermore, (¢
are Steiner graphs, since each directed path in ¢’ from the root z; to a terminal 2, gives
an undirected path between z; and 2, in (#).

If z € conv(SG(S)), we can find a large integer N and undirected Steiner trees t' €
ST(S) such that Nz > ¥, ,cnt". Let # be the directed tree obtained by rooting ' at
z. Clearly #' is a directed Steiner tree and ¢ (#') = ¢'. Let 2’ = N™' ¥,y 1. We know
that 2’ € conv(8G(S)) and ¥(z') < Z. Thus there exists z* > 2’ with z* € conv(SG(S))
and 1 (z*) = T.

Note that we have defined the objective function ¢ of the undirected Steiner graph
instance such that ¢ - () = ¢ for all # € Rl Assume ¢(2*) € conv(SG(S)). We
know that there is 2/ € conv(SG(S)) with ¢(z') = t(z*). Thus there is a Steiner tree
te8G(S) withe-t<c-2'=¢-¢(') = - (") =c-z*.

For lifting the undirected edges to directed arcs, one can use the computation of
optimal Steiner arborescences. For the actual implementation, we used a faster lifting
using a lower bound to the value of an optimal Steiner arborescence, provided by the
fast algorithm DUAL-ASCENT [16, 24]. For producing facets for the directed Steiner
problem, one could compute optimal Steiner arborescences in the FIND-FACET algorithm
of Section 4.2.
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5 Some Experimental Results

In this section, we present experimental results showing the impact of the methods de-
scribed before. In this paper we confine ourselves to the presentation of some highlights,
namely the largest benchmark instances ever solved (Table 1). Experiments on smaller
instances show that vertex splitting can also significantly improve the solution time (Ta-
ble 2). Note that in the TSP context, local cuts were helpful particularly for the solution
of very large instances.

We have chosen the approach of applying these techniques together with the reduction
methods [16], because this is the way they are actually used in our program package.
Note that without the reductions, the impact of these techniques would be even more
impressive, but then these instances could not be handled in reasonable time.

All results were obtained with a single-threaded run on a Sunfire 15000 with 900 MHz
SPARC III4+ CPUs, using the operating system SunOS 5.9. We used the GNU g++
2.95.3 compiler with the -O4 flag and the LP-solver CPLEX version 8.0.

Instance Orig. Size Red.

+ local cuts
V| |R| time

val time

Red. Size LPcyrB + vertex splitting
V| |R| val time val time

d15112 51886 15112 5h 22666 7465 1553831.5 20.4h 1553995 21.9h 1553998 21.9h
es10000 27019 10000 988s 4061 1563 716141953.5 251s 716174280 284s —
fnl4461 17127 4461 995s 8483 2682 182330.8 5299s 182361 6353s —

lin37 38418 172 28h 2529 106 99554.5 1810s 99560 1860s

Table 1: Results on large benchmark instances. In all cases, the lower bound reached the value
of the integer optimum (and a tree with the same value was found). A dash means that the
instance was already solved to optimality without local cuts. For the instance d15112, we used
the program package GeoSteiner-3.1 [23] to translate the TSPLIB [20] instance into an instance
of the Steiner problem in networks with rectilinear metric. No benchmark instance of this size
has been solved before. The SteinLib [21] instances es10000 and fnl4461 were obtained in the
same way. Warme et. al. solved the es10000 instance using the MSTH-approach [22] and
local cuts. They needed months of cpu time. The instance fnl4461 was the largest previously
unsolved geometric instance in SteinLib. The SteinLib instance lin37 originates from some VLSI-
layout problem, is not geometric, and was not solved by other authors. Without lower bound
improvement techniques, the solution of the instances would take much longer (or was not even
possible in case of d15112). The number of vertex splits varied between 8 (1in37), 21 (es10000),
173 (fnl4461) and 321 (d15112). For d15112 only one additional local cut computation was
necessary.

6 Concluding Remarks

We presented two theoretically interesting and empirically successful approaches for im-
proving lower bounds for the Steiner tree problem: vertex splitting and local cuts. Vertex
splitting is a new technique and improves the lower bounds much faster than the local cut
method, but the local cut method has the potential of producing tighter bounds. Vertex
splitting, although inspired by a general approach (see Section 1), is not directly transfer-
able to other problems, while local cuts are a more general paradigm. On the other hand,
the application needs some effort, e.g., developing proofs for shrinks and implementation
using exact arithmetic. A crucial point is the development of heuristic shrinks, where a lot
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instance LPcyrB LPciFrB LPcyrB

+ vertex splitting + local cuts
es1000fst01 23.8 13.7 21.8
es1000fst02 34.4 33.5 33.5
es1000fst03 9.5 9.5 9.4
es1000fst04 15.1 13.7 15.4
es1000fst05 114 11.3 11.3
es1000fst06 41.8 20.2 516.2
es1000fst07 5.7 5.7 5.7
es1000fst08 22.2 17.7 17.5
es1000fst09 17.5 14.5 18.6
es1000fst 10 5.5 5.6 5.6
es1000fst11 18.9 18.9 18.6
es1000fst12 23.9 19.0 19.4
es1000fst13 6.5 6.5 6.5
es1000fst14 23.9 16.4 65.9
es1000fst15 13.7 13.9 13.7
Average: 18.3 14.7 51.9

Table 2: Average times for optimal solution of instances of the instance group ES1000FST,
using our program package for Steiner trees with different variants of lower bound computation.
For each instance and each variant the numbers give the average times of 5 runs. Note that using
local cuts may slow down the solution, as in some cases the bound-based reduction techniques
solve the instance faster using weaker but faster bounds. In the TSP context local cuts were
applied successfully only on large instances with long solution times. Looking at the results
for each instance one can see that enabling vertex splitting never deteriorates the running time
significantly, but sometimes improves it by 50%. For those instances where vertex splitting
had a visible impact, there have been 7.6 vertex splits on the average. If local cuts had a
visible impact, on the average 28.5 successful and 229.2 unsuccessful FIND-FACET calls were
performed. Adding local cuts to vertex splitting did not change the empirical results as in the
relevant cases LPc4rp+vertex splitting was strong enough to solve the instances.

of intuition comes into play and we believe that there is room for improvement. Although
the local cut method was originally developed for the Traveling Salesman Problem, its
application is much clearer for the Steiner tree problem.

Both methods are particularly successful if there are some local deficiencies in the
linear programming solution. On constructed pathological instances the lower bounds are
still improved significantly, but the progress is not fast enough to solve such instances
efficiently.

Another interesting observation is that the power of the vertex splitting approach can
be improved by looking at multiple roots simultaneously. In fact, we do not know any
instance where repeated vertex splittings would not bring the lower bound to the integer
optimum if multiple roots are used. It remains an open problem to find out if this is
always the case.
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