Skip to main content

New Lower and Upper Bounds for Graph Treewidth

  • Conference paper
  • First Online:
Experimental and Efficient Algorithms (WEA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2647))

Included in the following conference series:

Abstract

The notion of tree-decomposition has very strong theoretical interest related to NP-Hard problems. Indeed, several studies show that it can be used to solve many basic optimization problems in polynomial time when the treewidth is bounded. So, given an arbitrary graph, its decomposition and its treewidth have to be determined, but computing the treewidth of a graph is NP-Hard. Hence, several papers present heuristics with computational experiments, but for many instances of graphs, the heuristic results are far from the best lower bounds.

The aim of this paper is to propose new lower and upper bounds for the treewidth. We tested them on the well known DIMACS benchmark for graph coloring, so we can compare our results to the best bounds of the literature. We improve the best lower bounds dramatically, and our heuristic method computes good bounds within a very small computing time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The second dimacs implementation challenge: NP-hard problems: Maximum clique, graph coloring, and satisfiability, 1992–1993.

    Google Scholar 

  2. S. Arnborg and A. Proskurowki, Characterisation and recognition of partial 3-trees, SIAM J. Alg. Disc. Meth. 7 (1986), 305–314.

    Article  MATH  Google Scholar 

  3. H. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (1996), 1305–1317.

    Article  MATH  MathSciNet  Google Scholar 

  4. —, Necessary edges in k-chordalisation of graphs, Tech. Report UU-CS-2000-27, Institute for Information and Computing Sciences, Utrecht University, 2000.

    Google Scholar 

  5. H. Bodlaender and R. Möhring, The pathwidth and treewidth of cographs, SIAM J. Disc. Math. 6 (1993), 181–188.

    Article  MATH  Google Scholar 

  6. J. Carlier and C. Lucet, A decomposition algorithm for network reliability evaluation, Discrete Applied Mathematics 65 (1993), 141–156.

    Article  MathSciNet  Google Scholar 

  7. F. Clautiaux, A. Moukrim, S. Nègre, and J. Carlier, A tabu search minimising upper bounds for graph treewidth, Report, 2003.

    Google Scholar 

  8. D. Fulkerson and O. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965), 835–855.

    MATH  MathSciNet  Google Scholar 

  9. F. Gavril, Algorithms for minimum coloring, maximum clique, minimum coloring cliques and maximum independent set of a chordal graph, SIAM J. Comput. 1 (1972), 180–187.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Jensen, S. Lauritzen, and K. Olesen, Bayesian updating in causal probabilistic networks by local computations, Computational Statistics Quaterly 4 (1990), 269–282.

    MathSciNet  Google Scholar 

  11. A. Koster, Frequency assignment, models and algorithms, Ph.D. thesis, Universiteit Maastricht, 1999.

    Google Scholar 

  12. A. Koster, H. Bodlaender, and S. van Hoesel, Treewidth: Computational experiments, Fundamenta Informaticae 49 (2001), 301–312.

    Google Scholar 

  13. C. Lucet, J. F. Manouvrier, and J. Carlier, Evaluating network reliability and 2-edge-connected reliability in linear time for bounded pathwidth graphs, Algorithmica 27 (2000), 316–336.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Lucet, F. Mendes, and A. Moukrim, Méthode de décomposition appliquée à la coloration de graphes, ROADEF, 2002.

    Google Scholar 

  15. N. Robertson and P. Seymour, Graph minors. ii algorithmic aspects of tree-width, Journal of Algorithms 7 (1986), 309–322.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Rose, Triangulated graphs and the elimination process, J Math. Anal. Appl. 32 (1970), 597–609.

    Article  MATH  MathSciNet  Google Scholar 

  17. —, A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations, Graph Theory and Computing (R. C. Reed, ed.), Academic Press (1972), 183–217.

    Google Scholar 

  18. D. Rose, E. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976), 146–160.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clautiaux, F., Carlier, J., Moukrim, A., Nègre, S. (2003). New Lower and Upper Bounds for Graph Treewidth. In: Jansen, K., Margraf, M., Mastrolilli, M., Rolim, J.D.P. (eds) Experimental and Efficient Algorithms. WEA 2003. Lecture Notes in Computer Science, vol 2647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44867-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44867-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40205-3

  • Online ISBN: 978-3-540-44867-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics