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Abstract. Cortical circuits are usually modeled as a network of ex-
citatory and inhibitory neurons with a completely regular or a ran-
dom connectivity pattern. However, neuroanatomy of the macaque and
the cat cortex shows that cortical neurons are organized into densely
linked groups that are sparsely and reciprocally interconnected. Inter-
esting properties arise in the average activity of an ensemble of cortical
neurons when the topology of the network itself is an intrinsic parameter
of the model that can vary with a given set of rules. In this work we
show that both the temporal activity and the encoded rhythms in an
ensemble of cortical neurons depend on the topology of the network.

1 Introduction

Graph theory [1] provides the most adequate theoretical framework in order
to characterize the anatomical connectivity of a biological neural network. The
representation of neural networks as graphs allows a complete structural de-
scription of the network and the comparison with different known connection
patterns. The application of graph theory to modeling neural networks appears
in theoretical neuroanatomy for the analysis of the functional connectivity in the
cerebral cortex. In [2] it is shown that the connection matrices based on neu-
roanatomical data that describes the macaque visual cortex and the cat cortex,
present structural characteristics that coincide best with graphs whose units are
organized in densely linked groups that were sparsely but reciprocally intercon-
nected. These kind of networks also provide the best support for the dynamics
and high complexity measures that characterize functional connectivity.

There are some well known biological neural networks [3,4] that present a
clear clustering in their neurons but have small distances between each pair of
neurons. These kind of highly clusterized, highly interconnected sparse networks
are known as Small-World (SW) networks. SW topologies appear in many real
life networks [6, 7], as a result of natural evolution [4] or a learning process [8]. In
[5] it is shown that on SW networks coherent oscillations and temporal coding
can coexist in synergy in a fast time scale on a set of coupled neurons.

Cortical circuits are usually modeled as a network of excitatory and inhibitory
neurons [9] with a completely regular or a random connectivity pattern [10, 11].



However, as shown in [13], the connection substrate can have a major effect on
the dynamical behavior of the elements in a network, even when these elements
are highly synchronized. This means that it is necessary to consider the topology
of the network as an additional parameter that can be modified. In this paper
we study the different behavior of the average activity in a model of cortical
circuits as a function of the network topology.

2 Network Models

We explore three topological models: a regular grid, a random network and a
SW network.

In [15] a method to study the dynamic behavior of networks when a network
is shifted from a regular, ordered network to a random one is proposed. The
method is based on the random rewiring with a fixed probability p for every
edge in the graph. We obtain the original regular graph for p = 0, and a random
graph for p = 1. This method shows that the characteristic path length L (the
average distance, measured as the minimal path length between them, between
nodes) decreases with the increasing value of p much more rapidly than the
clustering coefficient C' (the average number of neighbors of each node that are
neighbors between them) does. There is a range of values of p where paths are
short but the graph is highly clustered, this range of values of p is known as the
small-world area.

In this paper we take the architecture of the regular model as a directed and
weighted grid where nodes connect to the two closest neighbors that are in each
of the four possible directions in the grid. We take p = 0.06 for the generation
of the SW network as this probability ensures the maximum distance between
the value of C' and L when the original substrate is a regular grid [14]. For the
random model we have followed the same rewiring procedure with p = 1. In Fig.
1 we show the connectivity pattern of the cells in the regular, SW and random
networks.

The values of L and C for the three models of graphs can be seen in Table
1. Random graphs present a low L and C while the regular grid present a high
L and a high C'. The SW model have L values similar to the values of random
networks, but C' values closer to those of regular networks.

L C
REGULAR GRID|13.005|0.214
SW 5.498 |0.180
RANDOM 4.021 |0.002

Table 1. Values of L and C for different graphs models. In the three models the number
of nodes is 2500 and the average number of neighbors per node is 8.
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Fig. 1. Regular, SW, and random networks. Empty circles represent excitatory neu-
rons. Filled circles represent inhibitory neurons. The three networks are composed of
64 nodes and each node is connected in average to 4 neighbors.

As shown in [15] synchronization in a network of automatons is favored by
low values of L due to the efficiency in the transmission of information when
short paths are present in the network. On the other hand, high values of C'
tend to favor local effects. This makes us expect that in the SW model, encoded
rhythms that come both from global synchronization and local effects [18] can
coexist, .

3 Neuron Model

In this work we will consider a network of simple integrate and fire (IF) neurons.
This model of neuron is often utilized in simulation studies. Simple IF neurons
have been shown to provide good approximations to the dynamics of more com-
plex model neurons [12]. We consider a network of N neurons, N!' = 0.75N of
them excitatory and N? = 0.25N of them inhibitory. We name the population
of excitatoty neurons as population 1 and the population of inhibitory neurons
as population 2. Each neuron is connected in average to 8 neurons; this value
ensures the sparsity of the network. Each neuron also receives an input from
excitatory neurons outside of the network.

The connection between the i-th presynaptic neuron of population k and the
j-th postsynaptic neuron of the 1 population will be denoted W} where k,1 =
1, 2. The connections provinient from neurons of the first population (excitatory)
Wiljl, are positive meanwhile the connections provinient from neurons of the
second population ijl are negative (see fig 2).

The state of each neuron is a binary variable ¢. Each neuron can present two
different states, 0 meaning a quiescent state or refractary state and 1 representing
a fire state. The state of neuron j of population ! at time ¢+ 1 comes determined

by the following update rule.

aé‘-(t +1) = @(ug(t)) (1)
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Fig. 2. Scheme of the network, the sign of each connection is noted between parenthe-
ses.

Where © is the usual Heaviside function

0if z <0
1 otherwise

O(z) = { (2)

The total synaptic input to neuron j of population [ at time ¢, ué-(t) comes
determined by the following expression:

2 NF

ub(t) = [ DN Whek ) | +1i(t) + ¢ (3)

k=1 i=1

Where I(t) represents the external input and 6 represents a bias. The state
of each neuron is calculated synchronously at fixed time intervals 7' for each
population /. In this work we assume 7! = 72 = 1. Each time the neurons fires
(i.e, aé. (t) = 1 the neurons enters in a refractary state 7. During the refractary
state the neuron can’t fire and its status o is assumed as 0. In this work we will
use r' = 3 and r? = 11 for excitatory and inhibitory neurons repectively, this
values correspond with anatomical estimates for neocortex.

This model present a large parameter space, we choose V[/'ilj1 =1, V[/'ilj2 =1,
W2 = —2 and W = —1.8. The bias will be taken as §' = -1 6> = —0.7.

The expression for the external input is:

(1) [226EFifi € S and ¢ < 100 ”
iYW 0.56 EF otherwise

where S is a set of 400 neurons (300 excitatory and 100 inhibitory) and
E' =1 and E? = 0.8; i.e., there is an initial overexcitation of a subset of the

network. These values are selected as they correspond to the numerical values
presented in [10] and [11].



4 Experimental results

In order to detect the oscillatory activity of the network, we study for each
population of neurons, both the activity of the network at time ¢, a*(t) =

(Ef\; aik(t)) /N where N is the total number of cells in the network and the

modulus of the Fourier transform of the activity |aA’“|1/2(f) k = 1,2, where f
represents the frequency.
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Fig. 3. Temporal activity (left) and power spectrum (right) of the set of excitatory
neurons for the regular (top), SW (middle) and random (bottom) models

In figure 3 the network activity of the set of excitatory neurons and its
Fourier transform are plotted. In the three models the temporal average activity
of the network Zthl a’(t)/T has the same value 0.22, where T is the simulation
time limit; this average value coincides with the one obtained in [10]. However,
the standard deviation of the average activity varies sensibly in the case of
the random network. Regular and Small-World network present an standard
deviation of 0.01 indicating a low level of overall synchronization meanwhile in
the random model the standard deviation is 0.09.
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The temporal average activity in the random model present a value of .1,
indicating a higher synchronization in the network. This can be clearly seen
when we consider the Fourier transform of the average activity. The random
network has the strongest components of the Fourier transform values in the
high frequency area, loosing the low frequency components. The regular network,
on the other side, has the strongest components of the Fourier transform only
in the low frequency area. The SW model has frequency components both in
the high and low frequencies area. This behavior is due to the fact that the low
frequency oscillations come from both local interactions between neurons [18]
and the frequency associated to the refractary time of the inhibitory neurons,
while high frequency components are favored by the overall synchronization of
the excitatory neurons in the network. The SW network allows both local and
global interaction. The highest component in frequency for the three models
corresponds to a frequency over 612H z that best corresponds to the firing period
of the excitatory neurons, which is closely related to their refractary time.
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Fig. 4. Average activity (left) and power spectrum (right) of the set of inhibitory

neurons for the regular (top) , SW (middle) and random (bottom) models



In figure 4 the activity of the set of inhibitory neurons and its Fourier trans-
form is plotted. The three models present again the same overall average activity
0.02 for inhibitory neurons, and the highest standard deviation 0.02 corresponds
to the random model being very close to 0 in the case of the regular and random
networks.

In the case of inhibitory neurons, both high and low frequencies are present
in the three topological models. In the random model the larger components of
the Fourier transform correspond again to high frequencies, with the maximum
corresponding to the period of the excitatory neurons. In the regular case, fre-
quencies are concentrated in the low frequencies area, and the maximum value of
the Fourier transform corresponds to the frequency associated to the excitatory
neurons. In the SW there exist similar values for the high and low frequencies;
however, the maximum frequency component corresponds to the firing period of
the inhibitory neurons.

5 Conclusions

The previous results allow us to establish the following conclusions.

— The selected topology affects the dynamics of an ensemble of excitatory-
inhibitory neurons.

— The overall activity of the network does not depend on the selected topology,
while the temporal behavior does.

— The regular model tends to favor low frequency oscillations in the network.

— The random model tends to synchronize the network in a frequency corre-
sponding to the period of the excitatory neurons.

— The SW model presents a good balance between low and high frequency
oscillations.
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