Skip to main content

Neural Implementation of Dijkstra’s Algorithm.

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Abstract

In this paper a new neural network model that generalizes Hopfleld model is proposed. It allows to implement an algorithm similar to the Dijkstra’s one in order to solve the shortest path problem on a weighted graph. With this neural and parallel implementation, the presented model is adapted to possible modifications in the graph. Moreover, it is possible to solve other related problems with the same structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali M.K.M. and Kamoun F. Neural Networks for shortest path computation and routing in computer networks. IEEE Trans. N.N. 4, 941–54, (1993).

    Article  Google Scholar 

  2. Brodal, G. S., Träff, J. L. & Zaroliagis, C. D. A parallel priority data structure with applications. Proc. 11th Int. Par. Processing Symp., 689–93, (1997).

    Google Scholar 

  3. Cavalieri S., Di Stefano A. and Mirabella O., Optimal Path Determination in a Graph by Hopfield Neural Network. Neural Networks 7-2, 397–404, (1994).

    Article  Google Scholar 

  4. Dijkstra, E. W. A note on two problems in connection with graphs. Numerische Mathematik, 1, 269–71, (1959).

    Article  MATH  MathSciNet  Google Scholar 

  5. Grimaldi, Ralph. Matemática Discreta y Combinatoria. Cap 13.1, (1999).

    Google Scholar 

  6. Mateti, P. & Deo N., Parallel Alg. for Single Source SPP. Computing 29, 31–49, (1982).

    Article  MATH  MathSciNet  Google Scholar 

  7. Mérida Casermeiro, E. Red Neuronal Recurrente Multivaluada para el rec. patrones y la optimiz. comb. Ph.D. dissertation. University of Málaga, Spain, (in Spanish), 2000.

    Google Scholar 

  8. Mérida Casermeiro, E., Galán Marín, G. & Muñoz Pérez, J. An efficient multiv. Hopfield N. for the T.S.P. Neural Procc. Letters. 14, 203–16, (2001).

    Google Scholar 

  9. Mérida Casermeiro, E., Muñoz Pérez, J. and Benítez Rochel, R. A recurrent multivalued N.N. for N-Queens Problem. LNCS 2084, 522–29, (2001).

    Google Scholar 

  10. Mohr T. and Pasche C, A Parallel Shortest Path Alg., Computing 40 767–86, (1988).

    Article  MathSciNet  Google Scholar 

  11. Paige, R. and Kruskal, C. Parallel algorithms for shortest paths problems. Proceedings International Conf. on Parallel Processing, 14–19, (1989).

    Google Scholar 

  12. Park D-C. and Choi S-E. A N.N. based multi-destination routing algorithm for communication network. IEEE Int. Joint Conf. N.N. 2, 1673–78, (1998).

    Google Scholar 

  13. Rauch H.E. and Winarske T. Neural Networks for routing communication traffic. IEEE Cont. Syst. Mag, 26–30, (1988).

    Google Scholar 

  14. Serpen, Gursen and Parvin, Azadeh. On the performance of Hopfield network for graph search problem. Neurocomputing 14, 365–81, (1997).

    Article  Google Scholar 

  15. Zhang L. and Thomopoulos S. C. A., N.N. implem. of the shortest path alg. for traffic routing in comm. networks. Proc. Int. Conf. N.N. II, 591, (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mérida-Casermeiro, E., Muñoz-Pérez, J., Benítez-Rochel, R. (2003). Neural Implementation of Dijkstra’s Algorithm.. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_44

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics