
Solving SAT in Linear Time with a Neural-like
Membrane System

Juan Pazos, Alfonso Rodriguez-Paton , and Andres Silva

Facultad de Informatica, Campus de Montegancedo s/n,
Boadilla del Monte - 28660 Madrid (SPAIN).

arpatonQfi.upm.es

Abstract. We present in this paper a neural-like membrane system
solving the SAT problem in linear time. These neural P systems are
nets of cells working with multisets. Each cell has a finite state memory,
processes multisets of symbol-impulses, and can send impulses ("excita­
tions") to the neighboring cells. The maximal mode of rules application
and the replicative mode of communication between cells are at the core
of the efficiency of these systems.

1 Introduction

The present paper deals with a topic for further research (open problem) ad­
dressed in the paper [11]. In tha t paper a parallel and distributed computational
model called tissue P System (in short, tP system) was introduced and defined.
The efficient resolution of NP-complete problems over graphs was proposed like
one possible application of these new systems. For example, it was proved tha t
the Hamiltonian Pa th Problem can be solved in linear time with these t P sys­
tems (details in [11]). However, it was also proposed in tha t paper like a "topic
for further research" the search for any other type of problems outside graph
theory tha t could be efficiently solved by the t P systems.

In this paper we show tha t t P systems (also called neural P systems or nP
systems in [15]) can solved in linear time a very general and classical NP-complete
problem: the SAT problem.

t P systems can be seen at the same time as a contribution to neural networks
(of a symbolic type), to membrane computing (with cells arranged in "tissues"),
to finite au tomata networks (working not with strings, but with multisets of
symbols), to multiset processing, to (distributed) au tomata and language the­
ory. The motivation is two-fold: the inter-cellular communication (of chemicals,
energy, information) by means of complex networks of protein channels (see,
e.g., [1], [10]), and the way the neurons co-operate, processing impulses in the
complex net established by synapses (see, e.g., [1], [2]).

The common mathematical model of these two kinds of symbol-processing
mechanisms is a net of finite s tate devices: networks of finite-automata-like pro­
cessors, dealing with symbols, according to local states (available in a finite

number for each "cell"), communicating through these symbols, along channels
("axons") specified in advance. Note that the neuron modelling was the starting
point of the theory of finite automata ([13], [8]), that symbol processing neural
networks have a rich (and controversial) history (see [4] and its references), and
that networks of string-processing finite automata have appeared in many con­
texts ([5], [7], [12], etc), but our models are different in many respects from all
these previous models.

Having in mind the bio-chemical reality we refer to, a basic problem concerns
the organization of the bunch of symbols available in each node, and the easiest
and most natural answer is: no organization. Formally, this means that we have
to consider multisets of symbols, sets with multiplicities associated with their
elements. In this way, we need a kind of finite automata dealing with multisets
of symbols, a topic which falls into an area of (theoretical) computer science
not very much developed, although some recent (see, e.g., [6]), or not so recent
(see, e.g., [3]) approaches can be found in the literature. Actually, most of the
vivid area of membrane computing (P systems) [14,15] is devoted to multiset
processing (details at h t t p : / / p s y s t e m s . d i s c o . u n i m i b . i t /) .

The computing models proposed in [11], under the name of tP systems, con­
sist of several cells, related by protein channels. In order to preserve also the
neural intuition, we will use the suggestive name of synapses for these channels.
Each cell has a state from a given finite set and can process multisets of objects,
represented by symbols from a given alphabet. The standard rules are of the
form sM —> s'M', where s, s' are states and M, M' are multisets of symbols.
Some of the elements of M' may be marked with the indication "go", and this
means that they have to immediately leave the cell and pass to the cells to
which we have direct links through synapses. This communication (transfer of
symbol-objects) can be done in a replicative manner (the same symbol is sent
to all adjacent cells), or in a non-replicative manner; in the second case we can
send all the symbols to only one adjacent cell, or we can distribute them, non-
deterministically. One more choice appears in using the rules sM —> s'M': we
can apply such a rule only to one occurrence of M (that is, in a sequential,
minimal way), or to all possible occurrences of M (a parallel way), or, moreover,
we can apply a maximal package of rules of the form sMj —> s'M[, 1 < i < k,
that is, involving the same states s, s', which can be applied to the current mul­
tiset (the maximal mode). By the combination of the three modes of processing
objects and the three modes of communication among cells, we get nine possible
behaviors of our machinery.

A way to use such a computing device is to start from a given initial con­
figuration (that is, initial states of cells and initial multisets of symbol-objects
placed in them) and to let the system proceed until reaching a halting config­
uration, where no further rule can be applied, and to associate a result with
this configuration. Because of the nondeterminism, starting from one given ini­
tial configuration we can reach arbitrarily many different halting configurations,
hence we can get arbitrarily many outputs. Another possibility is to also provide
inputs, at various times of a computation, and to look for the outputs related to

http://psystems.disco.unimib.it/

them. Here we will consider only the first possibility, of generative tP systems,
and the output will be defined by sending symbols out of the system.

At the first sight, such a machinery (a finite net of finite state devices) seems
not to be very powerful, e.g., as compared with Turing machines. Thus, it is
rather surprising to find that tP systems with a small number of cells (two or
four), each of them using a small number of states (resp., at most five or four)
can simulate any Turing machine, even in the non-cooperative case, that is, only
using rules of the form sM —> s'M' with M being a singleton multiset; moreover,
this is true for all modes of communication for the minimal mode of using the
rules, and, in the cooperative case, also when using the parallel or the maximal
mode of processing objects. When the rules are non-cooperative and we use them
in the maximal mode, a characterization of Parikh images of ETOL languages
is obtained, which completes the study of the computing power of our devices
(showing that in the parallel and maximal cases we dot not get computational
universality).

The above mentioned results obtained in [11] indicate that our cells are "very
powerful"; as their power lies in using states, hence in remembering their previous
work, a natural idea is to consider tP systems with a low bound on the number
of states in each cell. In view of the previously mentioned results, tP systems
with at most 1, 2, 3, or 4 states per cell are of interest. We only briefly consider
this question here, and we show that even reduced tP systems as those which
use only one state in each cell can be useful: using such a net we can solve the
Satisfiability Problem in linear time (this is a direct consequence of the structure
of a tP system, of the maximal mode of processing objects, and of the power
of replicating the objects sent to all adjacent cells); remember that SAT is an
NP-complete problem.

The power of tP systems with a reduced number of states per component
remains to be further investigated. Actually, many other natural research topics
can be considered, with motivations from automata and language theory (vari­
ants, power, normal forms), neural networks (learning, dynamic sets of neurons,
dynamic synapses), computability (other NP-complete problems treated in this
framework), dynamic systems (reachable configurations), etc.

2 Tissue P Systems

We now pass to the definition of our variant of membrane (P) systems, which
can also be considered as a model of a symbolic neural net. We introduce it in
the general form, then we will consider variants of a restricted type.

A tissue P system or a neural P system depending the motivation, in short,
a tP or nP system, of degree m > 1, is a construct

II = (£, CTI, . . . , am, syn, iout), where

1. E is a finite non-empty alphabet (of chemical objects, but we also call them
excitations/impulses);

2. syn C {1, 2, . . ., TO} x { 1 , 2 , . . . , TO} (synapses among cells);
3- iout £ { 1 , 2 , . . . , TO} indicates the output cell;
4. <7i , . . . , <rm are ce//s, of the form <Tj = (Qj, s^o, w^o, -Pi), 1 < * < TI , where:

(a) Qi is a finite set (of states);

(b) s^o £ Qi is the initial state;
(c) w^o € £•* is the initial multiset of impulses;
(d) Pi is a finite set of rules of the form sw —> s'xygozout, where s, s' e Qi,

w,x G E*,ygo G (-Ex {go})* and zOMt G (-Ex {owt})*, with the restriction
tha t 2 o u t = A for all i G {1, 2 , . . . , TO} different from iout.

A t P system as above is said to be cooperative if it contains at least a rule
sw —> s'w/ such tha t |w| > 1, and non-cooperative in the opposite case.

Any rn-tuple of the form (s i w i , . . . , smwm), with Sj G Qj and Wj G -E*, for all
1 < i < TO, is called a configuration of 27; (s^ow^o, • • •, sm)o«om)o) is the initial
configuration of 27.

Using the rules from the sets Pj , 1 < i < TO, we can define transitions among
configurations. To this aim, we first consider three modes of processing the stimuli
and three modes of transmitting excitations from a cell to another one. Let
us denote Ego = {(a, go) \ a G E}, Eout = {(a, out) \ a G E}, and Etot =
EUEgoU Eout. For s, s' G Qi, x G E*, y G S*ot, we write

sx =^mi„ s'y iff sw —> s'w' G P j , w C x, and y = (x — u>) U w',

sx ^=>Par s'y iff sw —> s'w' G Pi, w C x, w + 2 x i

for some A; > 1, and y = (x — wk) U w/fc,

sx ^ m a a ; s'y iff s t t i -^ s ' w j , . . . , swk —> s'w'k G Puk > 1,

such tha t w\ .. .Wk C x, y = (x — u>i . . . «;&) U w1 . . . wk,

and there is no sw —> s'w' G Pj such tha t w j . . . wkw C x.

In the first case, only one occurrence of the multiset from the left hand side
of a rule is processed (replaced by the multiset from the right hand of the rule,
at the same time changing the state of the cell), in the second maximal
change is performed with respect to a chosen rule, in the sense tha t as many as
possible copies of the multiset from the left hand side of the rule are replaced
by the corresponding number of copies of the multiset from the right hand side,
while in the third maximal change is performed with respect to all rules
which use the current state of the cell and introduce the same new state after
processing the impulses.

We also write sx ^ a sx, for s G Qi,x G E*, and a G {min,par,max}, if
there is no rule sw —> s'w' in Pi such tha t w C x. This encodes the case when a
cell cannot process the current impulses in a given s tate (it can be "unblocked"
after receiving new impulses from its ancestors).

The multiset w' from a rule sw —> s'w' contains symbols from E, but also
symbols of the form (a, go) (or, in the case of cell iout, of the form (a, out)). Such
symbols will be sent to the cells related by synapses to cell <Tj where the rule
sw —> s'w' is applied, according to the following modes:

— replicative (indicated by repl): each symbol a, for (a, go) appearing in w', is
sent to each of the cells <jj such tha t (i,j) G syn;

— unique destination (indicated by one): all symbols a appearing in w' in the
form (a, go) are sent to one of the cells CTJ such tha t (i,j) G syn, nondeter-
ministically chosen; more exactly, in the case of modes par and max of using
the rules, we first perform all applications of rules, and after tha t we send
all obtained symbols to a unique descendant of the cell (that is, we do not
t reat separately the impulses introduced by each rule, but all of them in a
package);

— non deterministic distribution (indicated by spread): the symbols a appearing
in w' in the form (a, go) are non-deterministically distributed among the cells
(jj such tha t (i,j) G syn.

In order to formally define the transition among the configurations of II we
need some further notations. For a multiset w over Etot, we denote by go(w) the
multiset of symbols a G E appearing in w in the form (a, go), and by out(w)
the multiset of symbols a G E, appearing in w in the form (a, out). Clearly,
go(w)(a) =w((a,go)) and out(w)(a) = w((a, out)), a G E. Moreover, for a n o d e
i in the graph defined by syn we denote ant(i) = {j | (j, i) G syn} and succ(i) =
{j I (hj) € syn} (the ancestors and the successors of node i, respectively).

During any transition, some cells can do nothing: if no rule is applicable to
the available multiset of impulses in the current state, then a cell waits until new
impulses are sent to it from its ancestor cells.

A sequence of transitions among configurations of the t P system II is called a
computation of II. A computation which ends in a configuration where no rule in
no cell can be used, is called a halting computation. Assume tha t during a halting
computation the t P system II sends out, through the cell o~iout, the multiset z.
We say tha t the vector &E(Z), representing the multiplicities of impulses from
z, is computed (or generated) by II.

Rather surprising, if we take into consideration the apparently weak ingre­
dients of our models, when using the mode min of applying the rules, even the
non-cooperative t P systems turn out to be computationally universal. More re­
sults about the computational power of the differents variants of t P systems are
in [11] and [15].

3 Solving SAT in Linear Time

Problems related to paths in a (directed) graph can be easily solved by a t P
system, just by constructing a net with the synapses graph identical to the
graph we deal with, constructing all paths in the graph with certain properties
by making use of the maximal mode of applicating the rules and of the replicative
communication, and checking the existence of a pa th with a desired property.
The H P P is solved in this way in [11].

The architecture of t P systems and their way of working (especially the fact
tha t in the maximal mode of using the rules we can process all impulses which

may be processed in such a way that the same next state is obtained, irrespective
which rules are used, and the fact that in the replicative mode one can send the
same impulses to all successors of a cell) have an intrinsic computational power.
We will show this power with the resolution of the SAT problem.

Let F = C\ A C2 A . . . A Cm , where each clause Cj, 1 < i < m, is a disjunction
C-i = y\ V y2 V . . . V yr, with each yj being either a propositional variable, xs,
or its negation, ->xs, for s G {1, 2 , . . . , n}. The SAT problem ask wether or not
there is a truth-assignment of the variables that makes the formula true. Note:
We will use £j (respectively /$) to represent x$ = true (resp. x$ = false).

We construct the tP system II with the following components:

II = (E, as, ertl, er/!,. . . , atn,Vfn,&E, ^Vji,^o, syn, O),

where y^i are the variables yj in the clause Cj for j G {1, 2 , . . . , n} and
i e { l , 2 , . . . , m } .

E = {z I z = {A} or z = gig2 • • • gu for gi = tu fo,l <i < n},
as = ({«}, s, A, {sA -^ s(A, go)})

ati = ({s}, s, ti, {sz —> s(zti, go), for each i = {1, 2 , . . . , n}, and

z = A or z = gig2 • • • g%, for gi = tu fo,l <i < n}),
afi = (I s } ' s ' /»> { sz "^ s (z / ^ S10); for e a c n * = {1, 2 , . . . , n}, and

z = A or z = gig2 • • • gi: for gt = tu fi,l<i< n}),
aE = ({«}, s, A, {sz -^ s(z, go)} I z = gxg2 • • • gn, \z\ = n),

ay- i = ({s}, s, A, {sz —> s(z, 30) if tj G z and Cj contains Xj,

or if / j G z and Cj contains -iXj}),

o~o = ({«}, s, A, {sz —>• s(z, owt)}),

syn = {(S, gi), (gk, gk+1), (gn, E), (E,yjA), (yjti,yjti+1), (yjtm, O) \

gk = tk, Ik for k = {2 , . . . , n - 1}, i = {2 , . . . , m - 1} and j = {1, 2 , . . . , n}},

O = Output membrane.

It is easy to see that NmaXirepi(II) ^ 0 if and only if the SAT problem has
a solution. This system works as follows. There are two phases. In the first one
the system generates all the truth-assignments in the form of strings of length n
composed of tj, / j , 1 < i < n in all possible combinations (this takes n steps). The
strings are constructed starting in membrane S with sequential concatenatations.
In each membrane gi the corresponding symbol gi for gi = U,fi,l < i < n is
concatenated and the resulting strings are replicated to the following membranes
<?i+i. The generation phase ends with the addition of the last symbol gn = tn, fn

forming the 2™ truth-assignments z that reach the membrane E. Note that the
strings z are manipulated as symbols through the tP system. In figure 1 we can
see the topology of the generative membranes.

In membrane E starts the second phase: the computational or "filtering"
phase (resembling the filter steps of the Lipton's algorithm, see [9]). This second
phase is a sequence of m steps or filters, one for each clause of the formula. In

Fig. 1. Generation of the the 2" truth-assignments z of length n.

the first step (membranes y^\) only the strings z that satisfies the first clause
C\ are allow to go to the next level. In other words, only the strings z such that
tj G z and C\ contains Xj, or the strings z such that fj G z and C$ contains -*Xj
are allow to travel to the second level (filter). These filters are repeated until the
level m. If some z reaches the output membrane O, the formula is satisfiable and
the symbol z sent out of the system encodes a SAT assignment. If no symbol z
is sent out after n + m steps, the formula is no satisfiable. For example, the filter
membranes for the formula F = (xi V -1x2) A (->xi V x<i) are shown in figure 2.

Output

Fig. 2. Computation phase: two "filtering" steps across membranes.

Therefore, our tP system (or nP system) can solve the SAT problem in linear
time: n steps for generating all truths-assignments and m steps to check the truth
value of each of the m clauses. (Note that in our calculations of time steps we
have not count the two steps to/from cell E. We could suppress the E cell but for
sake of clarity we have maintained it in the system acting like delimiter between
the two phases).

4 Conclusions

We have shown tha t neural-like membrane systems can solve in linear time not
only graph theory problems but also the SAT problem. There are a lot of topics
for further research pointed in [11]. One more topic for further research could
be the interpretation of the SAT bio-algorithm presented here like a special
ballistic computation. In some sense the objects z cross the obstacles imposed
by the clauses. The SAT problem has solution if some z arrives at the end of the
"clause labyrinth".

References

1. B. Alberts et al., Essential Cell Biology. An Introduction to the Molecular Biology
of the Cell, Garland Publ. Inc., New York, London, 1998.

2. M.A. Arbib, Brains, Machines, and Mathematics, second ed., Springer-Verlag,
Berlin, 1987.

3. J.P. Banatre, P. Fradet, D. LeMetayer, Gamma and the chemical abstract reaction
model: fifteen years after, in vol. Multiset Processing. Mathematical, Computer Sci­
ence, and Molecular Computing Points of View (C.S. Calude, Gh. Paun, G. Rozen-
berg, A. Salomaa, eds.), Lecture Notes in Computer Science, 2235, Springer-Verlag,
2001, 17-44.

4. D.S. Blank et al (24 co-authors), Connectionist symbol processing: Dead or alive?,
Neural Computing Surveys, 2 (1999), 1-40.

5. C. Choffrut, ed., Automata Networks, Lecture Notes in Computer Science, 316,
Springer-Verlag, Berlin, 1988.

6. E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana, Multiset automata, in vol. Multiset
Processing. Mathematical, Computer Science, and Molecular Computing Points of
View (C.S. Calude, Gh. Paun, G. Rozenberg, A. Salomaa, eds), Lecture Notes in
Computer Science, 2235, Springer-Verlag, 2001, 67-82.

7. F. Gecseg, Products of Automata, Springer-Verlag, Berlin, 1986.
8. S.C. Kleene, Representation of events in nerve nets and finite automata, Automata

Studies, Princeton Univ. Press, Princeton, N.J., 1956, 2-42.
9. R. J. Lipton, Using DNA to solve NP-complete problems, Science, 268 (April 1995),

542-545.
10. W.R. Loewenstein, The Touchstone of Life. Molecular Information, Cell Commu­

nication, and the Foundations of Life, Oxford Univ. Press, New York, Oxford, 1999.
11. Carlos Martin-Vide, Gheorghe Paun, Juan Pazos and Alfonso Rodriguez-Paton,

Tissue P systems, Theoretical Computer Science, vol. 296, issue 2, (2003), 295-326.
12. A. Mateescu, V. Mitrana, Parallel finite automata systems communicating by

states, Intern. J. Found. Computer Sci., to appear.
13. W.S. McCulloch, W.H. Pitts, A logical calculus of the ideas immanent in nervous

activity, Bull. Math. Biophys., 5 (1943), 115-133.
14. Gh. Paun, Computing with membranes, Journal of Computer and System Sciences,

61, 1 (2000), 108-143 (see also Turku Center for Computer Science-TUCS Report
No 208, 1998, www.tucs.fi).

15. Gh. Paun, Membrane Computing. Springer-Verlag, 2002.

http://www.tucs.fi

