

Working Paper Series
ISSN 1170-487X

Object-Orientation in Standard Z
(New title: Object Orientation without

Extending Z)

Mark Utting and Shaochun Wang

Working Paper: 12/02
December 2002

© 2002 Mark Utting and Shaochun Wang

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton, New Zealand

Object Orientation without Extending Z

Mark Utting and Shaochun Wang

The University of Waikato, Hamilton, NZ.
Email: {marku,sw19}@cs.waikato.ac.nz

WWW: http://www.cs.waikato.ac.nz/~marku

Abstract. The good news of this paper is that without extending Z,
we can elegantly specify object-oriented systems, including encapsula-
tion, inheritance and subtype polymorphism (dynamic dispatch). The
bad news is that this specification style is rather different to normal
Z specifications, more abstract and axiomatic, which means that it is
not so well supported by current Z tools such as animators. It also en-
forces behavioural subtyping, unlike most object-oriented programming
languages. This paper explains the proposed style, with examples, and
discusses its advantages and disadvantages.

1 Introduction

Object orientation offers a technology for structuring large, complex software
systems [Mey97], so many Z researchers have proposed different approaches for
extending Z with an object-oriented structuring mechanism [SBC92]. These in-
clude attempts to use standard Z in a more object oriented style, and proposed
extensions to Z to allow fully object oriented specifications. Some of them are
being widely accepted, some are not.

One of the most popular extensions is Object-Z [DKRS91]. From our ex-
perience of Object-Z, we found that its state semantics in modelling objects is
too complex. It is a better match for software implementation, rather than for
software specification and design. In other words, its explicit state modelling is
a structuring mechanism simulating object oriented programming (OOP), not
emphasizing the abstract nature of object oriented analysis and design (OOAD).
We believe that some of the mechanisms of object-oriented programming, such
as non-monotonic inheritance and the use of reference semantics as the default
paradigm, need to be specified abstractly in an object-oriented specification lan-
guage and that OOAD can be supported with a simple but powerful semantics.

Our intention is to explore the semantics of object oriented concepts, and
to specify object oriented systems in Z. The key insight of this paper is that
by using an abstract model of objects, subtypes can be modelled as subsets;
moreover, we can use subsets to model inheritance and dynamic dispatch. We
also introduce an elegant encoding of objects into standard Z, which is described
in Section 6.1.

The following sections illustrate the approach with a series of examples, grad-
ually introducing more features and discussing their ramifications. Section 9

2

describes our conclusions and areas for future work. This paper uses a value se-
mantics for objects, rather than reference semantics, but the conclusion briefly
discusses how our approach can also support references and object identity.

2 Encoding Object-Orientation into Z

This section describes how we represent objects and methods in Z. The four key
ideas, explained in the following subsections, are that:

1. Objects are black boxes.
2. Subtypes are subsets.
3. Methods are functions/relations.
4. Observations allow model-oriented specification.

2.1 Objects are black boxes

Unlike most object-oriented extensions of Z, we do not specify a concrete model
of objects. Instead we view each object as a black box whose internal details are
hidden. In Z, we do this by defining a given type for each hierarchy of classes.
An object is simply a member of this given type.

To model a single-rooted inheritance hierarchy where all classes inherit from
the Object class (as in Java and Smalltalk), we define a single given type

[Object]

To model a multi-rooted inheritance hierarchy (as in C++), we define one given
type for each root class (e.g., [Document ,Window]). With this multi-rooted ap-
proach, errors such as applying a method to an object of the wrong class can
often be detected statically by the Z type system, whereas in the single-rooted
approach, those errors would be caught by the domain checks of Z/EVES in-
stead. The multi-rooted approach has the disadvantage (or advantage) that it
is impossible to later define an object that inherits from two different hierar-
chies. For example, x ∈ Document ∩ Window is ill-typed in Z. In other words,
the multi-rooted approach ensures that two class hierarchies with separate roots
are disjoint. For this reason, when specifying a new system whose class hierar-
chies are likely to evolve, we usually commence with the single-rooted approach
because it is more flexible.

2.2 Subsets model subtypes

This approach to inheritance and behavioural subtyping is refreshingly simple.
To define a new type of objects, Document , which inherits from an existing type
(say, Object), we simply define Document to be a subset of Object . To write
Document ⊆ Object as a declaration in Z, we must write this in the slightly less
obvious form:

3

Document : PObject

This extends elegantly to multiple inheritance. For example, we might want
to specify that an Pane is a Document that is displayed in a Window . That is,
Pane ⊆ Document and Pane ⊆ Window . We write this in Z as:

Window : PObject

Pane : P(Document ∩ Window)

2.3 Methods are functions/relations

In a programming language, a method call is written as:

outputs := object.method(inputs)

This method call typically changes the internal state of the object, and may
have side-effects on other parts of the system such as the outputs.

Given object , object ′ ∈ Class , inputs ∈ Inputs and outputs ∈ Outputs , we
model the above method call by the Z predicate:

(object ′, outputs) ∈ method(object , inputs)

where method is a loosely defined axiomatic relation:

method : (Class × Inputs) ↔ (Class × Outputs)

PreAx
PostAx

When a method must modify other objects, these must be passed as inputs
and returned as outputs of the method. For example, an execute method of
Command in [GHJV94] on page 233-242, can be specified as:

execute : (Command × Document) → Document

The preconditions and postconditions give a partial specification of the be-
haviour of method . It is easy in Z to specify contradictions when writing arbitrary
axioms, but we reduce the danger of this by writing precondition and postcon-
dition axioms in a standard style: the PreAx above is written as:

(∀ self : Class ; in : Inputs
| Precondition
• (self , in) ∈ dommethod)

while PostAx is written as:

(∀ self , self ′ : Class ; in : Inputs ; out : Outputs
| (self ′, out) ∈ method(self , in)
• Postcondition)

4

In this paper, all of our methods happen to be deterministic and total, so
we use total functions rather than relations, and do not need to specify explicit
preconditions. But in the general case, we use precondition axioms to specify
lower bounds on the domain of the method, and postcondition axioms to specify
the range.

Note that these pre and postcondition axioms often give a partial specifica-
tion (that is, a loose specification) of method at the point it is declared. Then each
subtype adds additional precondition or postcondition axioms to more tightly
specify the behaviour of method on that subtype. For example, if we add a sub-
type Class2 ⊆ Class , then we would specify the extra behaviour by adding an
extra postcondition axiom:

(∀ self : Class2; self ′ : Class ; in : Inputs ; out : Outputs
| (self ′, out) ∈ method(self , in)
• ExtraPostcondition)

This has the effect of giving us more information about the possible outputs
of method when the input object happens to belong to the subtype. (Note how
the type of self ′ is still the original supertype—this ensures that all possible out-
puts are constrained). If we combine the original axiomatic definition of method
with the extra postcondition, we see that the effect is to strengthen the whole
postcondition:

method : (Class × Inputs) ↔ (Class × Outputs)

(∀ self , self ′ : Class ; in : Inputs ; out : Outputs
| (self ′, out) ∈ method(self , in)
• Postcondition ∧

(self ∈ Class2 ⇒ ExtraPostcondition))

So, in a complex hierarchy of subtypes, the final postcondition axiom for a
method will typically contain one implication (self ∈ SubClassi ⇒ Posti) for
each class in the hierarchy—this models the effect of dynamic dispatch in an
object-oriented language. If Posti and Postj are contradictory, they must belong
to disjoint subtypes in the hierarchy. We discuss the issue of overriding a method
with contradictory behaviour more in Section 5.

Preconditions are different. If we add an extra precondition axiom:

(∀ self : Class2; in : Inputs
| ExtraPrecondition
• (self , in) ∈ dommethod)

and combine this with the original axiomatic definition of method (showing only
the precondition parts) we see that the whole precondition is actually weakened,
because more values are now known to be in the domain of method .

5

method : (Class × Inputs) ↔ (Class × Outputs)

(∀ self : Class ; in : Inputs
• (Precondition ⇒ (self , in) ∈ dommethod) ∧

(self ∈ Class2 ∧ ExtraPrecondition ⇒ (self , in) ∈ dommethod))

Those readers who are familiar with the usual notions of Z refinement will
recognise that this strengthening-postconditions and weakening-preconditions
property means that the behaviour of method at a subtype (like Class2) is a
refinement of its behaviour at the supertype. In object-oriented circles, this is
called behavioural subtyping. Our axiomatic style of specifying methods guar-
antees behavioural subtyping, and we will have more to say about this in later
sections.

2.4 Observations allow model-oriented specification

Given that objects are just members of some given type, which has no internal
structure, it is not clear how we can write preconditions and postconditions for
a method. How can a postcondition compare self ′ with self ? We want to specify
more than just equality or inequality!

To support model-oriented specification, we declare observations of each
class, which effectively give us a partial view of the internal state of the ob-
ject. An observation is simply a total function from the class to some other type.
For example:

size : Class → N

count : Class2 → N

Since Class2 ⊆ Class , the size observation is applicable to Class2 objects as
well. So the further down the subtype hierarchy we go, the more observations
we can make of an object.

These observations should not be regarded as part of the implementing of
the object – an observation may be implemented by a data field, but could be
implemented by a method which calculates and returns a value, or it may not
be implemented at all, because it is defined only for specification purposes (in
such cases, all uses of it will be refined into calls to other methods).

3 The MagicBall Example

In order to illustrate our approach on specifying objects and methods in value
semantics, we start from a simple example of MagicBall.

3.1 MagicBall specification

Let us say we have an object – a magic ball which has three different sizes: small,
medium and large. The changes of sizes are observable.

6

A specification of such magic balls in Z is:

[MagicBall]

Size ::= small | medium | large

size : MagicBall → Size

inc : MagicBall → (MagicBall × Size)
dec : MagicBall → (MagicBall × Size)

∀ ball , ball ′ : MagicBall ; s : Size
• (inc ball = (ball ′, s) ⇒

size ball ′ = s ∧
(size ball = small ⇒ s = medium) ∧
(size ball = medium ⇒ s = large) ∧
(size ball = large ⇒ s = large))

∧ (dec ball = (ball ′, s) ⇒
size ball ′ = s ∧
(size ball = small ⇒ s = small) ∧
(size ball = medium ⇒ s = small) ∧
(size ball = large ⇒ s = medium))

We call a set of related axioms like the above, which defines the object type
MagicBall, an object specification or (informally) a class specification of Mag-
icBall.

3.2 Implementations of MagicBall

As we pointed out in section 2.4, the MagicBall specification is a partial view
of the internal state of an object. We can have many implementations for this
specification, each of them may have different number of states, and each im-
plementation must conform to the observations of its specification. These imple-
mentations are also called models of the specification in this paper.

Three models of the magic ball specification are shown in Fig. 1. For example,
model M1 could be defined in Z as:

M 1 ::= S | M | L
sizeM1 == {S 	→ small ,M 	→ medium,L 	→ large}
incM1 == {S 	→ M ,M 	→ L,L 	→ L}
decM1 == {S 	→ S ,M 	→ S ,L 	→ M }
Informally, we say that the state spaces of each of these models are subsets of

MagicBall (or possible instantiations of MagicBall). However, we never equate
MagicBall with an explicit concrete model like M 1, M 2 or M 3, because we want

7

M1

S M L
inc

dec

decdec

incinc

M2

SR MG LB

incdec

decdec

incinc

M3SR MR LR

incdec

decdec

incinc

SG MG LG

incdec

dec
dec

incinc

SB MB LB

incdec

decdec

incinc

Fig. 1. Models of MagicBall

the freedom to continue making further subtypes, which specify more complex
models. Hence, we always keep the MagicBall set abstract.

One thing we should notice here is that all models of the MagicBall specifi-
cation must have at least three states, because the axioms specify observations
of at least three distinct values.

4 Extending the MagicBall Example with Colour

An extended ColourMagicBall example is given here to show how to specify a
subtype by subsetting, and how to deal with the frame problem.

4.1 ColourMagicBall specification

A colour magic ball, in addition to its size attribute, has a colour which may be
red, green or blue. The changes of colours are observable.

An object type ColourMagicBall as a subtype of MagicBall is specified as a
subset of MagicBall:

8

ColourMagicBall : PMagicBall

Colour ::= red | green | blue

colour : ColourMagicBall → Colour

ColourMagicBall has an extra method paint .

paint : (ColourMagicBall × Colour) → ColourMagicBall

∀ ball , ball ′ : ColourMagicBall ; c : Colour
• paint (ball , c) = ball ′ ⇒ colour ball ′ = c

Obviously in Fig. 1, M2 and M3 are models of this specification. It is not so
obvious that M1 is also a model of the above specification. The easiest way to
prove it is that M1 and M2 are isomorphic. Method paint is non-deterministic
in the specification, and is not displayed.

One possible M 2 with paint method could be:

M 2 ::= SR | MG | LB
sizeM2 == {SR 	→ small ,MG 	→ medium,LB 	→ large}
colourM2 == {SR 	→ red ,MG 	→ green,LB 	→ blue}
incM2 == {SR 	→ MG,MG 	→ LB ,LB 	→ LB}
decM2 == {SR 	→ SR,MG 	→ SR,LB 	→ MG}
paintM2 == {(SR, red) 	→ SR, (MG, red) 	→ SR, (LB , red) 	→ SR,

(SR, green) 	→ MG, (MG, green) 	→ MG, (LB , green) 	→ MG,
(SR, blue) 	→ LB , (MG, blue) 	→ LB , (LB , blue) 	→ LB}

The fact that M 2 is a model of ColourMagicBall means that when we paint a
ball, its size can change. This is perhaps a little surprising, but is simply because
we forgot to specify that painting a ball should not change its size. We can do
this by adding one more postcondition:

∀ ball , ball ′ : ColourMagicBall ; c : Colour
• paint (ball , c) = ball ′ ⇒ size ball ′ = size ball

Note that M3 is the model of this revised ColourMagicBall specification, and
neither M1 nor M2 anymore. This revised ColourMagicBall is a subtype of the
MagicBall. Some models of MagicBall may not be models of ColourMagicBall,
but all models of ColourMagicBall are models of MagicBall.

4.2 The frame problem

We should also notice that the inc and dec operation may behave weirdly, i.e.
we don’t know whether these methods will change the colour of the colour magic

9

balls or not. In fact, our current axioms allow the inc method to mutate a Colour-
MagicBall into a MagicBall! Most OO programming languages do not support
such mutations, but Smalltalk does. We can specify that the type remains un-
changed to advoid this:

∀ ball : ColourMagicBall ; ball ′ : MagicBall ; s : Size •
(inc ball = (ball ′, s) ⇒ ball ′ ∈ ColourMagicBall) ∧
(dec ball = (ball ′, s) ⇒ ball ′ ∈ ColourMagicBall)

Similarly, if we want these inherited methods to leave new observations un-
changed (this is the default in most object-oriented programming languages), we
can easily specify this by adding some restrictions on inc and dec for Colour-
MagicBall:

∀ ball : ColourMagicBall ; ball ′ : MagicBall ; s : Size •
(inc ball = (ball ′, s) ⇒ colour ball = colour ball ′) ∧
(dec ball = (ball ′, s) ⇒ colour ball = colour ball ′)

This ”frame problem” arises when we always want to constrain the inherited
methods from changing subtype observations. Stating these no-change facts can
be unwieldy and verbose. However, there are situations where inherited methods
do need to change new attributes, so banning this possibility is undesirable. The
verbosity problem could be easily solved by adding ”macro” or structural syntax,
which may result in an extended Z (same semantics, but extended syntax) or Z
tools.

Fig. 2 shows a model of ColourMagicBall M 3 with unchanged subtype ob-
servation inheritance. To make the figure more readable, we omitted the inputs
of the paint method, and the bidirectional arrows of all paint transitions are not
shown.

5 Behavioural Subtyping versus Inheritance

In this section, we discuss the differences between behavioural subtyping, as used
in this paper, and inheritance, as used in typical object-oriented programming
languages.

Informally, we say that type B is a behavioural subtype of type A iff [MRT98]:

– the interface of B conforms to that of A, and
– the methods of B have the same (or refined) behaviour as those of A.

Interface conformance means that B has methods with the same names, and
compatible signatures, as the methods of A. It may have additional methods too.
In our approach, subtypes are always interface conformant with their supertypes,
because the set of objects B is defined to be a subset of A, which means that all
the methods of A are automatically applicable to B objects.

10

M3

SR MR LR

incdec

decdec

incinc

SG MG LG

incdec

dec
dec

incinc

SB MB LB

incdec

decdec

incinc

paint

paintpaint

paint

paint

paint

paint paint

paint

Fig. 2. A model of ColourMagicBall

There are many different ways of defining behaviour, but one simple one is
to view the behaviour of an object as being characterized by the set of all the
properties (observations) that the behaviour satisfies. To ensure behavioural sub-
typing, subtypes must preserve all the properties of their supertypes. Typically,
they add more properties. In our approach, the set of properties associated with
a type is simply all the theorems that are derivable from its axioms. Since our
subtypes add axioms (and cannot retract axioms–impossible in Z), our approach
guarantees that subtypes enjoy all the properties of their supertypes if these
subtypes exist. The pre/post refinement relationship discussed in Section 2.3 is
simply a consequence of this axiomatic extension property.

We see that our approach ensures behavioural subtyping. However, it is
common in programming languages to define inheritance hierarchies that are
not behavioural subtypes, because subtype methods use dynamic dispatching to
override the default behaviour of the corresponding supertype methods [LW94].
What happens if we try this in our approach? Is there any way of specifying
such non-monotonic inheritance hierarchies?

11

5.1 The bird/emu example

A classic example in the object-oriented literature is birds and emus. The Bird
superclass has a canFly attribute that returns true, but the Emu subclass over-
rides this to return false, because emus are an exception to the default behaviour
of birds, which is to fly. We can specify this as follows.

[Bird]

CanFly ::= yes | no

canfly : Bird → CanFly

∀ bird : Bird • canfly bird = yes

Now we add the Emu subtype, and try to override canfly.

Emu : PBird

∀ emu : Emu • canfly emu = no

This might look okay, but attempting to ‘create an emu’ by proving an ini-
tialization theorem like ∃ e : Emu • true, fails. In fact, from the above axioms
we can prove that Emu = ∅. This is the lesson, if one specifies subtype behaviour
that is inconsistent with the supertype behaviour, the subtype will be empty. 1

Nevertheless, we can obtain some of the desired effect if we are prepared to
go back and change the supertype specification. Essentially, we must remove the
contradiction by modifying the supertype to weaken the faulty assumption that
all birds can fly, and instead allow for the possibility of non-flying birds.

[Bird]

canfly : Bird → CanFly

∀ bird : Bird | bird /∈ Emu • canfly bird = yes

Emu : PBird

∀ emu : Emu • canfly emu = no

Here we have the effect that is sometimes desired in object-oriented programs:
the supertype-only objects (the ordinary, non-emu birds) have canfly = yes ,

1 An alternative approach would be to specify subtypes using P1 rather than P, to
ensure that subtypes are non-empty. But this would make the whole specification
inconsistent. We prefer the P approach, since it localizes the effects of inconsistency
to the subtype that causes it.

12

whereas the subtype objects (the emus) have canfly = no. Effectively, the com-
plete set of birds is a union partitioned by two subclasses: ordinary birds which
can fly and emu-like birds which can’t fly.

Note that the resulting system still satisfies behavioural subtyping, because
at the Bird level, the value of the canfly attribute on emus is unknown, while
the Emu level simply strengthens this by adding the property that canfly = no
for emus. The bird-only objects (Bird \ Emu) have different behaviour to the
Emu subtype objects, but behavioural subtyping still holds between the whole
Bird set and its Emu subset.

The lesson here is: we can specify systems where the supertype-only objects
have different behaviour to the subtype objects, but to do this, we must carefully
specify the supertype behaviour to allow exceptions in the subtype.

In object-oriented programming languages, this non-monotonic overriding ef-
fect can be implemented by late binding of methods, without modifying the su-
pertype code. But in our strictly behavioural subtyping approach, the supertype
specifications must be modified. This insistence on purity could be regarded as a
disadvantage of our approach, but we prefer to regard it as a desirable discipline
that leads to clearer specifications that are easier to reason about.

6 The Quadrilaterals Example

In this section, we specify the widely used quadrilaterals example [SBC92] for
comparison with other styles of object orientation in Z.

We also introduce a more familiar object-oriented notation to specify the
example. For instance, instead of using

method : (Class × Inputs) → (Class × Outputs)

to declare an operation, we declare it as a special infix operator

•method() : (Class × Inputs) → (Class × Outputs)

so that the method can be called as (x ′, o) = x •method(in). This looks more like
traditional object-oriented syntax for method calls. Note that •method is a legal
Word in Standard Z: it is a subscripted bullet followed by an alphabetic name,
and would be written in Unicode as ‘↘ • ↖ m e t h o d ’. Similarly, we sometimes
declare observation functions as postfix operators (and add the subscript bullet),
so that we can write calls to them as x •size.

6.1 The Quadrilaterals example with OO-like syntax

The classes of quadrilaterals are shown in Fig. 3. It is assumed that readers are
familiar with the context of this example from the specifications in [SBC92].

[Vector ,Scalar]

13

rhombus square rectangle

quadrilateral

paralleogram

quadrilateral

square

rhombus rectangle

paralleogram

Fig. 3. Quadrilaterals

Some operations of vector are defined as the following. Note that we use
polar coordinate to represent an angle. In our approach, there is no difficulty to
define cartesian and polar coordinates at the same time, because we treat them
as observable properties rather than internal representations.

+ : Vector × Vector → Vector
. : Vector × Vector → Scalar

0 : Vector
0, 1 : Scalar

+ : Scalar × Scalar → Scalar
− : Scalar × Scalar → Scalar
/ : (Scalar × Scalar) 	→ Scalar
× : (Scalar × Scalar) → Scalar
•x : Vector → Scalar
•y : Vector → Scalar
•ρ : Vector → Scalar
•θ : Vector → Scalar

tan() : Scalar 	→ Scalar

0 •ρ = 0
∀ q : Quadrilateral •

q •ρ × q •ρ = q •x × q •x + q •y × q •y ∧
tan(q •θ) = q •y/q •x

[definitions omitted]

Then we define the specification of quadrilaterals with four edges of v1, v2,
v3, and v4 :

[Quadrilateral]

14

•v1, •v2, •v3, •v4, •position : Quadrilateral → Vector
•edges : Quadrilateral → Vector × Vector × Vector × Vector

∀ q : Quadrilateral •
q •edges = (q •v1, q •v2, q •v3, q •v4) ∧
q •v1 + q •v2 + q •v3 + q •v4 = 0

Parallelogram : PQuadrilateral
Rhombus : P Parallelogram
Rectangle : PParallelogram
Square : PRectangle

Square = Rectangle ∩Rhombus
∀ q : Quadrilateral •

q •v1 + q •v3 = 0 ⇔ q ∈ Parallelogram
∀ p : Parallelogram •

p •v1 •ρ = p •v2 •ρ ⇔ p ∈ Rhombus ∧
(p •v1).(p •v2) = 0 ⇔ p ∈ Rectangle

In short, a quadrilateral can be moved around by changing its position. For
all except general quadrilaterals, the angle between two adjacent sides is well
defined.

•move() : (Quadrilateral × Vector) → Quadrilateral
•angle : Parallelogram → Scalar
•shear() : (Quadrilateral × Scalar) → Quadrilateral

∀ q, q ′ : Quadrilateral ; v : Vector •
q ′ = q •move(v) ⇒

(q ′ •position = q •position + v ∧ q ′ •edges = q •edges)
∀ q : Parallelogram; angle : Angle •

q •angle = q •v2 •θ − q •v1 •θ
∀ q, q ′ : Quadrilateral ; angle : Scalar • q ′ = q •shear(angle) ⇒

(q ′ •position = q •position ∧
(q ′ •v1 •x = q •v1 •x + q •v1 •y × tan(angle) ∧ q ′ •v1 •y = q •v1 •y ∧
q ′ •v2 •x = q •v2 •x + q •v2 •y × tan(angle) ∧ q ′ •v2 •y = q •v2 •y ∧
q ′ •v3 •x = q •v3 •x + q •v3 •y × tan(angle) ∧ q ′ •v3 •y = q •v3 •y ∧
q ′ •v4 •x = q •v4 •x + q •v4 •y × tan(angle) ∧ q ′ •v4 •y = q •v4 •y))

Here we give a clear and explicit definition for shearing method. Apart from
the readability and completeness comparing with other proposed approaches
(the definition of shearing is omitted in all other object-oriented Z approaches
in [SBC92]), the shearing function defined here is obviously more intuitive and
reasonable.

In our shearing function, any quadrilateral can be sheared. A square may
become a rhombus after shearing, although the type conversion could make it

15

harder to reason about. And many object oriented programming languages can
not easily support this feature.

Like other approaches in [SBC92], in order to avoid type conversion problems,
we can also limit the shearing function on quadrilaterals except squares, rhombi
and rectangles.

•shear() : (Quadrilateral × Scalar) 	→ Quadrilateral

dom(dom shear) = Quadrilateral \ (Rhombus ∪ Rectangle)

6.2 A Drawing system of quadrilaterals

A drawing system can be simply defined as a sequence of quadrilaterals:

DrawingSystem == seqQuadrilateral

•add() : (DrawingSystem × Quadrilateral) → DrawingSystem
•delete() : (DrawingSystem × N) → DrawingSystem
•move(,) : (DrawingSystem × N × Vector) → DrawingSystem
•angle() : (DrawingSystem × N) → Scalar
•shear(,) : (DrawingSystem × N × Scalar) → DrawingSystem

∀ ds : DrawingSystem; q : Quadrilateral ; n : N; v : Vector | n ≤ #ds •
(ds ′ = ds •add(q) ⇒ ds ′ = ds � 〈q〉 ∧
ds ′ = ds •delete(n) ⇒ ds ′ = ((dom ds) \ {n}) � ds ∧
ds ′ = ds •move(n, v) ⇒
ds ′ = ((1 . . n − 1) � ds) � (ds n) •move(v) � ((n + 1 . . #ds) � ds) ∧
ds ′ = ds •shear(n, v) ⇒
ds ′ = ((1 . . n − 1) � ds) � (ds n) •shear(v) � ((n + 1 . . #ds) � ds) ∧
ds •angle(n) = (ds n) •angle)

Then we can add or delete quadrilaterals, inquiring angles, move and shear
each quadrilateral in the drawing system respectively.

As a simple rule, if a class is a composition of objects without any other
distinguishable observation properties, we can explicitly specify it as a sequence
of objects. Otherwise, we must define it as a given set or a subset of a given set
(Because the space limit in this paper, we will elaborate this problem in another
paper). For instance, we declare the drawing system as:

[DrawingSystem]

and plus an attribute of composition:

.comps : DrawingSystem → seqQuadrilateral

16

•add() : (DrawingSystem × Quadrilateral) → DrawingSystem
•delete() : (DrawingSystem × N) → DrawingSystem
•move(,) : (DrawingSystem × N × Vector) → DrawingSystem
•angle() : (DrawingSystem × N) → Scalar
•shear(,) : (DrawingSystem × N × Scalar) → DrawingSystem

∀ ds : DrawingSystem; q : Quadrilateral ; n : N; v : Vector | n ≤ #ds •
(ds ′ = ds •add(q) ⇒ ds ′ •comps = ds •comps � 〈q〉 ∧
ds ′ = ds •delete(n) ⇒

ds ′ •comps = ((dom ds •comps) \ {n}) � ds •comps ∧
ds ′ = ds •move(n, v) ⇒

ds ′ •comps = ((1 . . n − 1) � ds •comps)�
(ds •comps n) •move(v)�
((n + 1 . . #ds •comps) � ds •comps) ∧

ds ′ = ds •shear(n, v) ⇒
ds ′ •comps = ((1 . . n − 1) � ds •comps)�

(ds •comps n) •shear(v)�
((n + 1 . . #ds •comps) � ds •comps) ∧

ds •angle(n) = (ds •comps n) •angle)

7 Explicit Models for Animation and Proof

Using an abstract model of objects is convenient for specification, but makes it
difficult to animate specifications (for validation and testing purposes), because
there is no explicit finite model of objects. No existing Z animators are capable
of animating abstract objects and axiomatic functions and methods over those
objects, in the style that we have used.

In Section 3 we showed an explicit model for the MagicBall specification that
could easily be animated. In this section, we briefly show how a specification of
a hierarchy of classes could be converted into an explicit model, which would be
more suitable for animation. Also, seeing one possible instantiation of the Object
given type gives insight into how our specification style works.

First of all, we build a hierarchy of state spaces, in the same way that Object-
Z does. Schema inclusion is useful here to model inheritance. Usually, the state
space of each class contains just the attributes that were defined as observation
functions, but it is possible to write specifications that require additional implicit
attributes.

MagicBallState =̂ [size : Size]
ColourMagicBallState =̂ [MagicBallState; colour : Colour]

Next we define a free type that ranges over all the possible object types in
the system. Note that we are assuming a closed, non-extensible system here!

Object ::= mball〈〈MagicBallState〉〉
| cmball〈〈ColourMagicBallState〉〉

17

Now we can define the hierarchy of subsets, starting from the bottom of the
hierarchy and defining each supertype to be the union of all its subtypes plus its
own members. This is like the Class ↓ type in Object-Z.

ColourMagicBall == ran cmball
MagicBall == ColourMagicBall ∪ ranmball

Next we define the observation functions, so that they select the desired field
out of a class state and out of all of its subclass states.

size == (λ m : ranmball • m.size) ∪ (λ cm : ran cmball • cm.size)

colour == (λ cm : ran cmball • cm.colour)

Finally we can define each method as a relation that satisfies all the relevant
preconditions and postconditions. Preconditions and postconditions that were
added in a subtype are guarded by a membership constraint so that they are
only applicable to that subtype. For example, inc can be defined as:

inc == {ball , ball ′ : MagicBall ; s : Size |
size ball ′ = s ∧
(size ball = small ⇒ s = medium) ∧
(size ball = medium ⇒ s = large) ∧
(size ball = large ⇒ s = large)) ∧
(ball ∈ ColourMagicBall ⇒ ball ′ ∈ ColourMagicBall) ∧
(ball ∈ ColourMagicBall ⇒ colour ball = colour ball ′)}

We sometimes find it useful to think of this explicit model as we specify
objects abstractly, but we do NOT propose that one should ever write such
an explicit model. It is just one possible instantiation of the Object type. It
is more verbose (the case analysis style explodes as more classes are added),
and it is not extensible. We are not yet sure whether Z theorem provers work
better with the abstract or explicit model, but we suspect the abstract model is
preferable. On the other hand, it is clear that the explicit model is more suitable
for animation than the abstract specification. It would be interesting to develop
a tool that transformed the abstract style of specification into the explicit model
for animation purposes.

8 Related Work

Our goal of formally specifying object-oriented systems in Z is to specify the
object-oriented concepts in first order logic and set theory, and utilize the ex-
isting powerful tools of Z. This greatly reduces the burden of learning a new
object-oriented formal specification language. The most important thing in our
approach is that we give an abstract, concise and consistent perception of object
types, subtyping and inheritance.

18

The abstract view of observable object behaviour closely relates to the re-
search on algebraic specification of abstract data types [CGK+]. Most of the
algbaic specification use the initial algebra for the semantics of a specification,
but we use refinement theory for modelling and interpreting object-oriented con-
structs, and defining behavioural subtyping and inheritance.

Our approach is significantly different from any other object oriented ap-
proaches in Z. Firstly, we interpret object-oriented concepts in standard Z,
rather than extending Z like Object-Z [DKRS91], MOOZ, OOZE, Z++, and
ZEST [SBC92]. Secondly, most object-oriented Z extensions explicitly model
object state (typically by state schemas, where Hall [Hal90] is an exception),
whereas we use an abstract model of objects (given types or subsets of given
types). Thirdly, we model methods using functions and relations, whereas most
other object oriented styles use operation schemas. For example, Hall’s style [Hal90]
and ZERO [SBC92]. We use value semantics and separate object identity from
its representation, which allows us to consolidate object type or class with Z type.
It also makes it possible for us to use subsetting to model inheritance, and gives
us an constructive way to build behavioural subtyping.

OOZE [AG91] is a Z-like notation, built on top of order-sorted algebras—a
very different semantic basis to standard Z. It supports inheritance, sophisti-
cated modularization and dynamic binding (including the ability for subtypes
to override supertype behaviour in non-compatible ways). Its use of axiomatic
specification style is similar to ours, but that is the only similarity. We map
object-oriented constructs into standard Z sets and relations, which gives a sim-
pler semantics and is more familiar to Z users.

[Rob00] shows how a loose axiomatic specification can be proved to be refined
by a constructive concrete model.

9 Conclusions

We have shown that an elegant and simple object-oriented specification style is
possible in Z. Modelling objects as black boxes makes it possible to specify sub-
type hierarchies using subset constraints. Our approach does not provide much
in the way of hiding or encapsulation facilities, but this is a problem with Z and
standard Z—the simple section mechanism is not sufficient to support modular-
ity. Nevertheless, the way we define methods provides a limit encapsulation. We
can group methods of an object type together by searching the whole specifica-
tion for methods which take this object type as the first parameter. This could
also enhance the extensibility of software specification by adding more methods
in other parts of the specification later when it is needed.

Our style of specification is one that can be reasoned about using the standard
Z theorem provers, but is not supported by existing animation tools, because of
its abstractness. It would be an interesting challenge to try and develop anima-
tion support for this abstract style. One promising approach might be to develop
a tool that translates our abstract style of object specification into an explicit
object model that existing animators can handle.

19

Our approach uses value semantics rather than references, but again, we
believe this is the most elegant approach for a specification language, and clos-
est to the spirit of Z. It is easy to simulate (explicit) reference semantics in a
value-semantics specification language (using seqQuadrilateral like in Sect. ref-
sec:quads, or Ref 	→ Object mappings), but the converse is not true. Reference
semantics is harder to reason about, due to the aliasing problems. An advantage
of using explicit references is that the specifier can use them only where neces-
sary, and in a controlled and localised way, thus preserving the ease of reasoning
as much as possible.

An interesting, and intrinsic, feature of our approach is that subtypes pre-
serve all the properties of their supertypes. In other words, our specification style
enforces behavioural subtyping. This is a restriction that might be considered
undesirable in a programming language, where the purpose of inheritance is of-
ten code reuse rather than behaviour specialization, so subclasses often override
inherited methods with incompatible (non-monotonic) behaviour. With our ap-
proach, if one wants to override the behaviour of a supertype in a non-monotonic
fashion, one must instead reorganise the hierarchy so that the supertype and
subtype become siblings, and their common parent specifies just their common
behaviour. This is often better style anyway, and we believe that in a specifi-
cation language it is good discipline for subtype hierarchies to be behavioural
hierarchies.

References

[AG91] Antonio J. Alencar and Joseph A. Goguen. OOZE: An object-oriented Z
environment. In P. America, editor, Proceedings ECOOP’91, LNCS 512,
pages 180–199, Geneva, Switzerland, July 15-19 1991. Springer-Verlag.

[CGK+] Maura Cerioli, Martin Gogolla, Hlne Kirchner, Bernd Krieg-Brckner,
Zhenyu Qian, and Markus Wolf (Eds.). Algebraic system specification and
development: Survey and annotated bibliography - second edition -.

[DKRS91] R. Duke, P. King, G. A. Rose, and G. Smith. The Object-Z specification
language: Version 1. Technical Report 91-1, The University of Queensland,
St. Lucia 4072, Australia, 1991.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley, 1994.

[Hal90] J. A. Hall. Using Z as a specification calculus for object-oriented systems.
In D. Bjørner, C. A. R. Hoare, and H. Langmaack, editors, VDM and Z
– Formal Methods in Software Development, volume 428 of LNCS, pages
290–318. VDM-Europe, Springer-Verlag, 1990.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[Mey97] B. Meyer. Object-Oriented Software Construction, Second Edition. The
Object-Oriented Series. Prentice-Hall, Englewood Cliffs (NJ), USA, 1997.

[MRT98] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A type theory for soft-
ware architectures. Technical Report UCI-ICS-98-14, Department of Infor-
mation and Computer Science, University of California, Irvine, April 1998.

20

[Rob00] Ken Robinson. Reconciling axiomatic and model-based specification using
the B method. In ZB’2000 – International Conference of B and Z Users,
volume 1878 of Lecture Notes in Computer Science (Springer-Verlag), pages
95–106, Helsington, York, UK YO10 5DD, August 2000. Department of
Computer Science – University of York.

[SBC92] S. Stepney, R. Barden, and D. Cooper. Object Orientation in Z. workshops
in computing. Springer-Verlag, 1992.

	12-02.pdf
	uow-cs-wp-2002-12.pdf

