Skip to main content

Failure Insensitive Routing for Ensuring Service Availability

  • Conference paper
  • First Online:
Book cover Quality of Service — IWQoS 2003 (IWQoS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2707))

Included in the following conference series:

Abstract

Intra-domain routing protocols employed in the Internet route around failed links by having routers detect adjacent link failures, exchange link state changes, and recompute their routing tables. Due to several delays in detection, propagation and recomputation, it may take tens of seconds to minutes after a link failure to resume forwarding of packets to the affected destinations. This discontinuity in destination reachability adversely affects the quality of continuous media applications such as Voice over IP. Moreover, the resulting service unavailability for even a short duration could be catastrophic in the world of e-commerce. Though careful tuning of the various parameters of the routing protocols can accelerate convergence, it may cause instability when the majority of the failures are transient. To improve the failure resiliency without jeopardizing the routing stability, we propose a local rerouting based approach called failure insensitive routing. Under this approach, upon a link failure, adjacent router suppresses global updating and instead initiates local rerouting. All other routers infer potential link failures from the packet’s incoming interface, precompute interface specific forwarding tables and route around failed links without explicit link state updates. We demonstrate that the proposed approach provides higher service availability than the existing routing schemes.

This work is partly supported by National Science Foundation Grants CAREER Award ANI- 9734428, ANI-0073819, and ITR ANI-0085824. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Alattinoglu, V. Jacobson, and H. Yu, “Towards Milli-Second IGP Convergence,” draftalaettinoglu-ISIS-convergence-00.txt, November 2000.

    Google Scholar 

  2. C. Alattinoglu, and S. Casner, “ISIS routing on the Qwest backbone: A recipe for subsecond ISIS convergence,” NANOG 24, 2/2002.

    Google Scholar 

  3. D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient Overlay Networks,” SOSP, 2001.

    Google Scholar 

  4. C. Boutremans, G. Iannaccone, and C. Diot, “Impact of Link Failures onVoIP Performance,” NOSSDAV, 2002.

    Google Scholar 

  5. C.-N. Chuah, S. Bhattacharyya, G. Iannaccone, C. Diot, “Studying failures & their impact on traffic within a tier-1 IP backbone”, CCW, 2002.

    Google Scholar 

  6. B. Fortz, “Optimizing OSPF/IS-IS weights in a changing world”, IEEE JSAC Special Issue on Advances in Fundamentals of Network Management, Spring 2002.

    Google Scholar 

  7. G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, C. Diot, “Analysis of link failures in an IP backbone”, IMW 2002.

    Google Scholar 

  8. S. Iyer, S. Bhattacharyya, N. Taft, N. McKeown, and C. Diot, “An approach to alleviate link overload as observed on an IP backbone,” INFOCOM, 2003.

    Google Scholar 

  9. A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal Topology Generation”, Proceedings of MASCOTS 2001, Cincinnati, August 2001.

    Google Scholar 

  10. P. Narvaez, “Routing reconfiguration in IP networks”, Ph.D. Dissertation, MIT, June 2000.

    Google Scholar 

  11. P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “Local Restoration Algorithms for Link-State Routing Protocols”, ICCCN, 1999.

    Google Scholar 

  12. S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, “Failure Insensitive Routing for Ensuring Service Availability,” Technical Report, University of South Carolina, Columbia, February 2003.

    Book  Google Scholar 

  13. A. Nucci, B. Schroeder, S. Bhattachrayya, N. Taft, C. Diot, “IS-IS link weight assignment for transient link failures,” SPRINT ATL Technical Report TR02-ATL-071000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nelakuditi, S., Lee, S., Yu, Y., Zhang, ZL. (2003). Failure Insensitive Routing for Ensuring Service Availability. In: Jeffay, K., Stoica, I., Wehrle, K. (eds) Quality of Service — IWQoS 2003. IWQoS 2003. Lecture Notes in Computer Science, vol 2707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44884-5_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44884-5_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40281-7

  • Online ISBN: 978-3-540-44884-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics