A Moving Average Predictor for Playout Delay Control
in Vol P

Victor M. Ramos R.*, Chadi Barakat and Eitan Altmah

1 University of Nice-Sophia Antipolis, Franc¥i ct or . Ranbs @ eee. or g
2 INRIA-Sophia Antipolis, France{cbar akat , al t man}@ophi a. i nria.fr

Abstract. Audio applications are now widely used in the Internet. Sappli-
cations require receiver playout buffers to smooth netveslay variations and
to reconstruct the periodic form of the transmitted packeszkets arriving after
their playout deadline are considered late and are not glayé Existing algo-
rithms used in the Internet operate by adaptively adjugtiagplayout delay from
talkspurt to talkspurt. There is an important tradeoff legwloss percentage and
average playout delay. Current algorithms fail to obtaimdipular loss percent-
age. Controlling this parameter is a key characteristiafor playout adaptation
algorithm. This paper presents a Moving Average algoritompiayout delay
adaptation with tunable loss percentage. We show with tbased simulations
that, in most of the cases, our algorithm performs bettar thase implemented
in popular audio tools, and this is for the range of loss rafésterest in interac-
tive audio applications.

1 Introduction

Delay, jitter, and packet loss in packet-switched wideaaretworks are the main factors
impacting audio quality of interactive multimedia apptioas. Today’'s Internet still
operates in a best-effort basis, and thus, the impact ef jifelay, and packet loss must
be alleviated by employing end-to-end control mechanisms.

Audio applications such as NeVoT [1] and Rat [2] generat&ketcspaced at reg-
ular time intervals. The traffic generated by an audio soigcivided into periods of
activity, calledtalkspurts, and periods of silence. Silence periods are periods where n
audio packets are transmitted.

Audio packets encounter variable delay while crossingnierhet, which is mainly
due to the variable queuing time in routers. This delay ‘dlitg modifies the periodic
form of the transmitted audio stream. To playout the recksteeam, an application
must reduce or eliminate this delay variability, by buffeyithe received packets and
playing them out after a certain deadline. Packets arriwftgr their corresponding
deadline are considered late and are not played out. If #ngopt delay is increased,
the probability that a packet will arrive before its schextlplayout time also increases.
This reduces the number of packets artificially dropped énplayout buffer. However,
very long playout delays have a negative impact on the iotiefty of an audio ses-
sion. Obviously, there exists a trade-off between delaylassidue to late packets. For

* Victor Ramos is also with the Universidad Autbnoma Meti@pna, Mexico.



interactive audio, packet delays up to 400 ms and loss rgtés 6% are considered
adequate [3].

We focus in this paper on the tradeoff between loss and delaplayout delay
control algorithms. Using measurements of packet enditbeelay of audio sessions
done with NeVoT, we present and validate a Moving Average JMAyorithm that
adjusts the playout delay at the beginning of each talksparprove the efficiency of
our algorithm, we compare it with earlier work done by Rangeal. [4]. We present
two versions of our algorithm: an offline algorithm and anioalone. First, we explain
the offline MA algorithm, which serves as a reference for oorky Then, we show
how an online hybrid algorithm can be implemented by commgiihe ideas proposed
by Ramijee et al. with the moving average algorithm we propose

Moving average estimators have been used in different figldesearch. For ex-
ample, in [5] Zhang et al. show that moving average estimatiaa good approach to
predict end-to-end delay for TCP connections. We use a ngarrage technique not
for predicting end-to-end delay, but rather for predictimgpptimal value of the playout
delay per-talkspurtin an audio session.

One characteristic that most of the playout delay adaptatigorithms lack is the
ability to fix the loss percentage to some a priori value. Bgraling a measure of vari-
ability, the algorithms proposed by Ramjee et al. can aehiifferent loss percentages.
However, there is no explicit relationship between the messf variability that we can
adapt in these algorithms and the average loss percentagavErage loss percentage
can change from one audio session to another, even if thaser is kept unchanged.
Here lies the main contribution of our work. The moving aggralgorithm we propose
adjusts the playout delay from talkspurt to talkspurt, gigedesired target of average
loss percentagg. Our algorithm ensures that the average loss percentagéta@ o
during the session is close, if not equal, to the target valtiehe same time, and in
most of the cases, our algorithm realizes this target wittnaller average playout de-
lay than the one we need to obtain the same average loss tsgeavith the algorithms
proposed by Ramjee et al. For practical loss percentagesbhdate our algorithm and
those of Ramjee et al. using real packet audio traces. Bygusiliected audio traces
we can compare the algorithms under the same network consliti

The remainder of this paper is as follows. Section 2 providese additional back-
ground and describes the packet delay traces used for tiafidas well as the notation
we use throughoutthe paper. In Sect. 3, we describe sonmede&lark on playout delay
algorithms. Section 4 describes the performance measw@wesmsider to validate our
algorithm and to compare it with the algorithms of Ramjeel éiMe present in Sect. 5
our moving average algorithm. Section 6 describes, baseeloitts from Sect. 5, that it
is better to predict a function of the delay rather than thitnogd delay itself. Section 7
compares the performance of an online hybrid implementaifdthe moving average
algorithm with the Ramjee et al. algorithms. Finally, S&toncludes the paper.

2 Some background

Receivers use a playout buffer to smooth the stream of awatikgts. This smoothing
is done by delaying the playout of packets to compensateddalle network delay.



Talkspurt, Silence Talkspurt,,

A

BN
Y IR\

!

Talkspurt, Silence, Talkspurt,, ,

Fig. 1. The timings between the transmission, reception and ptayfqpackets.

The playout delay can be either constant through the whelE@® or can be adjusted
between talkspurts. Moreover, in a recent work [6], it hasrbghown that by using a
technique callegbacket scaling, it is possible to change the playout delay from packet
to packet while keeping the resulting distortion withiret@ble levels. In this paper we
only focus on the per-talkspurt playout delay adaptatiqereach.

Figure 1 shows the different stages incurred in an audid@eshei-th packet
of talkspurtk is sent at timeti, it arrives at the receiver at time,, and is held in
the smoothing receiver’s playout buffer until tipg, when it is played out. Inside a
talkspurt, packets are equally spaced at the sender byniervals of length\ seconds.

By delaying the playout of packets and dropping those thateaafter their dead-
line, we are able to reconstruct the original periodic foffrthe stream. This adaptation
results in a regenerated stream at having stretched or essgu silence periods com-
pared to the original stream. These changes are not nolicleplhe human ear if they
are kept within tolerable small levels.

In Fig. 1, a dropped packet due to a late arrival is repregeinyea dashed line.
A packet is artificially dropped if it arrives after its schaed deadline®. The loss
percentage can be reduced by increasing the amount of tiag#tkets stay in the
playout buffer. An efficient playout adaptation algorithnush take into account the
trade-off between loss and delay in order to keep both parmas low as possible.

Table 1. Definition of variables.

Param{Meaning

L ||The total number of packets arriving at the receiver durisgssion.

N ||The total number of talkspurts in a session.

Ny, ||The number of packets in talkspurt

i ||The time at which the-th packet of talkspurk is generated at the sender.
ay, ||The time at which the-th packet of talkspurk is received.
d;, ||The variable portion of the end-to-end delay of ikté packet in talkspurk.
d}c = a}; - t;’c - Inirhgkgz\l (a}c - t;c)

1<i<Ny

pi. ||The time at which packetof talkspurtk is played out.




Table 2. Description of the traces.

Tracg Sende Receiver Starttime [Length [s]TalkspurtsPackets
1 |UMass| GMD Fokus |08:41pm 6/27/95 1348 818 | 56979
UMAss| GMD Fokus |09:58am 7/21/9p 1323 406 24490
UMAss| GMD Fokus |11:05am 7/21/96 1040 536 37640
INRIA UMass 09:20pm 8/26/93 580 252 | 27814
B
B

ucCl INRIA 09:00pm 9/18/98 1091 540 | 52836
UMass|Osaka University00:35am 9/24/98 649 299 | 23293

OO wWN

Throughoutthe paper, we use the notation described in TaBler the validation of
our algorithm, we consider the packet traces generatedtiétiNeVoT audio tool that
are described in [7]. NeVOT is an audio terminal program ueesktablish audio con-
versations in the Internet. The traces we use contain trdesamd receiver timestamps
of transmitted packets that are needed for the implementafiany playout adaptation
algorithm. In these traces, one 160 byte audio packet isrgi@tkapproximately every
20 ms when there is speech activity. A description of theesgeeproduced from [7])
is depicted in Table 2.

A typical sample of packet end-to-end delays is shown in Eid\ packet is repre-
sented by a diamond and talkspurt boundaries by dashecdhgéesa Ther-axis repre-
sents the time elapsed at the receiver since the beginnihg afudio session. Only the
variable portion of the end-to-end delay/ | is represented on theaxis of Fig. 2. To
this end, the constant component of the end-to-end delagtiyncaused by the prop-
agation delay) is removed by subtracting from packet defhgs minimum over all
the corresponding trace. By considering the variable portif the end-to-end delay,
synchronization between sender and receiver clocks cavdieeaf [7].

Packet arrivals and talkspurt boundaries Packet arrivals and talkspurt boundaries
25 2.5F
2 3 % fffffffffff 2 %
15 b \ ! L5 n
2 | i ! > weo
© | 0 ! ko) . |
S b ! ! ! x
05 : :: 1 0.5} o ‘ !
el ‘ M
10 11 12 13 14 15 16 17 18 850 551 552 553 554 555 556 557
Time [s] Time [s]
(a) A delay spike spanning through two con- (b) A delay spike spanning through three
secutive talkspurts. consecutive talkspurts.

Fig. 2. Delay spikes in end-to-end delay measurements.

3 Later, when comparing the performance of different algoni, all graphics consider the vari-
able portion of end-to-end delays.



We observe in Fig. 2 the presence of delay spikes. This phenomin end-to-
end delay has been previously reported in the literatur@][4elay spikes represent
a serious problem for audio applications since they affeetperformance of playout
delay adaptation algorithms. delay spike is defined as a sudden large increase in the
end-to-end delay followed by a series of packets arrivingat simultaneously, leading
to the completion of the spike [4].

Delay spikes can be contained within a single talkspurt or syzan over several
talkspurts. Figure 2(a) shows a delay spike spanning throwg consecutive talkspurts.
Figure 2(b) shows a delay spike spanning over three talksgsince the playout delay
is generally changed between talkspurts, a playout algaiitehaves better when delay
spikes span over more than one talkspurt. Only in this walgyopit algorithm can react
adequately to the spike by setting the playout delay acongrai the experienced delay.
If the spike vanishes before the end of a talkspurt, the plagtgorithm will not have
enough time to set the playout time accordingly.

In the next section, we briefly describe the algorithms psegloby Ramjee et al.
Playout delay is adapted from talkspurt to talkspurt basegast statistics of the delay
process. The playout delay of the first packet of each talitspuhe basetime of the
deadlines for subsequent packets in the same talkspug.primiciple is the basis for
most of the existing playout adaptation algorithms [4, (9,

3 Reated work

Extensive research work has been done in the area of adafaix@ut mechanisms [4,
6,7,9-12]. In [4], Ramjee et al. propose four algorithmsflaryout delay. All the four
algorithms proposed in [4] compute an estimate of the aeeeagl-to-end delay and a
measure of variability of delay similarly to the computatiaf round-trip-time estimates
by TCP for the retransmission timer. We denote therri};afsmdﬁ,i€ respectively. These
statistics are used to set the playout time for a talkspurt.

The algorithms that perform better in [4] are 1 and 4. We remémase algorithms
asA andB respectively, and refer to them as such throughout the félsegaper.

To calculateli, andd!, the packet's sender and receiver tlmestartg)andak, are
read from a trace file. Both algorithms differ only in the wagy calculate:iZ andd;,
Algorithm A computes these statistics as follows:

di =adi7' + (1 —a)di, and o} =adi '+ (1 —a)|d, —di],

whered;, = a}, — ti, anda has the default value of 0.998002.

Algorithm B is described in [4] but we also sketch it in Fig. 3 for comphetss. It
operates in two modes: normal mode and spike (or impulseemadcormal mode, it
behaves like AlgorithmA but with different coefficients. When the difference betwee
two consecutive delay values exceeds a given thresholoiigdm B triggers the spike
mode. During this mode, the variablar is updated with an exponentially decreasing
value that adjusts to the slope of the spike. The end of a dglike is detected when
var reaches an enough small value, and the algorithm returrartoat mode.



/1. di = ai, — ti; \
2. if (mode == NORMAL) {
3. if (|di, —di " > 2|o5| +800) {
4, var = 0; /* Detected begi nning of spike */
5. node = SPI KE;
6. 1
7.}
8. else {
9. var = var/2 + |(2dj, —di " —d;?)/8);
10. if (var <63) {
11. node = NORMAL; /* End of spike */
12. dy % =dy "
13. di ' =dj;
14. return;
15. }
16. }
17. if (node == NORMAL)
18. di, = 0.125d}, 4 0.875d%°1;
19. el se
20. di, =di " +dy —dj
21. o} = 0.125|d} — di| +0.8750{7";
dy 2 =d; "
d?{;_l — dl,

22
23.
QA return; /

Fig. 3. Algorithm B

Onceci';'C anddi are computed, the playout time of tivh packet of talkspurt: is
set by both algorithms as follows:

; {t§;+d§;+ﬂﬁg, fori=1. )

PE=\ pL+ (t —tL), forl <i <N, .

These values are computed for each packet but the playosiigichanged only at
the beginning of a talkspurt. By varyingjone is able to achieve different loss probabil-
ities and different average playout delays. In [4]s set equal to the constant value of
4. Larger values off allow to obtain lower loss percentages due to late arrivalsab
the cost of a longer average playout delay.

Algorithm A is slow in detecting delay spikes, but it maintains a goodaye
playout delay over an audio session. Algoritlihreacts faster to delay spikes, but it
underestimates the playout delay at the end of the spike [7].

To compare our moving average algorithm with algoriththand B, we use the
performance measures defined in [7]. For clarity of the pried®n, we redefine these
measures in Sect. 4.



4 Performance measures

To assess the performance of a playout adaptation algqnitierfocus on the total num-
ber of packets that are played out during an audio sessiovelaas on the experienced
average end-to-end delay. Suppose we are given a packet taack with the sender
and receiver timestamps of audio packets.jtiet\, L, Ny, t, anda;, be defined as in
Table 1. As in [7], we define, to be a variable indicating if packebf talkspurtk is
played out or not. So;. is defined as:

’I”i_ 0, pr;€<a}€
k™11, otherwise.
The total number of packet$), played out in an audio session is thus given by:

N Ny

7= ri 2)

k=1 1i=1
The average playout delag,.q, is equal to :

N Ny

aug Z Zrk - tk (3)

k 1i=1
Finally, the loss percentagk,is equal to :
L-T

L

= x 100. (4)

5 Moving Average prediction

Algorithms A and B are good in maintaining a low overall average playout defay a
reacting to delay spikes. However, they lack a parametewalh to have a direct con-
trol on the overall loss percentage during an audio ses$iiamould be desirable to
come up with an algorithm that sets the playout delay in a waet a loss percentage
p, given a trace ofV talkspurts and. packets. By varying the paramet@rin algo-
rithms A and B, it is possible to obtain different loss percentages, betisrunable to
have any particular control on this parameter. We descrilibig section our moving
average predictor (MA) for playout delay that takes as inpetdesired loss percentage
per-sessiom, and a packet delay trace. It returns a set of estimated plalgtay values
leading to an average loss percentage close, if not equaé tdesired valug.

51 TheModd

Let D; be the optimal playout delay at the beginning of talksgyrand letp be the
desired average loss percentage per-session. We meaptibnal playout delay the
playout delay that makes the number of losses per talkspaitibsest tg x Ny, N
being the number of audio packets received during:ttfetalkspurt. By controlling the
loss percentage per-talkspurftove are sure that the overall loss percentage during the



whole audio session is also closeptdMe computeD;, as follows, Ie’di be the variable
portion of the end-to-end delay of theth packet in talkspurk. For each talkspurt,
1 <k < N, we sortin ascending order the packet end-to-end delagsatuobtainV
new ordered set@d{gsm‘t}, with 1 < 57 < Ng. We set the optimal playout delay of the
k-th talkspurt to the following value:

Dy, = dj, i < N, (5)

sort’

with ¢ = r ound((1 — p)Ny,). Thus, ifdi, < Dy, thei-th packet of talkspurt is played
out, otherwise the packet is dropped due to a late arrival.

We present now our moving average predictor. Consider tkedtave a set of op-
timal delay values in the pa$tDy, D1, Di—2, ...}, and that we want to predict the
value of Dy 1. The predicted value aby, 1 is denoted bkaH, and is taken as a
weighted average of the lasf values of the procedsD;. }. Thus,

M
Dgy1 = Zale—l+1- (6)
=1

The coefficientsy;, in (6) must be chosen in a way that minimizes the mean square
error betweerDy, andDy, i.e.E[(Dy, — Dy)?]. The desired coefficients are the solution
of the set of the so-called normal equations [13]:

M-1
> amprrp(m—1) =rp(l+1),1=0,1,...,M - 1. 7)

m=0

In (7),rp = E[D Dy is the lagt autocorrelation function of the procegb,.}.
The exact form of the autocorrelation function is unknowut,ibcan be estimated using
the past values of the procesB;; }. Suppose we havk values in the past, we can thus
write

1 K—|r|

rp(r) ~ g > DiDjypppy 7 =0,41,42,.. . £(K - 1). (8)
k=1

The set of normal equations (7) can be solved using singlexmagctor operations.
For large values o#/ (sayM > 100), the well known Levinson-Durbin algorithm may
be preferred [13].

M is called themodel’sorder. Figure 4 illustrates how/ is calculated. For a given
packet trace, starting with/ = 1, we compute all the values d¢fD; } and estimate
E[(Dx — Dy)?]. Then, we increasg/ and we repeat the process. The model's order is
taken equal to the lowest value 8f preceding an increase in the mean square error.
For example, for trace 1 the algorithm choosé®qual to 19, and for trace 3 it chooses
M equal to 8. There exist different methods for selecting tealis order e.g. Double
Sidedt-test, Minimum Description Length, and Final Predictionrdfy the reader is
referred to [14].



- Trace no. 1, p = 0.03 c10? Trace no. 3, p = 0.03

0.149F

D)
D,

| 0.1488 1 |

E[(Dy

0.1486

1‘9 Z‘U 2‘1 8 N 9
M: model’s order M: model's order

Fig. 4. Model order selection for the MA algorithm.

5.2 Themoving averagealgorithm

We describe now our moving average algorithm for playouaylelhe algorithm takes
as input a packet delay trace with sender and receiver tmmgxst, and looks fo{bk}
the estimates of the optimal playout deldys }. For each past talkspurt, the individual
end-to-end delay values are sorted, dhdis computed as in (6);, is calculated for
each talskpurt as a weighted average of the Mdstalkspurts, fork = M + 1, M +

., N. Later, when evaluating the average playout delay and tb& percentage
per-session, we discard in the computation the fifstalkspurts.

Figure 5 depicts a pseudo-code version of the MA algorithimegdet Opt Del ay()
function takes as input the whole set of end-to-end delayesdl, and the desired loss
percentage per-sessipn Then, it applies (5) to return a set of optimal per-talkspur
delay valueqd Dy }. The firstf or loop solves the normal equations farto compute
Dy for each talkspurt, then it calculat&$(D;, — D;)?] for different values of the
model’s orderm, and holds the result in the vectotsé. Next, get Or der (mse) is
called to find the model's ordei/, by choosing the lowest value éff preceding an
increase inmse. Then, we compute the coefficientswith the value of)M just found.

The lastf or loop computes);,; for each talkspurt and the playout timgls The
playout time of the-th packet of talkspurk is set as follows:

. [t + Dy, fori=1
pk—{p,lc+(t}'€t,1€),for1<i§Nk. ©

The moving average algorithm requires the knowledge of lagarcteristics of the
process{ Dy }. Assuming the procesD; } is stationary during all the audio session,
the best performance of this algorithm is obtained whenritiisoffline or after a large
number of samples is collected.

5.3 Theproblem with low p

As our simulation results will show, the MA algorithm de$ad in Sect. 5.2 deviates
from the desired loss percentageSee in (5) how the value db; depends on the
talkspurt sizeN,, and on the desired loss percentagd-or a given value op, (5)



Di « get Opt Del ay(d, p); \
R < autocorr(Dg, N);

for m=1to N {
/* CGet the weights */
a = solve(R, m);
/* Conpute Dyyi for each tal kspurt */
Dii1 => 7" aDr_i41;
/* Update the nse vector for this value of m */
nse(m) = E[(Dx — Di)?;

= get Order (msé) ;
a = solve(R, M);

I—‘HHI—‘HHI—‘QOOO\IOU'I-POJNA
CORwR RO O NPIAEEDE

(I
~

for k=M to N—-1 {

Dk+1 Zz 1 @ Dk—141;
18. Phy1 = thy1 + Dyi1;
19. 20. for j =210 Ngy1
21. pk+1 pk+1 +t}ﬁq tllc+1;
22. )

N /

Fig. 5. The MA algorithm.

returns the delay value closestjo< Ni. Thus, when computin@k, there will be a
deviation of the overall perceived loss percentage fronotieewe desire. The highest
deviation is for very low values gf. The algorithm leads to a loss percentage longer
than the desired one. To deal with this deviation, for theyegh005 < p < 0.02, we
allow our MA algorithm to slightly increase the playout delay the following offset:

Ap, = f(p)\/E[(Dx — Dy)?]. (10)

In this way, the playout delay is increased as a functioneftieasured mean square
error betweerD;, and Dy, and as a function gf. Since the deviation of the measured
loss percentage increases for small valueg, afe setf to f(p) = —d x (52— — 1),
whered is a constant controlling how much we increase the playolatyces Sa function
of the square root oE[(Dy — Dk) ]. So, asp increases in the range (Pmax], Dy
converges to its original form (6), and jif decreases a longer offset is used. We set
pmax = 0.02 andé = 0.5. This allows to reduce considerably the deviation of the
measured loss percentage frppwithout impacting much the delay.

The following lines must be added to the pseudo-code shoWwigirb between lines
17 and 18:

if p< <0.02

Dyi1 + Dyy1 + 45




°

Trace no.1

S o
Y
2 8

°

: Average playout delay [s]
Erage
w w 9
2 8 2

o aves
©
2

D
8

°

Trace no.2

°

Trace no.3

¢ --0 MA+offset
o--o Basic MA

Fowg,

2 3 4 5 6
I: Loss Percentage [%]

Trace no.4

) S
S @& 92 @
. & o &

N ﬁ[\)verage playout delay [s]
S
bl

D
avg
o

°

*--o MA+offset
o--o Basic MA

S o
9 @
® &

°
@
8

: Average playout delay [s]
avg ge play y [s]
3 § 8 8

D
o
I
8

¢ --0 MA+offset
o--o Basic MA

LN
0,

..,

-

S

5 10 15
I: Loss Percentage [%]
Trace no.5

°
N

3 a4 5
I: Loss Percentage [%]
Trace no.5

: Average playout delay [s]
Toepayqueyly o
5 R & &5 5

Savgs

D
£

°

¢ --0 MA+offset
o--o Basic MA

Trelnss
Taone,

~e

3 4
I: Loss Percentage [%]

° 2 °
3 8 3
8 ] 3

g
o

D, Average playout delay [s]

av

0.07

*--6 MA+offset
o--o Basic MA

s,

& °
g 8 8
g 8 8

- Average playout delay [s]
S
5

D
ave
S

¢--0 MA+offset
o--o Basic MA

RO

85

1

15 2 25
I: Loss Percentage [%]

o

15 2 25
I: Loss Percentage [%]

Fig.6. Performance of the MA algorithm before and after adding tfisebto D, for p €
[0.005, 0.02].

To see the gain obtained when applying (10), we plot in Figpi6p € [0.005, 0.02]
the performance of the original MA algorithm before and iafités change. The-axis
represents the total measured loss percentage due todatsjo and they-axis plots
the average playout delaf..,, for discrete values gf from 0.005 topymax = 0.02,
with p increasing 0.005 at each step. We call this new algorithé#+ offset, and we
refer to it as such during the rest of the paper.

The deviation of the loss percentage for the MA+offset atgar is much lower,
while keeping the average playout delay within reasonablaes. The gain we get
compared to the basic MA algorithm is very clear. For traddd MA+offset algorithm
reaches loss percentages of 1.7% compared to 5.4% in the Masalgorithm. The
MA+offset algorithm is beneficial for all traces, and therga higher for trace 2 and
trace 6, where the deviation of the desired loss percensagay much lower compared
to the original case.

Section 5.4 compares the performance of our MA+offset alyorwith algorithms
AandB.

5.4 Performance comparison

To evaluate each of the three algorithms, we use a simulabréads in an input file
containing the sender and receiver timestamps of each paicke audio session. Then,
each algorithm is executed, and we use expressions (3) atal ¢dmpute the average
playout delay and the loss percentage during an audio sessio

As pointed out above, algorithm$ and B are unable to get a particular target of
loss percentage Thus, to obtain different loss percentages in Algorithirend B we
vary 3 in (1) from 1 to 20; larger values ¢f allow to get lower loss percentages, at the



Trace no.1 Trace no.2 Trace no.3

--- AlgoA .
-~ AlgoB ) % --+ AlgoB
— MA+offset — MA+offset

--- AlgoA
--- AlgoB
— MA+offset

]

pd
yee]
S
>

=

t delay

S &
youl

erage playout delay [s]

Average playout delay [s]

@

: Average play

D
o v
5 S

)

D Avi
a

D
Savg

10 10 10
I: Loss Percentage (%] I: Loss Percentage [%] I: Loss Percentage (%]
Trace no.4 Trace no.5 Trace no.6

--- AlgoA . ---  Algo A
-~ AlgoB N --- AlgoB
—— MA-+offset —— MA+offset

--- AlgoA
--+ AlgoB
—— MA-+offset

°

ge plagoul daelay [s]

: Average playout delay [s]

: Average playout delay [s]

. Averal

vg' 'S

avg’

D
D
s

10 10 10
I: Loss Percentage [%] I: Loss Percentage [%] I: Loss Percentage [%]

Fig. 7. Performance comparison of algorithmAs B, and the MA+offset algorithm.

expense of a higher average playout delay. We compare tf@rpance of algorithms
A and B with our MA+offset algorithm fo0.005 < p < 0.2. Loss percentages smaller
than 5% are rather desirable for interactive audio appdinat]3].

Figure 7 plots the corresponding results for each trace.2Faris represents the
perceived loss percentage per-sesgjand they-axis represents the average playout
delayD,,,. Each execution of an algorithm gives a single pointin tiegbic. The plots
in Fig. 7 were obtained by connecting the discrete pointgneid by each approach.

In trace 1, we see how for loss percentages greater than ®fettiormance of
the three algorithms is quite similar, with algorithmsand B having a slightly better
performance than the MA+offset algorithm for loss percgatbetween 5% and 11%.
For loss percentages lower than 5%, the performance ofidigts B and MA+offset
remains similar but they outperform algorittdrwith a maximum gain on average play-
out delay of about 40% of the MA+offset algorithm comparedlgorithm A. Trace 2
is the only multicast session and has a large network logeptage of about 50%, it
has also long inactivity periods of up to 2 minutes. The MAsef algorithm clearly
outperforms algorithmsl and B for the whole range of loss percentage and average
playout delay, with a maximum gain on playout delay of abd@% compared to al-
gorithm B. In trace 3, algorithmsgl and B remain close to the MA+offset algorithm,
with the MA+offset algorithm giving better performance fine whole range of loss
percentage and average playout delay. For traces 4 to Gjtalge A and MA+offset
remain close in both, loss percentage and average playtay, @eitperforming algo-
rithm B. For loss percentages lower than 3%, the MA+offset algoriplerforms better
than algorithmsA and B. This difference in performance is clearly seen in trace 6,
where the MA+offset algorithm shows a considerable gaim algorithmsA andB.

Deviations of loss percentage persist in the MA+offset atgm. The highest de-
viations in Fig. 6 are for traces 2 and 6. Both are the shoftases, they suffer from



high variations on end-to-end delay, and high network lagstd congestion. Thus, the
autocorrelation function does not have useful informatibout the procesgD,,}, and
consequently the estimated valygs;,} are inaccurate. Section 6 describes a transfor-
mation that can be done to reduce the deviations of the MAebéilgorithm.

6 Biasand Transformation

Our scheme is designed with the main objective to controlldss percentage to a
certain valuep, while minimizing the average playout delay. Here is thersgth of
our scheme compared to other schemes in the literature ewierdo not have a di-
rect control on the loss percentage. Our control on thisrpatar has been done till
now by controlling the optimal playout delay per talkspin. But, the relationship
between the playout delay and the loss percentage may nioelae. IThis may cause in
a deviation of the perceived loss percentage from the dksite. Technically said, our
predictor is unbiased with respect 2., however it may be biased with respect to the
loss percentage per talkspurt. We illustrate this bias bydowing analysis.

Our moving average predictor &, ensures thak [D,,] = E[Dy]. Letdi, 1 <i <
Ny, be the delay of thé-th packet of talkspurk. The way we defind,, also ensures
thatE [1{d}, > Dx}] = p, with 1{ A} being the indicator function. But, the average loss
percentage we experience during the audio conversatiootil pil{d; > Dj}], but
ratherE[1{d} > ﬁk}]. We explain next why this experienced average loss pergenta
can be different fronp, when the relationship between loss and delay is non-linear

Let F'(x) be the complementary CDF of packet end-to-end delay, kéx) =
P {d; > x}.lItis easyto seethatfar=E D], F(x)is equalto p, sinc® {di > Dj.} =
E [1{d} > Dy}] is equal top by definition.

The average packet loss percentage we obtain with our sclertpal top =
E[1{d, > D4}]. We condition on the value dby.. This leads to

p=E [1{d} > Di}| =B [E[1{d} > Di}| | Di| =B [F(E[Dy] + Dy — Dy)]

The last equality results from the fact that

E[1{d}, > Dy +y}] =E[E[1{d} > Dy +y} | Dy]] = F(E[D] +vy). (11)

The proof (11) is as follows. The objective is to compute th&slprobability of a
packet when the playout delay in a talkspurt isgsanits far from the optimal playout
delay Dy. In other words, we want to compute the loss probability ohaket, when
the playout delay is set units far from the playout delay that results in a packet loss
percentage equal to. But, the playout delay that results in a packet loss peaggnt
equal top (if we only look at the packet and not at the talkspurt to whicé packet
belongs) is simply'(E [Dy]). Hence, the problem is equivalent to computing the loss
probability of a random packet when the playout delay fos fracket is sej units far
from E [Dy], which is equal t&#'(E [Dy] + v).



Let ¢, be the prediction error for talkspukt i.e., ex = Dy — Dy. We writep =
E [F(E [Dy] + €x)]. The bias of our predictor can be seen from this expressibenw
the functionF'(x) in non-linear.F'(z) relates the packet loss probability of a packet
to the playout delay. For example, f(z) is a convex function, we have by Jensen’s
inequalityp > F(E [Dy] 4+ E[e]) = F(E[Dg]) = p.

To correct this bias, some transformation of the prodegssan be used. Define
X, = G(Dy). The prediction will be done on the proceXs instead ofDy, using a
Moving Average predictor, i.eXkH = Zf\il a1 Xr—1+1- Once the estimate oXy,
denoted byX is obtained, we set the playout delay@ ' (X}). The average loss
percentage becomes equapte- E [F(IE [Dy] + G~1(Xy) — G*l(Xk))} .

The functionG(x) must compensate for the non-linearity of the functifx).

It must transform the error in setting the playout delay, sacamakep equal top.
Unfortunately, it is very difficult to find the expression 6{x). Some approximations
can be used. We give an example of a transformation that wénutkés paper. Our
measurements show that the functiBix) is convex, and close to exponential. We
consider then as transformation the exponential functioth a decay coefficient,
that is, we takeZ(z) = e~*. Hence, we predicK; = e~ *P* instead of predicting
Dy.

6.1 Performance comparison

We apply the exponential transformati6fix) to the proces®);, in our MA algorithm.
The MA algorithm remains the same, but we predict now the ggs&’;, = e~ P+
rather than directly predicting;,. We call this new algorithntransformed MA algo-
rithm.

When testing the transformed MA algorithm we found no sigaitfit differences
for 10 < o < 20. Fora < 10 the performance degrades very slowly with decreasing
a. We thus set empirically the value ofto 10, and we use it when comparing with
algorithmsA and B in the next section.

To further improve the performance of the transformed MAoalhm, when trans-
forming backD,, from X}, we implement the procedure described in Sec. 5.3 to reduce
the deviations for small values pf We call this variantransformed MA+ offset.

Figure 8 compares the performance of our two MA+offset atgors with algo-
rithms A and B. In the subsequent figures, the transformed MA+offset iothhas
MA+t r ansf +of f set . Observe how the transformation applied Dp considerably
improves the performance of the MA algorithm. For trace & ttansformed MA+offset
algorithm clearly outperforms algorithm$s B, and the original MA algorithm with a
gain of up to 50% for the whole range of loss percentage anggealayout delay. For
trace 2, the transformed MA+offset algorithm does not rdask percentages lower
than 5%. This is still due to the high jitter and network losegent in trace 2 which
does not provide the autocorrelation function with useftdimation about the process
Dy,. However, the transformed MA+offset algorithm largely performs algorithmst
and B for other values op. For traces 3 to 5, we see clearly the benefit of applying the
transformation=(z). The transformed MA+offset algorithm outperforms all thibey
algorithms with a maximum gain on average playout delay ofaip0% in trace 4



Trace no.1 Trace no.2 Trace no.3

N
°

- AlgoA 038 , --- Algo A

- AlgoA 12 =
09 -+ AlgoB -+ AlgoB Eo M Sy, --- AlgoB
05 MA-+offset 11 . MA+offset Tnz \\ MA-+offset
— MA+transf+offset ~«.|— MA+transf+offset ©0.34 . — MA+transf+offset

°©
S
&

°
S
S
©

)
@
&

Average playout delay [s]
S
®

: Average playout delay [s]

°
@
o oavgo

D
Savg
N
]

D
>

°

10 10
I: Loss Percentage [%] I Loss Percentage [%]

Trace no.4 Trace no.5 Trace no.6

10
I: Loss Percentage [%]

- Algo A . --- AlgoA
-+ AlgoB 01r --+ Algo B
MA+offset \ MA+offset
—— MA+transf+offset — MA+transf+offset

--- Algo A
-+ Algo B

. MA-+offset
~{— MA+transf+offset

i
bl

)
N
b

S

o
3
8

&

5
&
)
;S
°
2

Average playout delay [s]

: Average playout delay [s]
g 3
=
8

D, i Average playout delay [s]
D
vy 'S
& 8
aves
&

s

°
°
°

10
I: Loss Percentage [%]

10 10
I: Loss Percentage [%] I: Loss Percentage [%]

Fig. 8. Performance comparison of algorithmds B, and the transformed MA+offset algorithm.

for low loss percentages, compared to algoritinand B. We notice an interesting
behavior of the transformed MA algorithm in trace 6. Thishe bnly trace for which

the MA+offset algorithm behaves better than the transforivid+offset version. Like

trace 2, trace 6 also has a high end-to-end delay and a higlorkeloss percentage;
besides, trace 6 is one of the shortest sessions (in numbatkspurts). Thus, the
MA+offset algorithm should be preferred when there are looiggestion periods in the
network and very high jitter.

We conclude that a moving average scheme is an attractiveagip for playout
delay control. The algorithms studied till now are offling@iithms. Section 7 presents
an online hybrid algorithm combining algorithid and the transformed MA+offset
algorithm which gives a very good performance for most ofdtenarios.

7 A hybrid algorithm for playout delay

Moving average estimation has revealed to be an intereapipgoach for playout de-
lay control. The transformed MA+offset algorithm descdhbia the previous section
gives in general better performance than any of the otheritgtgns we studied. This
algorithm was run offline and the entire trace was used to coenine characteristics
of {Dy}. We look now for an online version of the transformed MA+effalgorithm.
During our simulations, the maximum model’s order was neyeater than 23. This
means that we do not need a large number of samples to comgatelanoving aver-
age estimation. We propose in this section a combinationeofransformed MA+offset
algorithm and algorithnB, that we callhybrid algorithm.

The idea is quite simple and is sketched as pseudo-code .i® Fiduring the first
talkspurts of an audio session, d#XTKSP talkspurts, algorithnB is executed with
B = 4. At the same time, we collect samples{d; }, we transform them t§ X, }, and



we keep them in memory to be used later to compute the modelks and predictor
coefficients. Then, starting from talkspWBXTKSP+1, the transformed MA+offset
algorithm is executed and playout times are computed. Thecarrelation function is
updated at each new talkspurt to account forMAXTKSP most recent values oX.
Since finding the model’s ordel/, is an exhaustive operation its value is computed
only once and it is kept during the whole sessiBAXTKSP is set equal to 100 for all
the traces. The transformation applied?p is X;, = e~“P* and is denoted a8(Dy,).

During the first MAXTKSP tal kspurts { \
Execute Al go B;

o)

Conput e pl ayout times pi;

Col | ect statistics about Dy;
}
X — G(Dk),

R« autocorr(Xy);

M = findorder();

. /* For each tal kspurt fromk=1 to MAXTKSP */
10. X = Zlkil a Xg—141;

11. Dk = G_I(Xk);

CReNO GO AW

12.

13. for k=MAXTKSP to N —1 {

14. )?k+1 =" a Xk-1+41;

15. Dk+1 = Gil(XkJﬁl);

16. if p<0.02

17. Dk+1 — Dk+1 + (05 — 25p) E[(Dk — bk)Q];

18.

19. pllc-l»l = t11€+1 + bk-H;

20. for =2 to Ngi1

21. Prp1 = Pi1 + thyr — thtts

22.

23. /* W reconpute the autocorrelation function */
24. /* for the MAXTKSP npst recent val ues of X */
2 R «— autocorr(Xyg);

\z ) Y

Fig. 9. The hybrid online algorithm for playout delay.

7.1 Performance comparison

Figure 10 compares the performance of the hybrid algorittitm &lgorithmsA and B.

In trace 1, the hybrid algorithm outperforms algorithrhsind B for almost all values
of p. We observe an overall gain on playout delay of about 25%ehttbrid algorithm
compared to algorithmd andB. We note again in trace 2 how the the hybrid algorithm
does not reach loss percentages lower than 5%. In fact, fiaceimber oD, samples



Trace no.1 Trace no.2 Trace no.3

: Average Elaycul de\ayz[s]
: Average playout delay [s]

g Average playgul delay [s]

a9

D,
D
avg
g ‘
/
i
D
4

.
5

10 10
I: Loss Percentage [%] I: Loss Percentage [%] I: Loss Percentage [%]
Trace no.4 Trace no.5 Trace no.6

g 8 8 § ¢

ge Evlayoul gelay [s]“
e &

: Average playout de\ag [s]

avg
D, Average playout delay [s]

D_ : Avera
g 5

D
2 ayg
g 8

T 10 T 10 T 10
I: Loss Percentage [%] I: Loss Percentage [%] I: Loss Percentage [%]

Fig. 10. Performance comparison of algorithms B, and the hybrid online algorithm.

used to compute the autocorrelation functions is now srhelerror introduced ik,
and consequently i)y, is larger in the hybrid algorithm than in the offline one. For
traces 3 to 5, the performance of the hybrid algorithm andralyns A and B is very
similar, with the hybrid algorithm performing better thalgarithm A for trace 4, and
better than algorithnB for trace 5 in the loss range of interegt £ 0.05). Trace 6
has the highest session end-to-end delay and high netwsskpercentages (due to
congestion), leading to a behavior similar to that of trace 2

7.2 Delay spikes

Algorithm B detects delay spikes; when a delay spike occurs, the digostitches
to spike mode and follows the spike. When the end of the sgikkeiected, the algo-
rithm switches back to normal mode. We executed the MA+b#flgmrithm employing
the spike detection approach of Algorithth When comparing the performance with
no spike detection we found no significant differences. Thetbffset algorithm com-
putes the autocorrelation function of the procésy;} to solve the system of normal
equations and to calcula{@k+1}. Dy, is the optimal per-talkpsurt playout delay. When
delay spikes occur, the autocorrelation functiong B, } account for them by defini-
tion.

8 Conclusions

This paper describes a moving average algorithm that addyptdjusts the playout
delay at the beginning of talkspurts. To evaluate the paréorce of our algorithm, we
compare it with existing schemes implemented in the NeVadiatool. Several vari-
ants of our moving average algorithm are studied. For snadlles ofp, there is some



deviation of the perceived loss percentage, and this dewiatcreases ag decreases.
The MA+offset and the transformed MA+offset algorithms preposed to reduce the
deviation of the desired loss percentage. These varidots t obtain a considerable
gain compared to the original version while, at the same tikeeping the average
playout delay within tolerable levels.

The strength of our scheme lies in the fact that we are ablarte the loss per-
centagep to a given desired value. When directly predicting the optiplayout delay,
the desired loss percentage deviates from the desired caedethe relation between
the average playout delay and loss rate is not linear. We dstrate that, by apply-
ing a transformation oy, the bias on the loss percentage can be reduced. Based on
our measurements, we approximate this transformation egative exponential func-
tion. A mixture of algorithmB and our transformed MA+offset algorithm proves to be
efficient in the loss percentages of interest. We call tigethm hybrid algorithm.

Moving average estimation has revealed to be an efficiertadebr playout delay
control. When network jitter and network loss are very high,in traces 2 and 6, the
MA algorithm do not reach loss percentages lower than 5%y Kigh jitter decreases
the correlation of the proce$3;, leading to an inaccurate MA estimation.

Our algorithm predicts the optimal playout delay per-tplks, or a function of it,
using the past history of the process. To reconstruct thegierform of the stream of
packets, the playout delay of packet in a talkspurt is bareteplayout time of the first
packet in the talkspurt. An interesting recent approacth3pshows that it is possible
to adapt the playout delay at each packet arrival, leadiagtetter performance than in
a talkspurt basis. We are working on an extension of our MAaggh that predicts the
playout delay per-packet, allowing to change the playolgydduring a talkspurt, and
we expect our scheme to give better performance.

Acknowledgments

We thank the CONACyYT and the Universidad Autbnoma Metritpoh at Mexico for
supporting this work.

The authors also thank Sue Moon for making publicly avadldabé traces we used
in our simulations.

References

1. Schulzrinne, H.: Voice communication across the Intermeetwork voice terminal. Tech-
nical report, University of Massachusetts, Amherst (1992)

2. Sasse, A.S., Hardman, V.: Multi-way multicast speechnfioitimedia conferencing over
heterogeneous shared packet networks. RAT-robust audio fechnical report, EPSRC
Project #GRIK72780 (February)

3. Jayant, N.: Effects of packet loss on waveform coded $pelec Proceedings of the Inter-
national Conference on Computer Communications. (1988)-230

4. Ramijee, R., Kurose, J., Towsley, D., Schulzrinne, H.: gida playout mechanisms for
packetized audio applications in wide-area networks. toc€edings of the IEEE Infocom.
(1994) 680-688



10.

11.

12.

13.

14.

15.

. Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On thestamcy of Internet path properties.

In: Internet Measurement Workshop (IMW), Marseille, Fraif2002)

. Liang, Y.J., Farber, N., Girod, B.: Adaptive playout sdhkéng and loss concealment for

voice communications over IP networks. IEEE TransactionMaltimedia (2001)

. Moon, S.B., Kurose, J., Towsley, D.: Packet audio play®iay adjustment: Performance

bounds and algorithms. ACM/Springer Multimedia Systén($998) 17-28

. Bolot, J.: End-to-end packet delay and loss behaviorénrternet. In: Proceedings of the

ACM SIGCOMM. (1993) 289298

. Kansar, A., Karandikar, A.: Jitter-free audio playoutepbest effort packet networks. In:

ATM Forum International Symposium, New Delhi, India (2001)

Pinto, J., Christensen, K.J.: An algorithm for playofippacket voice based on adaptive
adjustment of talkspurt silence periods. In: Proceedirigh@|EEE Conference on Local
Computer Networks. (1999) 224-231

Farber, N., Liang, Y., Girod, B., Prabhakar, B.: Adaptplayout and TCP window control
for voice over IP in best-effort networks. Technical rep&tanford University, Information
Systems Laboratory, Department of Electrical Engineef2@1)

Liu, F., Kim, J.W., Kuo, C.J.: Adaptive delay concealtnfar Internet voice applications
with packet-based time-scale modification. In: Proceedlmfghe International Conference
on Acoustics Speech and Signal Processing ICASSP, SaltCik€2001)

Proakis, J.G., Manolakis, D.G.: Digital Signal ProaagsPrinciples, algorithms, and apli-
cations. Prentice-Hall Inc. (1996)

Kleinbaum, D.G., Kupper, L.L., Muller, K.E.: Applied Beession Analysis and Other Mul-
tivariable Methods. PWS-Kent, Boston (1988)

Liang, Y.J., Farber, N., Girod, B.: Adaptive playout edhling using time-scale modifica-
tion in packet voice communications. In: Proceedings ofltfiernational Conference on
Acoustics Speech and Signal Processing ICASSP. Volumeé)B1j21445-1448



