
A Moving Average Predictor for Playout Delay Control
in VoIP

Vı́ctor M. Ramos R.1?, Chadi Barakat2, and Eitan Altman2

1 University of Nice-Sophia Antipolis, France.Victor.Ramos@ieee.org
2 INRIA-Sophia Antipolis, France.{cbarakat,altman}@sophia.inria.fr

Abstract. Audio applications are now widely used in the Internet. Suchappli-
cations require receiver playout buffers to smooth networkdelay variations and
to reconstruct the periodic form of the transmitted packets. Packets arriving after
their playout deadline are considered late and are not played out. Existing algo-
rithms used in the Internet operate by adaptively adjustingthe playout delay from
talkspurt to talkspurt. There is an important tradeoff between loss percentage and
average playout delay. Current algorithms fail to obtain a particular loss percent-
age. Controlling this parameter is a key characteristic forany playout adaptation
algorithm. This paper presents a Moving Average algorithm for playout delay
adaptation with tunable loss percentage. We show with trace-based simulations
that, in most of the cases, our algorithm performs better than those implemented
in popular audio tools, and this is for the range of loss ratesof interest in interac-
tive audio applications.

1 Introduction

Delay, jitter, and packet loss in packet-switched wide-area networks are the main factors
impacting audio quality of interactive multimedia applications. Today’s Internet still
operates in a best-effort basis, and thus, the impact of jitter, delay, and packet loss must
be alleviated by employing end-to-end control mechanisms.

Audio applications such as NeVoT [1] and Rat [2] generate packets spaced at reg-
ular time intervals. The traffic generated by an audio sourceis divided into periods of
activity, calledtalkspurts, and periods of silence. Silence periods are periods where no
audio packets are transmitted.

Audio packets encounter variable delay while crossing the Internet, which is mainly
due to the variable queuing time in routers. This delay variability modifies the periodic
form of the transmitted audio stream. To playout the received stream, an application
must reduce or eliminate this delay variability, by buffering the received packets and
playing them out after a certain deadline. Packets arrivingafter their corresponding
deadline are considered late and are not played out. If the playout delay is increased,
the probability that a packet will arrive before its scheduled playout time also increases.
This reduces the number of packets artificially dropped in the playout buffer. However,
very long playout delays have a negative impact on the interactivity of an audio ses-
sion. Obviously, there exists a trade-off between delay andloss due to late packets. For
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interactive audio, packet delays up to 400 ms and loss rates up to 5% are considered
adequate [3].

We focus in this paper on the tradeoff between loss and delay for playout delay
control algorithms. Using measurements of packet end-to-end delay of audio sessions
done with NeVoT, we present and validate a Moving Average (MA) algorithm that
adjusts the playout delay at the beginning of each talkspurt. To prove the efficiency of
our algorithm, we compare it with earlier work done by Ramjeeet al. [4]. We present
two versions of our algorithm: an offline algorithm and an online one. First, we explain
the offline MA algorithm, which serves as a reference for our work. Then, we show
how an online hybrid algorithm can be implemented by combining the ideas proposed
by Ramjee et al. with the moving average algorithm we propose.

Moving average estimators have been used in different fieldsof research. For ex-
ample, in [5] Zhang et al. show that moving average estimation is a good approach to
predict end-to-end delay for TCP connections. We use a moving average technique not
for predicting end-to-end delay, but rather for predictingan optimal value of the playout
delay per-talkspurt in an audio session.

One characteristic that most of the playout delay adaptation algorithms lack is the
ability to fix the loss percentage to some a priori value. By changing a measure of vari-
ability, the algorithms proposed by Ramjee et al. can achieve different loss percentages.
However, there is no explicit relationship between the measure of variability that we can
adapt in these algorithms and the average loss percentage. The average loss percentage
can change from one audio session to another, even if this parameter is kept unchanged.
Here lies the main contribution of our work. The moving average algorithm we propose
adjusts the playout delay from talkspurt to talkspurt, given a desired target of average
loss percentagep. Our algorithm ensures that the average loss percentage we obtain
during the session is close, if not equal, to the target value. At the same time, and in
most of the cases, our algorithm realizes this target with a smaller average playout de-
lay than the one we need to obtain the same average loss percentage with the algorithms
proposed by Ramjee et al. For practical loss percentages, wevalidate our algorithm and
those of Ramjee et al. using real packet audio traces. By using collected audio traces
we can compare the algorithms under the same network conditions.

The remainder of this paper is as follows. Section 2 providessome additional back-
ground and describes the packet delay traces used for validation, as well as the notation
we use throughout the paper. In Sect. 3, we describe some related work on playout delay
algorithms. Section 4 describes the performance measures we consider to validate our
algorithm and to compare it with the algorithms of Ramjee et al. We present in Sect. 5
our moving average algorithm. Section 6 describes, based onresults from Sect. 5, that it
is better to predict a function of the delay rather than the optimal delay itself. Section 7
compares the performance of an online hybrid implementation of the moving average
algorithm with the Ramjee et al. algorithms. Finally, Sect.8 concludes the paper.

2 Some background

Receivers use a playout buffer to smooth the stream of audio packets. This smoothing
is done by delaying the playout of packets to compensate for variable network delay.
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Fig. 1. The timings between the transmission, reception and playout of packets.

The playout delay can be either constant through the whole session, or can be adjusted
between talkspurts. Moreover, in a recent work [6], it has been shown that by using a
technique calledpacket scaling, it is possible to change the playout delay from packet
to packet while keeping the resulting distortion within tolerable levels. In this paper we
only focus on the per-talkspurt playout delay adaptation approach.

Figure 1 shows the different stages incurred in an audio session. Thei-th packet
of talkspurtk is sent at timetik, it arrives at the receiver at timeai

k, and is held in
the smoothing receiver’s playout buffer until timepi

k, when it is played out. Inside a
talkspurt, packets are equally spaced at the sender by time intervals of length∆ seconds.

By delaying the playout of packets and dropping those that arrive after their dead-
line, we are able to reconstruct the original periodic form of the stream. This adaptation
results in a regenerated stream at having stretched or compressed silence periods com-
pared to the original stream. These changes are not noticeable by the human ear if they
are kept within tolerable small levels.

In Fig. 1, a dropped packet due to a late arrival is represented by a dashed line.
A packet is artificially dropped if it arrives after its scheduled deadlinepk

i . The loss
percentage can be reduced by increasing the amount of time that packets stay in the
playout buffer. An efficient playout adaptation algorithm must take into account the
trade-off between loss and delay in order to keep both parameters as low as possible.

Table 1. Definition of variables.

Param.Meaning
L The total number of packets arriving at the receiver during asession.
N The total number of talkspurts in a session.
Nk The number of packets in talkspurtk.
ti
k The time at which thei-th packet of talkspurtk is generated at the sender.

ai
k The time at which thei-th packet of talkspurtk is received.

di
k The variable portion of the end-to-end delay of thei-th packet in talkspurtk.

di
k = ai

k − ti
k −min1≤k≤N

1≤i≤N
k

(ai
k − ti

k).

pi
k The time at which packeti of talkspurtk is played out.



Table 2. Description of the traces.

Trace Sender Receiver Start time Length [s]TalkspurtsPackets
1 UMass GMD Fokus 08:41pm 6/27/95 1348 818 56979
2 UMAss GMD Fokus 09:58am 7/21/95 1323 406 24490
3 UMAss GMD Fokus 11:05am 7/21/95 1040 536 37640
4 INRIA UMass 09:20pm 8/26/93 580 252 27814
5 UCI INRIA 09:00pm 9/18/93 1091 540 52836
6 UMass Osaka University00:35am 9/24/93 649 299 23293

Throughout the paper, we use the notation described in Table1. For the validation of
our algorithm, we consider the packet traces generated withthe NeVoT audio tool that
are described in [7]. NeVoT is an audio terminal program usedto establish audio con-
versations in the Internet. The traces we use contain the sender and receiver timestamps
of transmitted packets that are needed for the implementation of any playout adaptation
algorithm. In these traces, one 160 byte audio packet is generated approximately every
20 ms when there is speech activity. A description of the traces (reproduced from [7])
is depicted in Table 2.

A typical sample of packet end-to-end delays is shown in Fig.2. A packet is repre-
sented by a diamond and talkspurt boundaries by dashed rectangles. Thex-axis repre-
sents the time elapsed at the receiver since the beginning ofthe audio session. Only the
variable portion of the end-to-end delay (di

k) is represented on they-axis of Fig. 2. To
this end, the constant component of the end-to-end delay (mostly caused by the prop-
agation delay) is removed by subtracting from packet delaystheir minimum over all
the corresponding trace. By considering the variable portion of the end-to-end delay,
synchronization between sender and receiver clocks can be avoided3 [7].
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Fig. 2. Delay spikes in end-to-end delay measurements.

3 Later, when comparing the performance of different algorithms, all graphics consider the vari-
able portion of end-to-end delays.



We observe in Fig. 2 the presence of delay spikes. This phenomenon in end-to-
end delay has been previously reported in the literature [4,8]. Delay spikes represent
a serious problem for audio applications since they affect the performance of playout
delay adaptation algorithms. Adelay spike is defined as a sudden large increase in the
end-to-end delay followed by a series of packets arriving almost simultaneously, leading
to the completion of the spike [4].

Delay spikes can be contained within a single talkspurt or can span over several
talkspurts. Figure 2(a) shows a delay spike spanning through two consecutive talkspurts.
Figure 2(b) shows a delay spike spanning over three talkspurts. Since the playout delay
is generally changed between talkspurts, a playout algorithm behaves better when delay
spikes span over more than one talkspurt. Only in this way, a playout algorithm can react
adequately to the spike by setting the playout delay according to the experienced delay.
If the spike vanishes before the end of a talkspurt, the playout algorithm will not have
enough time to set the playout time accordingly.

In the next section, we briefly describe the algorithms proposed by Ramjee et al.
Playout delay is adapted from talkspurt to talkspurt based on past statistics of the delay
process. The playout delay of the first packet of each talkspurt is the basetime of the
deadlines for subsequent packets in the same talkspurt. This principle is the basis for
most of the existing playout adaptation algorithms [4,7,9,10].

3 Related work

Extensive research work has been done in the area of adaptiveplayout mechanisms [4,
6,7,9–12]. In [4], Ramjee et al. propose four algorithms forplayout delay. All the four
algorithms proposed in [4] compute an estimate of the average end-to-end delay and a
measure of variability of delay similarly to the computation of round-trip-time estimates
by TCP for the retransmission timer. We denote them asd̂i

k andv̂i
k respectively. These

statistics are used to set the playout time for a talkspurt.
The algorithms that perform better in [4] are 1 and 4. We rename these algorithms

asA andB respectively, and refer to them as such throughout the rest of the paper.
To calculated̂i

k andv̂i
k, the packet’s sender and receiver timestamps,tik andai

k, are
read from a trace file. Both algorithms differ only in the way they calculatêdi

k andv̂i
k.

Algorithm A computes these statistics as follows:

d̂i
k = αd̂i−1

k + (1− α)di
k, and v̂i

k = αv̂i−1
k + (1− α)|d̂i

k − di
k|,

wheredi
k = ai

k − tik, andα has the default value of 0.998002.
Algorithm B is described in [4] but we also sketch it in Fig. 3 for completeness. It

operates in two modes: normal mode and spike (or impulse) mode. In normal mode, it
behaves like AlgorithmA but with different coefficients. When the difference between
two consecutive delay values exceeds a given threshold, algorithmB triggers the spike
mode. During this mode, the variablevar is updated with an exponentially decreasing
value that adjusts to the slope of the spike. The end of a delayspike is detected when
var reaches an enough small value, and the algorithm returns to normal mode.



'

&

$

%

1. di
k = ai

k − ti
k;

2. if (mode == NORMAL) {
3. if (|di

k − di−1

k | > 2|v̂i
k |+ 800) {

4. var = 0; /* Detected beginning of spike */
5. mode = SPIKE;
6. }
7. }
8. else {
9. var = var/2 + |(2di

k − di−1

k − di−2

k )/8|;
10. if (var ≤ 63) {
11. mode = NORMAL; /* End of spike */
12. di−2

k = di−1

k ;
13. di−1

k = di
k;

14. return;
15. }
16. }
17. if (mode == NORMAL)

18. d̂i
k = 0.125di

k + 0.875d̂i−1

k ;
19. else

20. d̂i
k = d̂i−1

k + di
k − di−1

k ;

21. v̂i
k = 0.125|di

k − d̂i
k|+ 0.875v̂i−1

k ;
22. di−2

k = di−1

k ;
23. di−1

k = di
k;

24. return;

Fig. 3. Algorithm B

Onced̂i
k andv̂i

k are computed, the playout time of thei-th packet of talkspurtk is
set by both algorithms as follows:

pi
k =

{

tik + d̂i
k + βv̂i

k, for i = 1 .

p1
k + (tik − t1k), for 1 < i ≤ Nk .

(1)

These values are computed for each packet but the playout time is changed only at
the beginning of a talkspurt. By varyingβ one is able to achieve different loss probabil-
ities and different average playout delays. In [4],β is set equal to the constant value of
4. Larger values ofβ allow to obtain lower loss percentages due to late arrivals but at
the cost of a longer average playout delay.

Algorithm A is slow in detecting delay spikes, but it maintains a good average
playout delay over an audio session. AlgorithmB reacts faster to delay spikes, but it
underestimates the playout delay at the end of the spike [7].

To compare our moving average algorithm with algorithmsA andB, we use the
performance measures defined in [7]. For clarity of the presentation, we redefine these
measures in Sect. 4.



4 Performance measures

To assess the performance of a playout adaptation algorithm, we focus on the total num-
ber of packets that are played out during an audio session, aswell as on the experienced
average end-to-end delay. Suppose we are given a packet audio trace with the sender
and receiver timestamps of audio packets. Letpi

k, N , L, Nk, tik, andai
k be defined as in

Table 1. As in [7], we defineri
k to be a variable indicating if packeti of talkspurtk is

played out or not. So,ri
k is defined as:

ri
k =

{

0, if pi
k < ai

k .

1, otherwise.

The total number of packets,T , played out in an audio session is thus given by:

T =

N
∑

k=1

Nk
∑

i=1

ri
k. (2)

The average playout delay,Davg, is equal to :

Davg =
1

T

N
∑

k=1

Nk
∑

i=1

ri
k[pi

k − tik]. (3)

Finally, the loss percentage,l, is equal to :

l =
L− T

L
× 100. (4)

5 Moving Average prediction

AlgorithmsA andB are good in maintaining a low overall average playout delay and
reacting to delay spikes. However, they lack a parameter allowing to have a direct con-
trol on the overall loss percentage during an audio session.It would be desirable to
come up with an algorithm that sets the playout delay in a way to get a loss percentage
p, given a trace ofN talkspurts andL packets. By varying the parameterβ in algo-
rithmsA andB, it is possible to obtain different loss percentages, but one is unable to
have any particular control on this parameter. We describe in this section our moving
average predictor (MA) for playout delay that takes as inputthe desired loss percentage
per-session,p, and a packet delay trace. It returns a set of estimated playout delay values
leading to an average loss percentage close, if not equal to the desired valuep.

5.1 The Model

Let Dk be the optimal playout delay at the beginning of talkspurtk, and letp be the
desired average loss percentage per-session. We mean byoptimal playout delay the
playout delay that makes the number of losses per talkspurt the closest top × Nk, Nk

being the number of audio packets received during thek-th talkspurt. By controlling the
loss percentage per-talkspurt top, we are sure that the overall loss percentage during the



whole audio session is also close top. We computeDk as follows, letdj
k be the variable

portion of the end-to-end delay of thej-th packet in talkspurtk. For each talkspurt,
1 ≤ k ≤ N , we sort in ascending order the packet end-to-end delay values to obtainN
new ordered sets{dj

ksort
}, with 1 ≤ j ≤ Nk. We set the optimal playout delay of the

k-th talkspurt to the following value:

Dk = di
ksort

, i ≤ Nk, (5)

with i = round((1− p)Nk). Thus, ifdi
k ≤ Dk, thei-th packet of talkspurtk is played

out, otherwise the packet is dropped due to a late arrival.
We present now our moving average predictor. Consider that we have a set of op-

timal delay values in the past{Dk, Dk−1, Dk−2, . . .}, and that we want to predict the
value ofDk+1. The predicted value ofDk+1 is denoted byD̂k+1, and is taken as a
weighted average of the lastM values of the process{Dk}. Thus,

D̂k+1 =

M
∑

l=1

alDk−l+1. (6)

The coefficientsal in (6) must be chosen in a way that minimizes the mean square
error between̂Dk andDk, i.e.E[(Dk− D̂k)2]. The desired coefficients are the solution
of the set of the so-called normal equations [13]:

M−1
∑

m=0

am+1rD(m− l) = rD(l + 1), l = 0, 1, . . . , M − 1. (7)

In (7), rD = E[DkDk+l] is the lag-l autocorrelation function of the process{Dk}.
The exact form of the autocorrelation function is unknown, but it can be estimated using
the past values of the process{Dk}. Suppose we haveK values in the past, we can thus
write

rD(r) '
1

K − |r|

K−|r|
∑

k=1

DkDk+|r|, r = 0,±1,±2, . . . ,±(K − 1). (8)

The set of normal equations (7) can be solved using single matrix-vector operations.
For large values ofM (sayM > 100), the well known Levinson-Durbin algorithm may
be preferred [13].

M is called themodel’s order. Figure 4 illustrates howM is calculated. For a given
packet trace, starting withM = 1, we compute all the values of{D̂k} and estimate
E[(Dk − D̂k)2]. Then, we increaseM and we repeat the process. The model’s order is
taken equal to the lowest value ofM preceding an increase in the mean square error.
For example, for trace 1 the algorithm choosesM equal to 19, and for trace 3 it chooses
M equal to 8. There exist different methods for selecting the model’s order e.g. Double
Sidedt-test, Minimum Description Length, and Final Prediction Error; the reader is
referred to [14].
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5.2 The moving average algorithm

We describe now our moving average algorithm for playout delay. The algorithm takes
as input a packet delay trace with sender and receiver timestamps, and looks for{D̂k},
the estimates of the optimal playout delays{Dk}. For each past talkspurt, the individual
end-to-end delay values are sorted, andD̂k is computed as in (6).̂Dk is calculated for
each talskpurt as a weighted average of the lastM talkspurts, fork = M + 1, M +
2, . . . , N . Later, when evaluating the average playout delay and the loss percentage
per-session, we discard in the computation the firstM talkspurts.

Figure 5 depicts a pseudo-code version of the MA algorithm. ThegetOptDelay()
function takes as input the whole set of end-to-end delay values,d, and the desired loss
percentage per-sessionp. Then, it applies (5) to return a set of optimal per-talkspurt
delay values{Dk}. The firstfor loop solves the normal equations foral to compute
D̂k+1 for each talkspurt, then it calculatesE[(Dk − D̂k)2] for different values of the
model’s orderm, and holds the result in the vector−−→mse. Next,getOrder(−−→mse) is
called to find the model’s order,M , by choosing the lowest value ofM preceding an
increase in−−→mse. Then, we compute the coefficientsal with the value ofM just found.

The lastfor loop computeŝDk+1 for each talkspurt and the playout timespi
k. The

playout time of thei-th packet of talkspurtk is set as follows:

pi
k =

{

t1k + D̂k, for i = 1
p1

k + (tik − t1k), for 1 < i ≤ Nk.
(9)

The moving average algorithm requires the knowledge of the characteristics of the
process{Dk}. Assuming the process{Dk} is stationary during all the audio session,
the best performance of this algorithm is obtained when it isrun offline or after a large
number of samples is collected.

5.3 The problem with low p

As our simulation results will show, the MA algorithm described in Sect. 5.2 deviates
from the desired loss percentagep. See in (5) how the value ofDk depends on the
talkspurt sizeNk, and on the desired loss percentagep. For a given value ofp, (5)
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1. Dk ← getOptDelay(d,p);
2. R ← autocorr(Dk, N);
3.
4. for m = 1 to N {
5. /* Get the weights */
6. a = solve(R, m);
7. /* Compute D̂k+1 for each talkspurt */
8. D̂k+1 =

∑m

l=1
alDk−l+1;

9. /* Update the mse vector for this value of m */
10. mse(m) = E[(Dk − D̂k)2];
11. }
12.
13. M = getOrder(−−→mse);
14. a = solve(R, M);
15.
16. for k = M to N − 1 {

17. D̂k+1 =
∑M

l=1
alDk−l+1;

18. p1
k+1 = t1k+1 + D̂k+1;

19. 20. for j = 2 to Nk+1

21. pj

k+1
= p1

k+1 + tj

k+1
− t1k+1;

22. }

Fig. 5. The MA algorithm.

returns the delay value closest top × Nk. Thus, when computinĝDk, there will be a
deviation of the overall perceived loss percentage from theone we desire. The highest
deviation is for very low values ofp. The algorithm leads to a loss percentage longer
than the desired one. To deal with this deviation, for the range0.005 ≤ p ≤ 0.02, we
allow our MA algorithm to slightly increase the playout delay by the following offset:

∆
D̂k

= f(p)

√

E[(D̂k −Dk)2]. (10)

In this way, the playout delay is increased as a function of the measured mean square
error betweenDk andD̂k, and as a function ofp. Since the deviation of the measured
loss percentage increases for small values ofp, we setf to f(p) = −δ × ( p

pmax

− 1),
whereδ is a constant controlling how much we increase the playout delay as a function
of the square root ofE[(Dk − D̂k)2]. So, asp increases in the range (0,pmax], D̂k

converges to its original form (6), and ifp decreases a longer offset is used. We set
pmax = 0.02 andδ = 0.5. This allows to reduce considerably the deviation of the
measured loss percentage fromp, without impacting much the delay.

The following lines must be added to the pseudo-code shown inFig. 5 between lines
17 and 18:

if p ≤ 0.02

D̂k+1 ← D̂k+1 + ∆
D̂k

.
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Fig. 6. Performance of the MA algorithm before and after adding the offset to D̂k for p ∈
[0.005, 0.02].

To see the gain obtained when applying (10), we plot in Fig. 6,for p ∈ [0.005, 0.02]
the performance of the original MA algorithm before and after this change. Thex-axis
represents the total measured loss percentage due to late losses,l, and they-axis plots
the average playout delay,Davg, for discrete values ofp from 0.005 topmax = 0.02,
with p increasing 0.005 at each step. We call this new algorithmMA+offset, and we
refer to it as such during the rest of the paper.

The deviation of the loss percentage for the MA+offset algorithm is much lower,
while keeping the average playout delay within reasonable values. The gain we get
compared to the basic MA algorithm is very clear. For trace 1,the MA+offset algorithm
reaches loss percentages of 1.7% compared to 5.4% in the basic MA algorithm. The
MA+offset algorithm is beneficial for all traces, and the gain is higher for trace 2 and
trace 6, where the deviation of the desired loss percentage is now much lower compared
to the original case.

Section 5.4 compares the performance of our MA+offset algorithm with algorithms
A andB.

5.4 Performance comparison

To evaluate each of the three algorithms, we use a simulator that reads in an input file
containing the sender and receiver timestamps of each packet of an audio session. Then,
each algorithm is executed, and we use expressions (3) and (4) to compute the average
playout delay and the loss percentage during an audio session.

As pointed out above, algorithmsA andB are unable to get a particular target of
loss percentagep. Thus, to obtain different loss percentages in AlgorithmsA andB we
varyβ in (1) from 1 to 20; larger values ofβ allow to get lower loss percentages, at the
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Fig. 7. Performance comparison of algorithmsA, B, and the MA+offset algorithm.

expense of a higher average playout delay. We compare the performance of algorithms
A andB with our MA+offset algorithm for0.005 ≤ p ≤ 0.2. Loss percentages smaller
than 5% are rather desirable for interactive audio applications [3].

Figure 7 plots the corresponding results for each trace. Thex-axis represents the
perceived loss percentage per-sessionl, and they-axis represents the average playout
delayDavg. Each execution of an algorithm gives a single point in the graphic. The plots
in Fig. 7 were obtained by connecting the discrete points returned by each approach.

In trace 1, we see how for loss percentages greater than 5%, the performance of
the three algorithms is quite similar, with algorithmsA andB having a slightly better
performance than the MA+offset algorithm for loss percentages between 5% and 11%.
For loss percentages lower than 5%, the performance of algorithmsB and MA+offset
remains similar but they outperform algorithmA with a maximum gain on average play-
out delay of about 40% of the MA+offset algorithm compared toalgorithmA. Trace 2
is the only multicast session and has a large network loss percentage of about 50%, it
has also long inactivity periods of up to 2 minutes. The MA+offset algorithm clearly
outperforms algorithmsA andB for the whole range of loss percentage and average
playout delay, with a maximum gain on playout delay of about 200% compared to al-
gorithmB. In trace 3, algorithmsA andB remain close to the MA+offset algorithm,
with the MA+offset algorithm giving better performance forthe whole range of loss
percentage and average playout delay. For traces 4 to 6, algorithmsA and MA+offset
remain close in both, loss percentage and average playout delay, outperforming algo-
rithm B. For loss percentages lower than 3%, the MA+offset algorithm performs better
than algorithmsA andB. This difference in performance is clearly seen in trace 6,
where the MA+offset algorithm shows a considerable gain over algorithmsA andB.

Deviations of loss percentage persist in the MA+offset algorithm. The highest de-
viations in Fig. 6 are for traces 2 and 6. Both are the shortesttraces, they suffer from



high variations on end-to-end delay, and high network loss due to congestion. Thus, the
autocorrelation function does not have useful informationabout the process{Dk}, and
consequently the estimated values{D̂k} are inaccurate. Section 6 describes a transfor-
mation that can be done to reduce the deviations of the MA+offset algorithm.

6 Bias and Transformation

Our scheme is designed with the main objective to control theloss percentage to a
certain valuep, while minimizing the average playout delay. Here is the strength of
our scheme compared to other schemes in the literature, where we do not have a di-
rect control on the loss percentage. Our control on this parameter has been done till
now by controlling the optimal playout delay per talkspurtDk. But, the relationship
between the playout delay and the loss percentage may not be linear. This may cause in
a deviation of the perceived loss percentage from the desired one. Technically said, our
predictor is unbiased with respect toDk, however it may be biased with respect to the
loss percentage per talkspurt. We illustrate this bias by the following analysis.

Our moving average predictor ofDk ensures thatE [Dk] = E[D̂k]. Let di
k, 1 ≤ i ≤

Nk, be the delay of thei-th packet of talkspurtk. The way we defineDk also ensures
thatE

[

1{di
k > Dk}

]

= p, with 1{A} being the indicator function. But, the average loss
percentage we experience during the audio conversation is not E

[

1{di
k > Dk}

]

, but

ratherE[1{di
k > D̂k}]. We explain next why this experienced average loss percentage

can be different fromp, when the relationship between loss and delay is non-linear.
Let F (x) be the complementary CDF of packet end-to-end delay, i.e.,F (x) =

P
{

di
k > x

}

. It is easy to see that forx = E [Dk], F (x) is equal to p, sinceP
{

di
k > Dk

}

=

E
[

1{di
k > Dk}

]

is equal top by definition.
The average packet loss percentage we obtain with our schemeis equal top̂ =

E[1{di
k > D̂k}]. We condition on the value ofDk. This leads to

p̂ = E

[

1{di
k > D̂k}

]

= E

[

E

[

1{di
k > D̂k}

]

| Dk

]

= E

[

F (E [Dk] + D̂k −Dk)
]

.

The last equality results from the fact that

E
[

1{di
k > Dk + y}

]

= E
[

E
[

1{di
k > Dk + y} |Dk

]]

= F (E [Dk] + y). (11)

The proof (11) is as follows. The objective is to compute the loss probability of a
packet when the playout delay in a talkspurt is sety units far from the optimal playout
delayDk. In other words, we want to compute the loss probability of a packet, when
the playout delay is sety units far from the playout delay that results in a packet loss
percentage equal top. But, the playout delay that results in a packet loss percentage
equal top (if we only look at the packet and not at the talkspurt to whichthe packet
belongs) is simplyF (E [Dk]). Hence, the problem is equivalent to computing the loss
probability of a random packet when the playout delay for this packet is sety units far
from E [Dk], which is equal toF (E [Dk] + y).



Let εk be the prediction error for talkspurtk, i.e., εk = D̂k −Dk. We write p̂ =
E [F (E [Dk] + εk)]. The bias of our predictor can be seen from this expression, when
the functionF (x) in non-linear.F (x) relates the packet loss probability of a packet
to the playout delay. For example, ifF (x) is a convex function, we have by Jensen’s
inequalityp̂ > F (E [Dk] + E [εk]) = F (E [Dk]) = p.

To correct this bias, some transformation of the processDk can be used. Define
Xk = G(Dk). The prediction will be done on the processXk instead ofDk, using a
Moving Average predictor, i.e.,̂Xk+1 =

∑M

l=1 alXk−l+1. Once the estimate ofXk,
denoted byX̂k is obtained, we set the playout delay toG−1(X̂k). The average loss

percentage becomes equal top̂ = E

[

F (E [Dk] + G−1(X̂k)−G−1(Xk))
]

.

The functionG(x) must compensate for the non-linearity of the functionF (x).
It must transform the error in setting the playout delay, so as to makep̂ equal top.
Unfortunately, it is very difficult to find the expression ofG(x). Some approximations
can be used. We give an example of a transformation that we usein this paper. Our
measurements show that the functionF (x) is convex, and close to exponential. We
consider then as transformation the exponential function,with a decay coefficientα,
that is, we takeG(x) = e−αx. Hence, we predictXk = e−αDk instead of predicting
Dk.

6.1 Performance comparison

We apply the exponential transformationG(x) to the procesŝDk in our MA algorithm.
The MA algorithm remains the same, but we predict now the processXk = e−αDk

rather than directly predictingDk. We call this new algorithmtransformed MA algo-
rithm.

When testing the transformed MA algorithm we found no significant differences
for 10 < α ≤ 20. Forα < 10 the performance degrades very slowly with decreasing
α. We thus set empirically the value ofα to 10, and we use it when comparing with
algorithmsA andB in the next section.

To further improve the performance of the transformed MA algorithm, when trans-
forming backD̂k from X̂k, we implement the procedure described in Sec. 5.3 to reduce
the deviations for small values ofp. We call this varianttransformed MA+offset.

Figure 8 compares the performance of our two MA+offset algorithms with algo-
rithms A andB. In the subsequent figures, the transformed MA+offset is denoted as
MA+transf+offset. Observe how the transformation applied onDk considerably
improves the performance of the MA algorithm. For trace 1, the transformed MA+offset
algorithm clearly outperforms algorithmsA, B, and the original MA algorithm with a
gain of up to 50% for the whole range of loss percentage and average playout delay. For
trace 2, the transformed MA+offset algorithm does not reachloss percentages lower
than 5%. This is still due to the high jitter and network loss present in trace 2 which
does not provide the autocorrelation function with useful information about the process
Dk. However, the transformed MA+offset algorithm largely outperforms algorithmsA
andB for other values ofp. For traces 3 to 5, we see clearly the benefit of applying the
transformationG(x). The transformed MA+offset algorithm outperforms all the other
algorithms with a maximum gain on average playout delay of upto 80% in trace 4
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Fig. 8. Performance comparison of algorithmsA, B, and the transformed MA+offset algorithm.

for low loss percentages, compared to algorithmsA andB. We notice an interesting
behavior of the transformed MA algorithm in trace 6. This is the only trace for which
the MA+offset algorithm behaves better than the transformed MA+offset version. Like
trace 2, trace 6 also has a high end-to-end delay and a high network loss percentage;
besides, trace 6 is one of the shortest sessions (in number oftalkspurts). Thus, the
MA+offset algorithm should be preferred when there are longcongestion periods in the
network and very high jitter.

We conclude that a moving average scheme is an attractive approach for playout
delay control. The algorithms studied till now are offline algorithms. Section 7 presents
an online hybrid algorithm combining algorithmB and the transformed MA+offset
algorithm which gives a very good performance for most of thescenarios.

7 A hybrid algorithm for playout delay

Moving average estimation has revealed to be an interestingapproach for playout de-
lay control. The transformed MA+offset algorithm described in the previous section
gives in general better performance than any of the other algorithms we studied. This
algorithm was run offline and the entire trace was used to compute the characteristics
of {Dk}. We look now for an online version of the transformed MA+offset algorithm.
During our simulations, the maximum model’s order was nevergreater than 23. This
means that we do not need a large number of samples to compute agood moving aver-
age estimation. We propose in this section a combination of the transformed MA+offset
algorithm and algorithmB, that we callhybrid algorithm.

The idea is quite simple and is sketched as pseudo-code in Fig. 9. During the first
talkspurts of an audio session, sayMAXTKSP talkspurts, algorithmB is executed with
β = 4. At the same time, we collect samples of{Dk}, we transform them to{Xk}, and



we keep them in memory to be used later to compute the model’s order and predictor
coefficients. Then, starting from talkspurtMAXTKSP+1, the transformed MA+offset
algorithm is executed and playout times are computed. The autocorrelation function is
updated at each new talkspurt to account for theMAXTKSP most recent values ofXk.
Since finding the model’s order,M , is an exhaustive operation its value is computed
only once and it is kept during the whole session.MAXTKSP is set equal to 100 for all
the traces. The transformation applied toDk is Xk = e−αDk and is denoted asG(Dk).

'

&

$

%

1. During the first MAXTKSP talkspurts {
2. Execute Algo B;
3. Compute playout times pi

k;
4. Collect statistics about Dk;
5. }
6. Xk ← G(Dk);
7. R← autocorr(Xk);
8. M = findorder();
9. /* For each talkspurt from k = 1 to MAXTKSP */
10. X̂k =

∑M

l=1
alXk−l+1;

11. D̂k = G−1(X̂k);
12.
13. for k =MAXTKSP to N − 1 {

14. X̂k+1 =
∑M

l=1
alXk−l+1;

15. D̂k+1 = G−1(X̂k+1);
16. if p ≤ 0.02

17. D̂k+1 ← D̂k+1 + (0.5 − 25p)

√

E[(Dk − D̂k)2];

18.
19. p1

k+1 = t1k+1 + D̂k+1;
20. for j = 2 to Nk+1

21. pj

k+1
= p1

k+1 + tj

k+1
− t1k+1;

22.
23. /* We recompute the autocorrelation function */
24. /* for the MAXTKSP most recent values of Xk */
25. R← autocorr(Xk);
26. }

Fig. 9. The hybrid online algorithm for playout delay.

7.1 Performance comparison

Figure 10 compares the performance of the hybrid algorithm with algorithmsA andB.
In trace 1, the hybrid algorithm outperforms algorithmsA andB for almost all values
of p. We observe an overall gain on playout delay of about 25% of the hybrid algorithm
compared to algorithmsA andB. We note again in trace 2 how the the hybrid algorithm
does not reach loss percentages lower than 5%. In fact, sincethe number ofDk samples



 1 10 
0.2

0.25

0.3

0.35

0.4

0.45

0.5
Trace no.1

l: Loss Percentage [%]

D
av

g: A
ve

ra
ge

 p
la

yo
ut

 d
el

ay
 [s

]

Algo A
Algo B
Hybrid

 1 10 
0.05

0.1

0.15

0.2

0.25

0.3
Trace no.4

l: Loss Percentage [%]

D
av

g: A
ve

ra
ge

 p
la

yo
ut

 d
el

ay
 [s

]

Algo A
Algo B
Hybrid

 1 10 

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Trace no.2

l: Loss Percentage [%]

D
av

g: A
ve

ra
ge

 p
la

yo
ut

 d
el

ay
 [s

]

Algo A
Algo B
Hybrid

 1 10 
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1
Trace no.5

l: Loss Percentage [%]

D
av

g: A
ve

ra
ge

 p
la

yo
ut

 d
el

ay
 [s

]

Algo A
Algo B
Hybrid

 1 10 
0.2

0.25

0.3

0.35

0.4

0.45
Trace no.3

l: Loss Percentage [%]

D
av

g: A
ve

ra
ge

 p
la

yo
ut

 d
el

ay
 [s

]

Algo A
Algo B
Hybrid

 1 10 
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Trace no.6

l: Loss Percentage [%]

D
av

g: A
ve

ra
ge

 p
la

yo
ut

 d
el

ay
 [s

]

Algo A
Algo B
Hybrid

Fig. 10. Performance comparison of algorithmsA, B, and the hybrid online algorithm.

used to compute the autocorrelation functions is now small,the error introduced in̂Xk,
and consequently in̂Dk, is larger in the hybrid algorithm than in the offline one. For
traces 3 to 5, the performance of the hybrid algorithm and algorithmsA andB is very
similar, with the hybrid algorithm performing better than algorithm A for trace 4, and
better than algorithmB for trace 5 in the loss range of interest (p ≤ 0.05). Trace 6
has the highest session end-to-end delay and high network loss percentages (due to
congestion), leading to a behavior similar to that of trace 2.

7.2 Delay spikes

Algorithm B detects delay spikes; when a delay spike occurs, the algorithm switches
to spike mode and follows the spike. When the end of the spike is detected, the algo-
rithm switches back to normal mode. We executed the MA+offset algorithm employing
the spike detection approach of AlgorithmB. When comparing the performance with
no spike detection we found no significant differences. The MA+offset algorithm com-
putes the autocorrelation function of the process{Dk} to solve the system of normal
equations and to calculate{D̂k+1}. Dk is the optimal per-talkpsurt playout delay. When
delay spikes occur, the autocorrelation functions of{Dk} account for them by defini-
tion.

8 Conclusions

This paper describes a moving average algorithm that adaptively adjusts the playout
delay at the beginning of talkspurts. To evaluate the performance of our algorithm, we
compare it with existing schemes implemented in the NeVoT audio tool. Several vari-
ants of our moving average algorithm are studied. For small values ofp, there is some



deviation of the perceived loss percentage, and this deviation increases asp decreases.
The MA+offset and the transformed MA+offset algorithms areproposed to reduce the
deviation of the desired loss percentage. These variants allow to obtain a considerable
gain compared to the original version while, at the same time, keeping the average
playout delay within tolerable levels.

The strength of our scheme lies in the fact that we are able to tune the loss per-
centagep to a given desired value. When directly predicting the optimal playout delay,
the desired loss percentage deviates from the desired one because the relation between
the average playout delay and loss rate is not linear. We demonstrate that, by apply-
ing a transformation onDk, the bias on the loss percentage can be reduced. Based on
our measurements, we approximate this transformation by a negative exponential func-
tion. A mixture of algorithmB and our transformed MA+offset algorithm proves to be
efficient in the loss percentages of interest. We call this algorithmhybrid algorithm.

Moving average estimation has revealed to be an efficient method for playout delay
control. When network jitter and network loss are very high,as in traces 2 and 6, the
MA algorithm do not reach loss percentages lower than 5%. Very high jitter decreases
the correlation of the processDk, leading to an inaccurate MA estimation.

Our algorithm predicts the optimal playout delay per-talkspurt, or a function of it,
using the past history of the process. To reconstruct the periodic form of the stream of
packets, the playout delay of packet in a talkspurt is based on the playout time of the first
packet in the talkspurt. An interesting recent approach [6,15] shows that it is possible
to adapt the playout delay at each packet arrival, leading toa better performance than in
a talkspurt basis. We are working on an extension of our MA approach that predicts the
playout delay per-packet, allowing to change the playout delay during a talkspurt, and
we expect our scheme to give better performance.
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