
Multi-Attribute Exchange Market:

Theory and Experiments
Eugene Fink, Josh Johnson, and John Hershberger

eugene@csee.usf.edu, joshjohnson@cfl.rr.com, jhershbe@csee.usf.edu
Computer Science, University of South Florida, Tampa, Florida 33620, usa

Abstract. The Internet has opened opportunities for efficient on-line
trading, and researchers have developed algorithms for various auctions,
as well as exchanges for standardized commodities; however, they have
done little work on exchanges for complex nonstandard goods. We pro-
pose a formal model for trading complex goods, present an exchange
system that allows traders to describe purchases and sales by multiple
attributes, and give the results of applying it to a used-car market and
corporate-bond market.

1 Introduction

The growth of the Internet has led to the development of on-line markets, which
include bulletin boards, auctions, and exchanges. Bulletin boards help buyers
and sellers find each other, but they often require customers to invest significant
time into reading multiple ads, and many buyers prefer on-line auctions, such
as eBay (www.ebay.com). Auctions have their own problems, including high
computational costs, lack of liquidity, and asymmetry between buyers and sellers.
Exchange markets support fast-paced trading and ensure symmetry between
buyers and sellers, but they require rigid standardization of tradable items. For
example, the New York Stock Exchange allows trading of about 3,000 stocks, and
a buyer or seller has to indicate a specific stock. For most goods, the description
of a desirable trade is more complex. An exchange for nonstandard goods should
allow the use of multiple attributes in specifications of buy and sell orders.

Economists and computer scientists have long realized the importance of
auctions and exchanges, and studied a variety of trading models. The related
computer science research has led to successful Internet auctions, such as eBay
(www.ebay.com) and Yahoo Auctions (auctions.yahoo.com), as well as on-line
exchanges, such as Island (www.island.com) and NexTrade (www.nextrade.org).
Recently, researchers have developed efficient systems for combinatorial auc-
tions, which allow buying and selling sets of commodities rather than individ-
ual items [1, 2, 7–10]. Computer scientists have also studied exchange markets;
in particular, Wurman, Walsh, and Wellman built a general-purpose system for
auctions and exchanges [11], Sandholm and Suri developed an exchange for com-
binatorial orders [9], and Kalagnanam, Davenport, and Lee investigated tech-
niques for placing orders with complex constraints [6].

A recent project at the University of South Florida has been aimed at build-
ing an automated exchange for complex goods [3–5]. We have developed a system
that supports large-scale exchanges for commodities described by multiple at-
tributes. We give a formal model of a multi-attribute exchange (Sections 2 and 3),
describe the developed system (Section 4), and show how its performance de-
pends on the market size (Section 5).

2 General Exchange Model

We begin with an example of a multi-attribute market, and then define orders
and matches between them.

Example. We consider an exchange for trading new and used cars. To sim-
plify this example, we assume that a trader can describe a car by four attributes:
model, color, year, and mileage. A prospective buyer can place a buy order, which
includes a description of a desired car and a maximal acceptable price; for in-
stance, she may indicate that she wants a red Mustang, made after 2000, with
less than 20,000 miles, and she is willing to pay $19,000. Similarly, a seller can
place a sell order; for example, a dealer may offer a brand-new Mustang of any
color for $18,000. An exchange system must generate trades that satisfy both
buyers and sellers; in the previous example, it must determine that a brand-new
red Mustang for $18,500 satisfies the buyer and dealer.

Orders. When a trader makes a purchase or sale, she has to specify a set
of acceptable items, denoted I, which stands for item set. In addition, a trader
should specify a limit on the acceptable price, which is a real-valued function
on the set I; for each item i ∈ I, it gives a certain limit Price(i). For a buyer,
Price(i) is the maximal acceptable price; for a seller, it is the minimal acceptable
price. If a trader wants to buy or sell several identical items, she can include their
number in the order specification, which is called an order size. She can specify
not only an overall order size, but also a minimal acceptable size. For instance,
suppose that a Ford wholesale agent is selling one hundred cars, and she works
only with dealerships that are buying at least ten cars. Then, she may specify
that the overall size of her order is one hundred, and the minimal size is ten.

Fills. An order specification includes an item set I, price function Price,
overall order size Max, and minimal acceptable size Min. When a buy order
matches a sell order, the corresponding parties can complete a trade; we use
the term fill to refer to the traded items and their price. We define a fill by a
specific item i, its price p, and the number of purchased items, denoted size. If
(Ib,Priceb,Maxb,Minb) is a buy order, and (Is,Prices,Maxs,Mins) is a matching
sell order, then a fill must satisfy the following conditions:

1. i ∈ Ib ∩ Is.
2. Prices(i) ≤ p ≤ Priceb(i).
3. max(Minb,Mins) ≤ size ≤ min(Maxb,Maxs).

3 Order Representation

We next describe the representation of orders in the developed exchange system.
Market attributes. A specific market includes a certain set of items that

can be bought and sold, defined by a list of attributes. As a simplified example,
we describe a car by four attributes: model, color, year, and mileage. An attribute
may be a set of explicitly listed values, such as the car model; an interval of
integers, such as the year; or an interval of real values, such as the mileage.

Cartesian products. When a trader places an order, she has to specify some
set I1 of acceptable values for the first attribute, some set I2 for the second
attribute, and so on. The resulting set I of acceptable items is the Cartesian
product I1 × I2 × For example, suppose that a car buyer is looking for a
Mustang or Camaro, the acceptable colors are red or white, the car should be
made after 2000, and it should have at most 20,000 miles; then, the item set
is I = {Mustang, Camaro}×{red, white}× [2001..2003]× [0..20,000]. A trader can
use specific values or ranges for each attribute; for instance, she can specify a
desired year as 2003 or as a range from 2001 to 2003. She can also specify a list
of several values or ranges; for example, she can specify a set of colors as {red,
white}, and a set of years as {[1900..1950], [2001..2003]}.

Unions and filters. A trader can define an item set I as the union of several
Cartesian products. For example, if she wants to buy either a used red Mustang
or a new red Camaro, she can specify the set I = ({Mustang}×{red}×[2001..2003]×
[0..20,000]) ∪ ({Camaro}×{red}×{2003}×[0..200]). Furthermore, the trader can
indicate that she wants to avoid certain items; for instance, a superstitious buyer
may want to avoid black cars with 13 miles on the odometer. In this case, the
trader must use a filter function that prunes undesirable items. This filter is a
Boolean function on the set I, encoded by a C++ procedure, which gives false
for unwanted items.

Orders. An order includes an item set, defined by a union of Cartesian prod-
ucts and optional filter function, along with a price function and size. If the price
function is a constant, it is specified by a numeric value; else, it is a C++ pro-
cedure that inputs an item and outputs the corresponding price limit. The size
specification includes two positive values: overall size and minimal acceptable size.

4 Exchange System

The system consists of a central matcher and multiple user interfaces that run on
separate machines. The traders enter orders through interface machines, which
send the orders to the matcher. The system supports three types of messages to
the matcher: placing, modifying, and cancelling an order.

The matcher includes a central structure for indexing of orders with fully
specified items. If we can put an order into this structure, we call it an index
order. If an order includes a set of items, rather than a fully specified item, the
matcher adds it to an unordered list of nonindex orders. The indexing structure
allows fast retrieval of index orders that match a given order; however, the system
does not identify matches between two nonindex orders.

In Fig. 1, we show the main loop of the matcher, which alternates between
processing new messages and identifying matches for old orders. When it receives
a message with a new order, it immediately identifies matching index orders. If
there are no matches, and the new order is an index order, then the system adds
it to the indexing structure. Similarly, if the system fills only part of a new index
order, it stores the remaining part in the indexing structure. If it gets a nonindex

the queue of incoming messages
Process every new message in

search for matching index orders
For every nonindex order,

Fig. 1. Main loop of the matcher.

40,000 miles

Red Mustang,
made in 1999,

5,000 miles

15,000 20,000

made in 2001,
20,000 miles

Red Camaro,
made in 2001,
15,000 miles

Red Mustang,
made in 2003,

0 miles

40,000 5,0000

Red Mustang,Red Camaro, White Mustang,
made in 2001,
15,000 miles

15,000

made in 2003,

2001 2001
Mileage Mileage MileageMileage

1999 2003
Year

White

YearYear
Red Red

Camaro Mustang

Color Color

Model

Fig. 2. Indexing tree for a used-car market. Thick boxes show the retrieval of matches
for an order to buy a Mustang made after 2000, with any color and mileage.

order and does not find a complete fill, it adds the unfilled part to the list of
nonindex orders.

When the system gets a cancellation message, it removes the specified order
from the market. When it receives a modification message, it makes changes to
the specified order. If the changes can potentially lead to new matches, it imme-
diately searches for index orders that match the modified order. For example,
if a seller reduces the price of her order, the system immediately identifies new
matches. On the other hand, if the seller increases her price, the system does
not search for matches.

After processing all messages, the system tries to fill old nonindex orders; for
each nonindex order, it identifies matching index orders. For example, suppose
that the market includes an order to buy any red Mustang, and that a dealer
places a new order to sell a red Mustang, made in 2003, with zero miles. If the
market has no matching index orders, the system adds this new order to the
indexing structure. After processing all messages, it tries to fill the nonindex
orders, and determines that the dealer’s order is a match for the old order to
buy any red Mustang.

The indexing structure consists of two identical trees: one is for buy orders,
and the other is for sell orders. The height of an indexing tree equals the number
of attributes, and each level corresponds to one of the attributes (Fig. 2). The
root node encodes the first attribute, and its children represent different values
of this attribute. The nodes at the second level divide the orders by the second
attribute, and each node at the third level corresponds to specific values of the
first two attributes. In general, a node at level i divides orders by the values
of the ith attribute, and each node at level (i + 1) corresponds to all orders
with specific values of the first i attributes. Every leaf node includes orders with
identical items, sorted by price.

To find matches for a given order, the system identifies all children of the
root that match the first attribute of the order’s item set, and then recursively
processes the respective subtrees. For example, suppose that a buyer is looking

for a Mustang made after 2000, with any color and mileage, and the tree of sell
orders is as shown in Fig. 2. The system identifies one matching node for the first
attribute, two nodes for the second attribute, two nodes for the third attribute,
and finally three matching leaves; we show these nodes by thick boxes. If the
order includes the union of several Cartesian products, the system finds matches
separately for each product. If the order includes a filter function, the system uses
the filter to prune inappropriate leaves. After identifying the matching leaves,
the system selects the best-price orders in these leaves.

5 Performance

We describe experiments with an extended used-car market and corporate-bond
market. We have run the system on a 2-GHz Pentium computer with one-
gigabyte memory. A more detailed report of the experimental results is available
in Johnson’s masters thesis [5].

The used-car market includes all car models available through AutoNation
(www.autonation.com), described by eight attributes: transmission (2 values),
number of doors (3 values), interior color (7 values), exterior color (52 values),
year (103 values), model (257 values), option package (1,024 values), and mileage
(500,000 values). The corporate-bond market is described by two attributes:
issuing company (5,000 values) and maturity date (2,550 values).

We have varied the number of old orders in the market from one to 300,000,
which is the maximum possible number for one-gigabyte memory. We have also
controlled the number of incoming new orders in the beginning of the system’s
main loop (Fig. 1); we have experimented with 300 and 10,000 new orders. In ad-
dition, we have controlled the matching density, defined as the mean percentage
of sell orders that match a given buy order; in other words, it is the probability
that a randomly selected buy order matches a randomly chosen sell order. We
have considered five matching-density values: 0.0001, 0.001, 0.01, 0.1, and 1.

For each setting of the control variables, we have measured the main-loop
time, throughput, and response time. The main-loop time is the time of one
pass through the system’s main loop (Fig. 1). The throughput is the maximal
acceptable rate of placing new orders; if the system gets more orders per second,
it has to reject some of them. Finally, the response time is the average time
between placing an order and getting a fill.

In Figs. 3 and 4, we show how the performance changes with the number of
old orders in the market; note that the scales of all graphs are logarithmic. The
main-loop and response times are linear in the number of orders. The throughput
in small markets grows with the number of orders; it reaches a maximum at
about three hundred orders, and slightly decreases with further increase in the
market size. The system processes 500 to 5,000 orders per second in the used-car
market, and 2,000 to 20,000 orders per second in the corporate-bond market.
In Figs. 5 and 6, we show that the main-loop and response times grow linearly
with the matching density. On the other hand, we have not found any monotonic
dependency between the matching density and the throughput.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

number of old orders

tim
e

(m
se

c)

Main−loop time

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

number of old orders

or
de

rs
 p

er
 s

ec

Throughput

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

number of old orders

tim
e

(m
se

c)

Response time

Fig. 3. Dependency of the performance on the number of old orders in the used-car
market. The dotted lines show experiments with 300 new orders and matching density
of 0.0001. The dashed lines are for 10,000 new orders and matching density of 0.001.
The solid lines are for 10,000 new orders and matching density of 0.01.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

number of old orders

tim
e

(m
se

c)

Main−loop time

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

number of old orders

or
de

rs
 p

er
 s

ec
Throughput

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

number of old orders

tim
e

(m
se

c)

Response time

Fig. 4. Dependency of the performance on the number of old orders in the corporate-
bond market. The dotted lines show experiments with 300 new orders and matching
density of 0.0001. The dashed lines are for 10,000 new orders and matching density
of 0.001. The solid lines are for 10,000 new orders and matching density of 0.01.

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

10
6

matching density

tim
e

(m
se

c)

Main−loop time

10
−4

10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

10
5

matching density

or
de

rs
 p

er
 s

ec

Throughput

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

10
6

matching density

tim
e

(m
se

c)

Response time

Fig. 5. Dependency of the performance on the matching density in the used-car market.
The dotted lines show experiments with 300 old orders and 300 new orders. The dashed
lines are for 10,000 old orders and 10,000 new orders. The solid lines are for 300,000
old orders and 10,000 new orders.

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

10
6

matching density

tim
e

(m
se

c)

Main−loop time

10
−4

10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

10
5

matching density

or
de

rs
 p

er
 s

ec

Throughput

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
2

10
4

10
6

matching density

tim
e

(m
se

c)

Response time

Fig. 6. Dependency of the performance on the matching density in the corporate-bond
market. The dotted lines show experiments with 300 old orders and 300 new orders.
The dashed lines are for 10,000 old orders and 10,000 new orders. The solid lines are
for 300,000 old orders and 10,000 new orders.

6 Concluding Remarks

We have proposed a formal model for trading complex multi-attribute goods,
and built an exchange system that supports markets with up to 300,000 orders
on a 2-GHz computer with one-gigabyte memory. The system keeps all orders
in main memory, and its scalability is limited by the available memory. We are
presently working on a distributed system that includes a central matcher and
multiple preprocessing modules, whose role is similar to that of stock brokers.

Acknowledgments. We are grateful to Hong Tang for her help in preparing this
article, and to Savvas Nikiforou for his help with software and hardware installa-
tions. We thank Ganesh Mani, Dwight Dietrich, Steve Fischetti, Michael Foster,
and Alex Gurevich for their feedback and help in understanding real-world ex-
changes. This work has been partially sponsored by the dynamix Technologies
Corporation and by the National Science Foundation grant No. eia-0130768.

References

1. Rica Gonen and Daniel Lehmann. Optimal solutions for multi-unit combinatorial
auctions: Branch and bound heuristics. In Proceedings of the Second acm Confer-
ence on Electronic Commerce, pages 13–20, 2000.

2. Rica Gonen and Daniel Lehmann. Linear programming helps solving large multi-
unit combinatorial auctions. In Proceedings of the Electronic Market Design Work-
shop, 2001.

3. Jianli Gong. Exchanges for complex commodities: Search for optimal matches.
Master’s thesis, Department of Computer Science and Engineering, University of
South Florida, 2002.

4. Jenny Ying Hu. Exchanges for complex commodities: Representation and indexing
of orders. Master’s thesis, Department of Computer Science and Engineering,
University of South Florida, 2002.

5. Joshua Marc Johnson. Exchanges for complex commodities: Theory and experi-
ments. Master’s thesis, Department of Computer Science and Engineering, Uni-
versity of South Florida, 2001.

6. Jayant R. Kalagnanam, Andrew J. Davenport, and Ho S. Lee. Computational
aspects of clearing continuous call double auctions with assignment constraints
and indivisible demand. Technical Report rc21660(97613), ibm, 2000.

7. Noam Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of
the Second acm Conference on Electronic Commerce, pages 1–12, 2000.

8. Tuomas W. Sandholm. Approach to winner determination in combinatorial auc-
tions. Decision Support Systems, 28(1–2):165–176, 2000.

9. Tuomas W. Sandholm and Subhash Suri. Improved algorithms for optimal winner
determination in combinatorial auctions and generalizations. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence, pages 90–97, 2000.

10. Tuomas W. Sandholm and Subhash Suri. Market clearability. In Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence, pages
1145–1151, 2001.

11. Peter R. Wurman, William E. Walsh, and Michael P. Wellman. Flexible double
auctions for electronic commerce: Theory and implementation. Decision Support
Systems, 24(1):17–27, 1998.

