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Abstract. We propose Independent Component Analysis representation and Sup-
port Vector Machine classification to extract facial features in a face detection/localization
context. The goal is to find a better space where project the data in order to build
ten different face-feature classifiers that are robust to illumination variations and
bad environment conditions. The method was tested on the BANCA database, in
different scenarios: controlled conditions, degraded conditions and adverse con-
ditions.1.

1 Introduction

One of the most remarkable abilities of human vision is that of face detection-recognition
process. Due to variations in illumination, background and facial expressions it may
become complex for a computer to perform such task. Face detection-recognition al-
gorithms are generally made up of three different steps: localization of the face re-
gion, extraction of meaningful facial features and normalization of the image respect
to this features to perform the recognition step. In this paper we focus our attention on
the facial feature extraction issue. Among all the possible classification of the existing
face detection algorithms, for our purposes we will consider the Holistic Face Models
(HFM) and the Local Features Face Models (LFFM) [1].

In the HFM approach the image region containing the whole face is selected manu-
ally and a representation of the face patch is learned from examples. It is clear that the
major problem with this approach is to capture all the face-class variance. Moreover, it
is very difficult to model the geometric relationships between the different face-parts.
In the LFFM approach, the basic idea is to represent the face with a set of meaningful
features and not as a whole. In this way, it is easier to use any geometric information
we can have about the face-class (collinear eyes positions, vertical symmetry etc...).

The feature based face detection is not a new technique. It has previously been in-
vestigated for instance in [2]. In these works they propose an implementation of the
local features detectors done via the Principal Component Analysis (PCA) based clas-
sification of neighbors of local maxima of the Harris corner detector.

1 Work partially performed in the BANCA project of the IST European program with the finan-
cial support of the Swiss OFES and with the support of the IM2-NCCR of the Swiss NFS



Our approach belongs to the Local Face Feature Model category. We propose to use
the Independent Component Analysis (ICA), instead of PCA, as linear transformation
on the image patches and to perform the SVM classification in the ICA space. The
goal is to provide a robust representation of the patches (by ICA) and train ten different
classifiers (by SVM) for ten classes of features representing the face. Our algorithm can
be seen as a pre-filtering stage of a face detection system.

The rest of the paper is organized as follows. Section II gives a brief introduction of
ICA. Section III does the same for SVM method. Experiments and results are shown in
section IV followed by some conclusions.

2 Independent Component Analysis

2.1 Overview

Assume we are observing m linear mixtures ��� ,..., ��� of n independent components
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Each mixture � � as well as each independent component ��� is a random variable.
Using the vector-matrix notation we can write

x = As (2)

The model in Eq.1 is called independent component analysis, or ICA model. It
is a generative model, which means that the observations are generated by a mixing
process of latent variables which are the independent components. These variables are
not directly observable and have to be estimated along with the mixing matrix A. The
basic assumption in ICA is that the latent variables ��� are statistically independent.
Technically, it means that the joint probability density is factorizable in the product of
the respective marginal densities:
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From the probability theory, the Central Limit Theorem tells that the distribution
of a sum of independent random variables tends toward a Gaussian distribution, under
certain conditions. We can use this result to assert, intuitively, that a mixture of ��� is
more Gaussian distributed with respect to each of them. So, one criterion to estimate
the independent components is to minimize the gaussianity of the ��� through some
measures of nongaussianity like kurtosis and negentropy [3].

Another approach inspired by information theory, using the concept of differential
entropy, is the minimization of mutual information
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Mutual information is equivalent to the Kullback-Leibler divergence between the
joint density � � y � and the product of its marginal densities. So it represents a natural
measure of the dependence between random variables and takes into account also the
high-order statistics. The concepts of mutual information, negentropy and projection
pursuit are all closely related [4]. Because negentropy is invariant for invertible linear
transformations, finding and invertible transformation that minimizes the mutual infor-
mation is roughly equivalent to find directions in which the negentropy is maximized.
Again, a single direction that maximizes negentropy is a form of projection pursuit and
could also be interpreted as estimation of a single component.

2.2 Why ICA?

Much of the information that perceptually distinguishes faces is contained in the higher
order statistics of the images [5]. Since ICA gets more then second order statistics
(covariance), it appears more appropriate with respect to PCA. The technical reason is
that second-order statistics correspond to the amplitude spectrum of the image (actually,
the Fourier transform of the autocorrelation function of an image corresponds to its
power spectrum, the square of the amplitude spectrum). The remaining information,
high-order statistics, corresponds to the phase spectrum. This is the informative part of
a signal. If we remove the phase information, an image looks like noise.

3 Support Vector Machine

In this section we briefly sketch the SVM algorithm and its motivation. A more detailed
description of SVM can be found in [6].

The task of learning from examples, for a two-class pattern recognition problem,
can be formulated as follows: given a set of functions
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and a set of examples
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each one generated according to an unknown probability distribution function � ��� ) ' � )
we want to find the function � �
� which minimizes the risk of misclassification of the
new patterns drawn randomly from � ) given by the risk functional:
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The risk functional is upper bounded by the sum of empirical risk and Vapnik-Chervonenkis
(VC) confidence term (see [6]). While in practice the risk functional cannot be mini-
mized directly, one can try to minimize its upper bound. In the case of SVM, the empir-
ical risk is kept constant, say zero, and a minimizer for the confidence term is sought.



Let us consider first the simple case of linearly separable data. We are searching an
optimal separating (hyper–)plane 2 � � ) ��� ��� ��� (8)

which minimizes the VC confidence term while providing the best generalization. The
decision function is � ��� � �	��
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Geometrically, the problem to be solved is to find the hyperplane that maximizes the
sum of distances to the closest positive and negative training examples. The distance is
called margin (see Figure 1) and the optimal plane is obtained by maximizing ������ or,

equivalently, by minimizing � � � � subject to ' � �
� � ) ��� ��� ��� � � In the case that the

(a) A possible separating plane (b) Optimal separating plane

Fig. 1. Two possible solutions for the separating plane problem. A better generalization is ex-
pected from the second case.

two classes overlap in feature space, one way to find the optimal plane is to relax the
above constraints by introducing some slack variables � � (for more details see [6]).

Introducing the Lagrange multipliers  � , we can express the decision function as a
function of them:
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where � � � � $  ��� ��� , with the new constraints :�,
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2 We use !#"%$�" & to denote the inner product operator



The vectors � � ) ��� � are called support vectors and are the only examples from the
training set that affect the shape of the separating boundary.

To generalize the linear case one can project the input space into a higher–dimensional
space in the hope of a better training–class separation. In the case of SVM this is
achieved by using the so–called ”kernel trick”. In essence, it replaces the inner product
�
� � ) � � � in (10) with a kernel function � ��� � ) � � � � As the data vectors are involved only

in this inner products, the optimization process can be carried out in the feature space
directly. Some of the most used kernel functions are:

the polynomial kernel � ��� )�� � � �
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the RBF kernel � ��� )�� � ���
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4 Methods and results

4.1 The BANCA database

The BANCA database is a multimodal and multi-language database. It has been recorded
in 3 different scenarios: controlled, degraded and adverse. For each of the four lan-
guages (French, English, Spanish and Italian), there are 52 subjects (26 males and 26
females) each performing 12 recording sessions, with 2 recordings per session (4 ses-
sions per scenario). In all, there are 6240 images per language. A more detailed descrip-
tion of the BANCA database can be found in [7].

4.2 Methods

In our experiments we have used the English subset of the BANCA database composed
by 6240 images which has been divided into two equally sized subset for training and
testing ( in such a way that images of the same person cannot appear both in training
and testing ). In the test set we have taken 3120 positive examples and 3120 negative
examples, so our test set size is 6240. The size of our patches is 32x32. The features
we have considered are: the left corner of the left eye (P1), the central point of the left
eye (P2), the right corner of the left eye (P3), the left corner of the right eye (P4), the
central point of the right eye (P5), the right corner of the right eye (P6), the left and right
nostrils (P7 and P8) and the left and right corners of the mouth (P9 and P10). Totally
ten classes ( figure 2(a)).

For each patch we perform first a PCA projection to reduce the dimensionality,
passing from 1024 (32x32) components to 50 components (getting about 95 � of the
total variance). Starting from the PCA transformed space we apply the ICA and we
train the SVM classifier in the ICA space using the radial basis function kernel. We
evaluate the robustness of our classifiers in terms of accuracy and number of false
positive. We use a test set composed by the manually selected feature points as positive
examples and a set of random points extracted with an Harris corner detector [8] as
negative examples. The results are shown in table1.



(a) The ten features (b) controlled conditions (c) degraded conditions

(d) adverse conditions

Fig. 2. The ten features (a) and the “clouds” of Harris corner in the three different conditions
(b,c,d)



4.3 Results

In figures 3(a)-3(f) we show, as an example, the results we have obtained applying our
models to a “cloud” of corners, from the three different scenarios, using the Harris
corner detector (figures 2(b),2(c),2(d)). It is important to underline the fact that in order
to avoid scanning the image in all positions, we used an Harris corner detector [8] as a
prefiltering stage. It turned out that the corner detector can be tuned to pick out enough
corners such that there are always corners sufficiently close to the real feature positions.

(a) feature P5 in con-
trolled conditions

(b) feature P7 in con-
trolled conditions

(c) feature P8 in degraded
conditions

(d) feature P6 degraded
conditions

(e) feature P5 in adverse
conditions

(f) feature P10 in adverse
conditions

Fig. 3. The features extracted from a “cloud” of corners in the three different scenarios

5 Conclusions and future work

In this work we have proposed the combined use of ICA and SVM for the facial feature
extraction problem. The algorithm can be used in a face detection system as a prepro-
cessing step, before to use other kind of information (as the geometric symmetries be-
tween the different feature positions). In order to find a better space where projects the



Features accuracy � false positive

P1 93.32 57
P2 93.00 37
P3 93.30 55
P4 97.01 24
P5 93.40 26
P6 92.91 26
P7 98.05 21
P8 97.80 7
P9 92.70 52
P10 95.20 30

Table 1. Numerical results on a set of 6240 test patches

data to perform the classification step, would be interesting to investigate the applica-
tion of some recent evolutions of the ICA as the overcomplete ICA [9] and Topographic
ICA [10].
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