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Abstract. Integral projections can be used, by themselves, to accu-
rately track human faces in video sequences. Using projections, the track-
ing problem is effectively separated into the vertical, horizontal and ro-
tational dimensions. Each of these parts is solved, basically, through the
alignment of a projection signal –a one-dimensional pattern– with a pro-
jection model. The effect of this separation is an important improvement
in feature location accuracy and computational efficiency. A comparison
has been done with respect to the CamShift algorithm. Our experiments
have also shown a high robustness of the method to 3D pose, facial ex-
pression, lighting conditions, partial occlusion, and facial features.

1 Introduction and Related Research

A wide range of approaches has been proposed to deal with the problem of
human face tracking. Most of them are based on skin-like color detection [1]–
[8], which is a well-known robust method to track human heads and hands.
Color detection is usually followed by a location of individual facial features, for
example, using PCA [2], splines [3] or integral projections [4], [5], [6]. However,
in most of the existing research, projections are processed in a rather heuristic
way. Other kinds of approaches are adaptations of face detectors to tracking,
e.g. based on contour modelling [9], [10], eigenspaces [11] and texture maps [12].
These methods are computationally expensive and sensitive to facial expressions,
so efficiency is usually achieved at the expense of reducing location accuracy.

In this paper1, we prove that projections not only can be used to track human
faces, but the dimensionality reduction involved in projection yields substantial
improvements in computational efficiency and location accuracy. The technique
has been implemented using Intel IPL and OpenCV libraries [13], and compared
with the CamShift algorithm [1]. Each frame typically requires less than 5 ms.
on a standard PC, achieving a location accuracy of about 3 mm.

2 Working with Integral Projections

An integral projection is a one-dimensional pattern, obtained through the sum
of a given set of pixels along a given direction. Let i(x, y) be an image and
1 This work has been supported by the Spanish MCYT grant DPI-2001-0469-C03-01.
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R(i) a region in it, the vertical integral projection of R(i), denoted by PV R(i) is
given by: PV R(i)(y) = i(x, y); ∀(x, y) ∈ R(i). The horizontal projection of R(i),
denoted by PHR(i), can be defined in a similar way.

2.1 Integral Projection Models

In order to establish a formal framework for the use of projections, it is adequate
to distinguish between integral projection signals and models. A projection signal
is a discrete function S : {smin, .., smax} → R. A projection model describes a
variety of signals, usually obtained from different instances of a kind of object.
We propose a gaussian-style modelling, in which the model corresponding to a
set of signals is given by the mean and variance at each point in the range of the
signals. Thus, a projection model can be expressed as a pair of functions:

– M : {mmin, .., mmax} → R. Mean at each point in the range of the signals.
– V : {mmin, ..,mmax} → R. Variance at each point.

Fig. 1 shows three typical examples of integral projection models, corresponding
to the vertical projection of the whole face, and the horizontal projection of eyes
and mouth regions. In this case, the training set contained 45 face instances.

a) b) c) d)

0 20 40 60 80 100 120

250

200

150

100

50

0

BROWS EYES

NOSE

MOUTH

0 20 40 60

200

150

100

50

0

RIGHT

EYE

LEFT

EYE

0 10 20 30 40 50

250

200

150

100

50

0

MOUTH CORNERS

Fig. 1. Integral projection models and reprojection. a-c) Mean and variance of the
vertical projection of the face a), and the horizontal projection of eyes b) and mouth
c) regions. d) Reprojection of the model by matrix product

Useful information can be obtained from simple heuristic analysis of inte-
gral projections, e.g. searching for global minima [4], applying fuzzy logic [6] or
thresholding projections [5], without the need of using explicit models. However,
these techniques are normally very sensitive to outliers. Working with explicit
integral projection models entails the following advantages:

– Models are learnt from examples, avoiding the ad hoc nature of heuristic
methods. This allows an easier adaptation to similar applications.

– A distance function can be defined to measure the likelihood that a certain
signal S is an instance of a particular model (M, V ). In our case, this distance
has the form of a mean squared difference,

d(S, (M, V )) =
1
||C||

∑

i∈C

(S(i)−M(i))2

V (i)
, (1)
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with,
C = {smin, . . . , smax} ∩ {mmin, . . . ,mmax} . (2)

– The model can be visualized and interpreted by a human observer and, more
interesting, an approximate reconstruction can be obtained by reprojecting
the model. For example, if vertical and horizontal projections are applied,
the reprojection can be computed through a matrix product. An example of
reprojection from a projection model is shown in Fig. 1d).

2.2 Alignment of Integral Projections

Alignment is the basic concern when dealing with projections; corresponding
features in the images should be projected into the same locations. The problem
of aligning 1-D signals is equivalent to object location in 2-D images. However,
using projections involves a reduction in the number of freedom degrees; in
practice, only two parameters have to be considered: scale and translation.

Assuming signal S is an instance of a given model (M, V ), the alignment
problem can be formulated as finding the values of scale d and translation e,
such that after aligning S, corresponding pixels are projected in S and (M, V )
into the same locations. The aligned S, denoted by S′, is given by,

S′ : {(smin − e)/d, . . . , (smax − e)/d} → R ; S′(i) = S(di + e) . (3)

Note that the distance function defined in (1, 2) requires S and (M,V ) to be
properly aligned. Furthermore, if S is an instance of the model, this distance can
be used as a goodness of alignment measure: a low value will be obtained for a
good alignment, and a high value otherwise. Thus, substituting S in (1) with S′

in (3), the alignment problem is reformulated as finding the pair of values (d, e)
which minimize,

1
||C||

∑

i∈C

(S(di + e)−M(i))2

V (i)
. (4)

3 Face Tracking Using Projections

The tracking algorithm is part of an iterative process, which recalculates the
location of the face and facial features in a sequence of images. The face detection
technique described in [8] is used as initialization. For each face being tracked,
a bounding ellipse and the location of eyes and mouth are computed.

The input to the tracker is a face model, the state of tracking in the previous
image, it−1, and a new image it. The face model consists of a set of projection
models of the whole face and some parts in it, where the locations of facial
features are known. This model is computed using the first image of the sequence,
where eyes and mouth locations are given by the face detector, as in Fig. 2a).

Basically, the algorithm consists of three main steps in which the vertical,
horizontal and orientation parameters of the new location are estimated inde-
pendently. This process is explained in more detail in the following subsections.
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Fig. 2. Face model and preprocessing step. a) Sample face used to compute a face
model. b) Expected location of the bounding ellipse and facial features in a new
image, using locations in the previous one. c) Face region extracted from b), using
rtolerance=25%. d) Face region wrapped and segmented, according to the model

3.1 Preprocessing Step

Kalman filters [2], [3] and skin-color detection [1],[4],[5] have been commonly
applied in face tracking as prediction filters. In our case, we have proved that
integral projections can be used to solve the problem by themselves. Thus, a null
predictor is used: the locations of the bounding ellipse and the facial features in
it−1(x, y) are taken as the expected locations in it(x, y).

In the preprocess, a rectangle in it(x, y) containing the bounding ellipse and
rotated with respect to the eye-line (the line going through the expected locations
of both eyes) is wrapped into a predefined size rectangle given by the face model,
see Fig. 2c). In fact, an area bigger than just the bounding ellipse is wrapped. The
size of this additional area is a percentage of the model size, denoted by rtolerance

(set to 25% in the experiments). The inner part of the ellipse is segmented, as
shown in Fig. 2d), and taken as an input for the vertical alignment step.

3.2 Vertical Alignment Step

In this step, using vertical projections, the vertical translation and scale of the
face in the new image are estimated. Firstly, the vertical projection of the seg-
mented face region, PV FACE , is computed, see Fig. 3c). This signal is aligned
with respect to the vertical projection model (MV FACE , VV FACE), see Fig. 3d).
Finally, the alignment parameters (d, e) are used to align the face vertically.

3.3 Horizontal Alignment Step

After the vertical alignment step, y coordinates of mouth and eyes are known2, so
eyes and mouth regions are segmented (including the tolerance area) according
to the model, see Fig. 3g). Using horizontal projections of these regions, the
algorithm estimates the horizontal translation and scale of the face. Actually,
2 Although both eyes might not have exactly the same y coordinate, since the face

could be rotated. Anyway, a small rotation is supposed in the worst case.
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Fig. 3. Vertical and horizontal alignment steps. Upper row: vertical alignment. Lower
row: horizontal alignment. a),f) Images used to compute the model. b),g) Segmented
face, eyes and mouth regions in it(x, y), using the locations in it−1(x, y). c),h) Ver-
tical and horizontal projections of the models (dashed lines) and the regions in b),g)
(solid lines). d),i) The same projections after alignment. e),j) Vertical and horizontal
alignment of b),g), using alignment parameters obtained in d),i), respectively

only the horizontal projection of the eyes region, PHEY ES , is considered. As can
be seen in Fig. 3i), PHEY ES is usually more stable than PHMOUTH , producing
a more reliable alignment.

3.4 Orientation Estimation Step

Face orientation3 is computed through the estimation of the eye-line. While in
the previous steps both eyes were supposed to be located along yeyes, here the y
coordinate of the right and left eyes (yeye1 and yeye2, respectively) are estimated
independently. This process is illustrated in Fig. 4.

After steps 2 and 3, the locations of the eyes are approximately known, so
regions EYE1 and EYE2 can be segmented. Aligning the vertical projections of
these regions, the values of yeye1 and yeye2 are computed.

4 Experimental Results

The purpose of these experiments was to assess the location accuracy of the
integral projection method, its robustness to a variety of non-trivial conditions,
and to compare its computational efficiency with respect to other approaches.

The tracking algorithm described in this paper has been implemented using
Intel IPL and OpenCV image processing libraries [13]. OpenCV provides a color-
based face tracker, called CamShift [1], which has been used for comparison. This

3 Orientation is here considered in a planar sense, i.e. rotation with respect to the
image plane.
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Fig. 4. Orientation estimation step. a) A sample rotated face, after vertical and hori-
zontal alignment. b),d) Right and left eyes segmented, respectively. c),e) Vertical pro-
jections of the right and left eyes (solid lines), after alignment with the model (dashed
lines). f) Final location of the facial features and the bounding ellipse

algorithm, by itself, only computes the bounding ellipse, but not facial features
locations. To solve this problem, we have assumed that eyes and mouth move
coherently with respect to the bounding ellipse.

Both algorithms have been applied to four video sequences4, adding up a
total of 1915 frames (∼ 72 sec.). The first two sequences were captured from TV
(news programs) at a 640x480 resolution; another from an inexpensive video-
conference camera; and the last one was extracted from a DVD movie. All the
sequences contain wide changes in facial expression and 3D pose; the last two also
include samples of partial occlusion, varying illumination and faster movements.

The obtained location accuracy and execution times are summarized in Ta-
ble 1. Fig. 5 shows feature location errors for the first two sequences; signal-
to-model distances (see Sect. 2.2) of the resultant aligned projections are also
shown. Finally, some sample frames for the worst error cases are presented in
Fig. 6. Errors are expressed as Euclidean distances in millimeters, in the face
plane, assuming an interocular distance of 70 mm. and using a manual labelling
of facial features as ground-truth.

Table 1. Average and maximum feature location errors (eyes and mouth), and execu-
tion time (per frame, not including input/output), using integral projections and the
CamShift algorithm. Computer used: AMD Athlon processor at 1.2 GHz

Face size Int. Projections CamShift
Sequence Source Length X x Y Location error Time Location error Time
file name (frames) (pixels) avg./max.(mm) (ms) avg./max.(mm) (ms)

tl5-02.avi TV 281 97x123 3.41 / 13.0 4.02 10.3 / 28.8 8.17
a3-05.avi TV 542 101x136 1.95 / 9.76 4.62 9.22 / 24.1 7.52
ggm2.avi QuickCam 656 70x91 1.83 / 9.29 3.69 12.4 / 30.8 5.45
13f.avi DVD 436 146x176 3.61 / 14.2 8.35 Unable to work

4 Test videos and results available at: http://dis.um.es/∼ginesgm/fip/demos.html
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Fig. 5. Integral projection face tracker results. a),b) Average feature location error in
mm. (thin lines) and signal-to-model distance (thick lines), for each frame in the first
two sequences, respectively. c),d),e) Location errors for the right c) and left d) eyes,
and mouth d), for the second sequence. The dashed circle represents the iris size

In all the sequences, the integral projection tracker exhibits a clearly better
performance, both in time and accuracy. The average location error –always
below 4 mm– contrasts greatly with the error obtained by CamShift, above
10 mm. In the last sequence, CamShift could not be applied due to the presence
of skin-like color background. The CPU time required for each frame depends
on the face size and is typically below 5 ms. This allows real-time processing
without much CPU usage. Moreover, the algorithm is between 103% and 48%
faster than CamShift, even when the last is only applied to a part of the images.

Another interesting result from the experiments is the possibility of using the
signal-to-model distance as a reliability degree of tracking. As shown in Fig. 5, a
direct relationship exists between this value and the location error. Furthermore,
a very high value (usually over 20) is obtained when the face disappears. Thus,
its value has been used to detect the end of tracking in a sequence.

Fig. 6. Sample frames, showing worst error cases. Eyes and mouth regions (right) are
segmented according to the tracker results. Dist refers to signal-to-model distance
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5 Conclusions

We have presented a new approach to human face tracking in video sequences,
which is exclusively based on the alignment of integral projections. The track-
ing problem is decomposed into three main steps, where vertical, horizontal and
orientation parameters are estimated independently. Although this separabil-
ity is questionable in the general case of object location, our experiments have
extensively proved its feasibility in face tracking.

The proposed technique exhibits a very high computational efficiency, while
achieving a better location accuracy than other more sophisticated existing
trackers, without losing track of the face in any frame. Each frame typically
requires less than 5 ms. on a standard PC, with an error of about 3 mm. Our
experiments have also shown a high robustness to facial expressions, partial oc-
clusion, lighting conditions and 3D pose.

Another two interesting advantages, over color-based trackers, are that the
algorithm is not affected by background distractors, and it can be applied on
grey-scale images or under changing lighting or acquisition conditions.
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