
Abstraction of Transaction Demarcation
in Component-Oriented Platforms�

Romain Rouvoy and Philippe Merle

INRIA Jacquard Project
Laboratoire d’Informatique Fondamentale de Lille

UPRESA 8022 CNRS – U.F.R. I.E.E.A. – Bâtiment M3
Université des Sciences et Technologies de Lille

59655 Villeneuve d’Ascq Cedex, France
{rouvoy,merle}@lifl.fr

Abstract. Component-oriented middleware becomes the privileged substrate for
distributed computing in heterogeneous and open environments. Technically they
promote the notion of container as structure to host application components. They
transparently take charge of a large set of technical or non-functional services
like security or transactions. The transaction service is integrated using a set of
transaction demarcation (TD) policies. Nevertheless, they are strongly linked to
a specific transactional monitor and they are not often isolated. The main con-
tribution of this paper is to propose a component-based framework to deal with
TD policies. Thus, this framework allows one to instantiate several configurations
of TD policies with different platforms like EJB, CCM, OSGi, WebServices and
several transactional monitors like JTS, OTS, WS-T, BTP, etc. It proposes an ex-
tensible abstraction of TD policies. This framework shows that no performance
degradation is introduced by the refactoring process.

1 Introduction

Component-oriented middleware such as Enterprise Java Beans (EJB) from Sun Mi-
crosystems [1] or the CORBA Component Model (CCM) from the Object Management
Group (OMG) [2] becomes the privileged substrate for distributed computing in hetero-
geneous and open environments. The major reason for this success is that they rationalize
the whole process associated to design, development, packaging, assembly, deployment
and execution of distributed software. Technically they promote the notion of container
as structure to host application components. The containers transparently take charge of
a large set of technical or non-functional services like synchronous and asynchronous
communication, concurrency, life cycle, activation, persistency, security, transaction,
etc. From the transaction point of view, the container has to manage the code related to
the transaction management in order to allow the developers to be concentrated on the
business code. The delegation of the transaction management is configured via deploy-
ment descriptors and the container interprets these descriptors in order to inject the code
related to the manipulation of the transaction manager (TM). The different strategies
used are identified under the term of transaction demarcation (TD) policies.
� This work is partially funded by RNTL IMPACT and IST COACH projects.

M. Endler and D. Schmidt (Eds.): Middleware 2003, LNCS 2672, pp. 305–323, 2003.
c© IFIP International Federation for Information Processing 2003



306 Romain Rouvoy and Philippe Merle

Nevertheless, every middleware implementation mentioned before and other imple-
mentations like .NET from Microsoft [3] or OSGi from Open Services Gateway Initiative
(OSGi) [4] are developing their own code for integrating transactions into containers.
Moreover, this integration is not often isolated in the container code. It becomes also
difficult to introduce new TD policies. And most of the time, containers are strongly
linked to the programming interfaces (API) of a specific transactional monitor. For ex-
ample, EJB containers work with the Java Transaction Service (JTS) [5] while CCM
uses the Object Transaction Service (OTS) [6]. But many other transactional monitor
specifications exist such as Web Services Transaction Services (WS-T) [7], Business
Transaction Protocol (BTP) [8] or more specific ones like the Java Open Transaction
Manager (JOTM) [9].

The main contribution of this paper is to propose a component-based framework to
deal with TD policies. This framework is independent both of the transaction manager it
uses and of the component-oriented platform which uses it. Thus, this framework allows
one to instantiate several configurations of TD policies with different platforms like EJB,
CCM, OSGi,WebServices and several transactional monitors like JTS, OTS,WS-T, BTP,
etc. This framework proposes an extensible abstraction of TD policies through the appli-
cation of the Command Design Pattern [10]. The six standard policies defined in EJB and
CCM are supported, but new ones could be designed and included into the framework
also. This framework is implemented in the Java language, and has been experimented
with the JOnAS J2EE application server [11] using a JTS manager. This framework
shows that no performance degradation is introduced by the refactoring process. This
framework has also been successfully integrated into JOnAS and OpenCCM [12] plat-
forms using an OTS manager.

This paper presents the scope of transaction demarcation in Section 2. Section 3
establishes the technical challenges. Next, in Section 4 it introduces the Open Trans-
action Demarcation Framework (OTDF) and its concepts. Then an example of Java
implementation of the OTDF is used for illustrating the capabilities of the framework in
Section 5. This implementation allows the experimentation of the framework in various
situations validating some of its properties and they are presented in Section 6. From
there it establishes the lessons of this work in Section 7 and we conclude on perspectives
in Section 8.

2 What Transaction Demarcation Is

Transaction demarcation is a way for guaranteeing the transactional context of an invo-
cation. Basically, the transaction policies evaluate if a method should be invoked under
an active transaction or not.

2.1 The Policies

Standards like EJB and CCM define a set of six policies in order to cover most of the
situations that could happen. These policies are described in Table 1. The description of
each policy is:

Supports
The Supports policy is used when a component’s operation is able to take transac-
tions into consideration. If a transaction is activated by the client, it may be used by



Abstraction of Transaction Demarcation in Component-Oriented Platforms 307

Table 1. TD policies defined by CCM and EJB

Demarcation Policy Client Transaction Container Transaction

Supports - -
Transaction 1 Transaction 1

Never - -
Transaction 1 RAISES(NEVER)

Mandatory - RAISES(MANDATORY)
Transaction 1 Transaction 1

Required - Transaction 2
Transaction 1 Transaction 1

Not Supported - -
Transaction 1 -

Requires New - Transaction 2
Transaction 1 Transaction 2

the component’s operation. On the other hand, if no transaction is activated, the com-
ponent’s operation will be able to execute the same processing without transactional
behavior.

Never
The Never policy imposes that the selected operation should not be invoked under a
transactional context. If the condition is not verified, an exception –specifying that
the NEVER clause is not respected– is raised. Otherwise, the component’s operation
is invoked.

Mandatory
The Mandatory policy imposes that an operation should be invoked under a trans-
actional context. If the condition is checked then the operation is invoked else the
MANDATORY exception is raised by the policy.

Required
The Required policy is used if an operation requires transactional features. If a
transaction has already been activated, the policy propagates this transaction to the
operation, else the policy begins a new transaction which would be committed after
the invocation.

Not Supported
The Not Supported policy checks if a component’s operation needs features which
could be conflicting with an activated transaction. If a transaction is active, the policy
will suspend it for the execution of the method and resume it after.

Requires New
Finally, the Requires New policy presents the need for a local transaction for the
method. If a transaction is already active, the policy suspends it before beginning a
new one. This new transaction is committed just after the execution of the method
and the suspended transaction is resumed.

2.2 The Domains
Looking at the TD policies, another organization of these policies could be defined,
providing a more structured representation. The goal is to observe each policy for de-



308 Romain Rouvoy and Philippe Merle

Requires New

Supports

Not Supported Required

Mandatory Never

Interruption Activation

Interrogation

Demarcation

Fig. 1. An Organization of the TD Policies

termining affinities between them. Thanks to this observation, we define the concept of
domain. A domain represents the realizable actions of a policy. For example, the Never
and Mandatory policies are only consulting the state of the transaction manager. The
Required and Requires New policies uses the transaction manager in order to activate
and validate transactions. Finally, the Not Supported and Requires New policies need to
suspend and resume transactions during their execution. So a repartition of the policies
can be obtained and is illustrated in Figure 1.

One can notice that the Supports policy is not included inside a domain. The reason is
that the Supports policy does not interact with any transactional monitor, by consequence
no domain could be associated to this policy, while the Requires New policy is shared
by the activation domain and the interruption domain. The Requires New policy requires
interruption features for suspending and resuming a possible client transaction and it
requires activation features for beginning and validating a container transaction. Each
part of this organization defines a domain of interaction with the transaction manager.
The domain is both a restriction of the interaction with the transaction manager and a
simplification of this interaction specialized in transaction demarcation.

3 Challenges for Transaction Demarcation

This section discusses the main challenges of the integration of transaction demarcation
in component-oriented platforms. Figure 2 presents the different challenges encountered
when dealing with transaction demarcation. The first challenge is the factorization and
the abstraction of the TD policies for addressing more component platforms. The second
challenge is the specialization of the TD policies for a given transaction manager. Other
technical challenges are more architectural ones and are concerned with organization
and extensibility of the TD policies. The following sections detail each of these concerns.

3.1 Transaction Demarcation Abstraction

Most of the platforms define TD policies. The problem is that these policies are imple-
mented inside the scope of a given platform. From a transversal point of view, this code
is redundant and needs to be factored between platforms.



Abstraction of Transaction Demarcation in Component-Oriented Platforms 309

.NET PlatformEJB PlatformCCM Platform OSGi Platform

BTP OTSWS−T JTS

Specialization

ExtensionOrganization

Transaction Manager Abstraction

Demarcation Policies Abstraction

Domains

Factorization

Fig. 2. The Challenges for Transaction Demarcation

But who should address this factorization? It could not be realized by the platform
because of the transversality. It could not be realized by the transactional monitor because
each policy is designed for interacting with a specific transaction manager which could
be different from one platform to another.

So the abstraction of TD policies needs to be addressed by a third party which has to
be platform independent as illustrated in Figure 2. This external entity would provide a
set of TD policies compliant to the policies defined in the specification of each platform.

3.2 Transaction Monitor Abstraction

Each platform works with a given transactional monitor but is not able to work with
other non-compliant transactional monitor. For example, platforms which are able to
interact with both JTS and OTS transactional monitors are not prevalent. EJB platforms
are working with JTS while CCM ones are working with OTS. But none are able to
address more than one type of transactional monitor.

In order to use transaction policies over multiple transaction managers, an abstraction
of the transaction manager must be defined and specialized in component transactions
as depicted on Figure 2.

3.3 Organization of TD Policies

TD policies could be linked to one or more domains. The domain ensures the connec-
tion between type of policies and transaction managers. But domains also introduce a
classification of TD policies as mentioned in Section 2.2. This classification needs to be
open as the addition of new TD policies could imply the definition of new domains [13].



310 Romain Rouvoy and Philippe Merle

OTS JTS BTP WS−T

CCM Platform EJB Platform OSGi Platform .NET Platform

Transaction Managers

Domains

Policies

OTDF

Interruption

Supports

OTS Wrapper JTS Wrapper BTP Wrapper WS−T Wrapper

ActivationInterrogation

Not SupportedMandatory Required

Requires NewNever

Fig. 3. The OTDF Framework Representation

The domain represents an abstraction of the demarcation as we define an abstraction
of the transaction manager. This second level of abstraction allows the specialization
and the simplification of the functionalities of the transaction manager for the context of
transaction demarcation. Then, policies become easier to design because the technical
part is managed by the domain.

3.4 Integration of New TD Policies

TD policies introduced by the CCM and EJB specifications are not covering all domains
defined by transactional monitors. Indeed domains like sub-transactions or resources
management are not introduced by existing specifications. An open structure must be
provided in order to allow the integration of new policies [14]. It means mechanisms for
adding new policies and associated domains must be provided.

4 Open Transaction Demarcation Framework

Considering the previous technical challenges, we define the Open Transaction De-
marcation Framework (OTDF). This framework provides a library of configurable TD
policies. It addresses the problem of transaction demarcation over any transactional
monitor and is usable from any component-oriented platform.

4.1 Overview

Figure 3 is a structured view of OTDF architecture. OTDF is divided into three parts
which are the policies, the domains and the transaction manager wrappers. The policies



Abstraction of Transaction Demarcation in Component-Oriented Platforms 311

level considers the types of policies defined in platform specifications (EJB, CCM,
etc). The transaction manager wrappers level groups the abstractions for the different
models of transactional monitors (OTS, JTS, WS-T, etc). The domains level considers
the interactions between a policy and a transaction manager.

The framework is open in order to integrate new TD policies and to cover unexplored
domains of transaction demarcation. It provides mechanisms and methods for facilitating
this integration.

From a technical point of view, the framework provides an object-oriented and a
component-oriented vision of the TD policies. In the meantime the framework is inde-
pendent of any programming languages as it is designed using the Unified Modeling
Language (UML) [15].

4.2 Abstraction of Transactional Monitor

The first technical challenge addressed in this section is the problem of the abstraction
of the transactional monitor. Usually, containers strongly adhere to one transactional
monitor. Sometimes, the implementations of transaction managers referenced could be
changed if they implement the same interfaces. But this variability remains restricted to
transaction manager implementations of a same specification (JTS, OTS or WS-T).

In order to provide a better abstraction, the Wrapper Design Pattern [10] is used.
According to the method, the abstract transaction manager is mapped to a specific im-
plementation of a manager.

The UML diagram of Figure 4 illustrates the application of this design pattern to the
transaction manager abstraction.

Our objective is to define a set of transaction manager interfaces with different levels
of complexity. Each transaction manager could not implement every potential func-
tionalities addressable by transaction demarcation. For example, JTS monitors are not
able to manage nested transactions. So the differences between the transaction manager
abstractions need to be identified. By extension, the transaction manager abstraction
interfaces would be able to take into account the future evolution of the transaction
manager models [16].

The approach for modeling levels of complexity is to define a set of feature interfaces.
A feature represents a particular property of a transaction manager model. A feature is
independent of any other feature. Figure 4 introduces features like configuration, control
and interrogation. Because of the fine granularity of features, the interface of a transaction
manager could be defined by composing features.

The specialization of the interfaces specifies with a finest granularity the connection
between the transaction manager abstraction and a domain. Sometimes, the domain
requires more than one feature. But this set of features need to be associated to only one
transaction manager. So we define the notion of scope for answering this problem. A
scope is a composition of features which could be required by a domain. Scope interfaces
are defined by an extension of the features.

In addition, the combination of features allows also the reproduction of specific
models like the Client/Server model of the Java Transaction API as depicted on Figure 4.

When integrating a transaction model, only the elements introducing new function-
alities need to be defined using the Feature paradigm. If a new domain is introduced with



312 Romain Rouvoy and Philippe Merle

transaction

entities

features

features

scopes

services

<<interface>>
ActivationFeature
+begin(): void

<<interface>>
InterruptionFeature

+suspend(): Transaction
+resume(in tx:Transaction): void

<<interface>>
ControlFeature

+getTransaction(): Transaction

<<interface>>
ConfigurationFeature

+setTimeout(in value:int): void

<<interface>>
TransactionManager

<<interface>>
StatusFeature

+getStatus(): Status

<<interface>>
ValidationFeature

+commit(): void
+rollback(): void
+setRollbackOnly(): void

<<interface>>
UserTransaction

<<interface>>
InterrogationScope

<<interface>>
ActivationScope

<<interface>>
InterruptionScope

<<interface>>
WrapperFeature

+setWrappee(in obj:Object): void
+getWrappee(): Object

Fig. 4. The Class Diagram of Transaction Manager Abstraction

these features, the associated Scope need also to be defined. Other features and scopes
are inherited from the framework and the transaction manager abstraction is defined by
composing all the features and scopes required for the transaction model.

4.3 Abstraction of Transaction Demarcation

Another technical challenge is the abstraction of the TD policies. In a traditional way,
containers implement TD policies using no particular methodology. Most of the time,
they check the type of policies they have to activate and the associated treatments are
integrated inside the container.

So there are two objectives to reach. Firstly, the extraction of the TD policies from the
container. Secondly, we need to burst the block of TD policies into a set of independent
TD policies. The first objective is just an extraction of the code managing the transaction
demarcation. The other one could be obtained using the Command Design Pattern [10].

The root interface RequestCallController introduced in Figure 5 is independent of
the type of policy implemented. So any TD policy has simply to implement the root
interface in order to be compliant with the framework.

The interface RequestCallContext offers a generic structure for transmitting parame-
ters to the policies. The lifespan of this interface follows the invocation of a component’s
method.



Abstraction of Transaction Demarcation in Component-Oriented Platforms 313

policies

transaction

managers

scopes

policies

demarcation

<<interface>>
DemarcationPolicy

<<interface>>
RequestCallController

+pre_invoke(inout ctx:CallContext): void
+post_invoke(inout ctx:CallContext): void

<<interface>>
RequestCallContext

+put_property(in key:String,in value:Object): void
+get_property(key:String): Object

flat

<<interface>>
InterrogationPolicy

<<interface>>
ActivationPolicy

<<interface>>
InterruptionPolicy

<<interface>>
RequiresNewPolicy

<<interface>>
MandatoryPolicy

<<interface>>
NeverPolicy

<<interface>>
RequiredPolicy

<<interface>>
NotSupportedPolicy

<<interface>>
SupportsPolicy

domains

<<interface>>
ActivationDomain

<<interface>>
InterruptionDomain

<<interface>>
InterrogationDomain

<<interface>>
InterruptionScope

<<interface>>
ActivationScope

<<interface>>
InterrogationScope

{uses} {uses}{uses}

{uses}
{uses}

{uses}

{uses}

Fig. 5. The Class Diagram of Transaction Demarcation Abstraction

So the information about the associated method and its invocation are not localized
with the policy but with the RequestCallContext. The consequences of this choice are that
this information is defined just before the invocation of the component. And if policies
do not contain information about the associated method, they could be shared between
the containers.

We define different types of policies which are linked to a specific domain. These
types of policies have the same name as the corresponding domains. So the child poli-
cies would inherit from the properties defined in the parent interface. The considered
properties are the connections to the associated domain.

Thanks to this abstraction, some added values are obtained:



314 Romain Rouvoy and Philippe Merle

– identification: Each TD treatment is associated to a TD policy,
– adaptability: By selecting the TD policies to integrate inside the platform,
– isolation: By addressing only the TD policy needed, and
– factorization: The technical code is delegated to the domain.

4.4 Integration of New TD Policies

The structure of the framework defining independence between platforms and trans-
actional monitors provides a lot of flexibility. A TD policy is composed of a policy
and a transaction manager. Thanks to the different abstractions we define (transaction
manager and policies), two solutions are possible. They are based on the definition of
new transaction manager abstraction and new type of policies. Another solution uses the
composition property for defining new policies using existing ones.

Integration of a New Type of Transaction Manager: A solution for defining new TD
policies is to integrate –using the abstraction– a new transaction manager abstractions
like the BTP abstraction into the framework. As a consequence, all the policies of the
framework are associated to the new transaction manager abstraction. A set of new
TD policies for the BTP transaction model are obtained using the legacy policies and
domains which would be connected to the BTP transaction manager abstraction.

Definition of a New Policy: Another solution consists in defining a new type of policies.
An example of this type of policy could be the Requires New Sub policy [17]. This type
of policy activates a nested transaction inside the scope of an active transaction. The
definition of this new policy is based on the abstraction of TD policies. So the new policy
has to be associated with the transaction manager which supports nested transactions.
The result is a set of new TD policies for a new type of policy using the legacy transaction
managers.

Combining Existing TD Policies: Using the Requires New Sub policy mentioned be-
fore, one could observe that the semantics are incomplete. Indeed the behavior of this
policy has not been defined if invoked under no transactional context. How could a new
nested transaction be started if no top-level transaction is active? A solution is to say that
before beginning the nested transaction, a top-level transaction has to be begun. Another
solution is to force the client to invoke the method under a transactional context like it is
defined in the Mandatory policy. Similar options could be considered also for the case
of an invocation realized under a transactional context.

Rather than implementing a policy for each solution which would not be in favor of
our process of flexibility, we choose to introduce the notion of TD policy composition.
Indeed the composition of the Required policy and the Requires New Sub policy answer
the question mentioned before. The composition of the Mandatory policy and the Re-
quires New Sub policy provides another solution. Another example is the composition
of the Not Supported and the Required policies. This association simulates the Requires
New policy.



Abstraction of Transaction Demarcation in Component-Oriented Platforms 315

This combination is realized using a coordinator which organizes the calls to the
delegated policies. Next, if delegated policies are themselves a combination of policies,
an organization representing a tree of policies could be extracted. So a hierarchy of
policies could be defined inside the container. The interesting point is that a hierarchy
defines a set of branches and some of them could be preferred to others during the
execution.

An evolution of this hierarchy could define “Clever coordinators” in order to switch
between the delegated branches or policies depending on a specific clause. The structure
of the tree becomes dynamic and the policies executed are different according to the
context of the invocation. The framework executes only the policies which are compliant
to the execution context.

We are not defining a new organization which could be conflicting with the notion
of domain. This hierarchy is only an organization of the policies execution.

5 Java Open Transaction Demarcation Framework

We choose to implement our framework with the Java language [18] essentially for
experimental reasons. Many component-oriented platforms are implemented in Java
(JOnAS[11], JBoss[19], OpenEJB[20], EJCCM[21], OpenCCM[12], JEFFREE[22])
and as well for transactional monitors (OpenORB TS[23], Tyrex[24], JOnAS TS[11],
JOTM[9]).

The multiplicity of implementations allows the experimentation of our framework
with various platforms and transactional monitors for the validation of our proposal.

In order to provide several implementations, the framework provides a separated
view of interfaces (API) and implementations.

5.1 Transaction Monitor Wrapper

The abstraction of the transaction manager introduces a semantics which is particularly
adapted for transaction demarcation. Figure 6 illustrates how a transaction manager could
be wrapped and how the semantics introduced by the interfaces is implicitly translated.

From Figure 6, the UserTransaction interface inherits from the group of features
dealing with activation properties. It also has to implement a configuration feature mate-
rialized by the set transaction timeout method. These features are implemented through
the UserTransaction interface which defines the features to implement in the scope of
a JTS UserTransaction interface. So the Java abstraction of the transaction manager
needs to be mapped with the transactional monitor used. In this example the wrapped
functionalities of the transaction manager are the JTS ones.

The originality of this abstraction comes from the definition of the features which
will allow one to extend the abstractions if new transaction models and concepts are
defined.

5.2 Transaction Domain

The second level of abstraction is the domain. It models a subset of the functionalities
of the transaction manager.



316 Romain Rouvoy and Philippe Merle

public class JTSUserTransactionImpl
implements UserTransaction {
protected javax.transaction.UserTransaction tm_ ;

public void set_transaction_timeout(int seconds) {
try { tm_.setTransactionTimeout(seconds); } catch(Exception ex) { ... }

}
public Status get_status() {

try { return JTSStatus.jts_to_status(tm_.getStatus());
} catch (javax.transaction.SystemException ex) { ... }

}
public void begin() {

try { tm_.begin(); } catch (Exception ex) { ... }
}
public void commit() {

switch(get_status()) {
case Status.STATUS_ACTIVE :

try { tm_.commit(); } catch(Exception ex) { ... }
break ;

case Status.STATUS_MARKED_ROLLBACK :
rollback();
break ;

}
}
public void rollback() {

try { tm_.rollback(); } catch(Exception ex) { ... }
}
public void set_rollback_only() {

try { tm_.setRollbackOnly(); } catch(Exception ex) { ... }
}

}

Fig. 6. The JTS Transaction Manager Wrapper

public class InterruptionDomainImpl
extends InterrogationDomainImpl
implements InterruptionDomain {
protected InterruptionScope is_ ;

public void suspend(RequestCallContext ctx) {
try { ctx.put_property("transaction_suspended", is_.suspend());
} catch(SystemException ex) { ... }

}
public void resume(RequestCallContext ctx) {

Transaction _tx = (Transaction) ctx.get_property("transaction_suspended");
if (_tx != null)
try { is_.resume(_tx); } catch(Exception ex) { ... }

}
}

Fig. 7. An Example of Demarcation Domain: The Interruption Domain

Figure 7 illustrates how to define a domain for abstracting a part of transaction
demarcation. But the domain provides a simplification of the TD business code. So
the domain has a RequestCallContext for storing properties related to the transaction
manager. Concretely, the RequestCallContext is used for storing the instance of the
transaction which is suspended during the invocation of the method. In the case of the



Abstraction of Transaction Demarcation in Component-Oriented Platforms 317

public class NotSupportedPolicyImpl
extends AbstractInterruptionPolicy
implements NotSupportedPolicy {
public void preinvoke(RequestCallContext ctx) {

if (id.get_status(ctx) == Status.STATUS_ACTIVE)
id.suspend(ctx) ;

}
public void postinvoke(RequestCallContext ctx) {

id.resume(ctx) ;
}

}

Fig. 8. An Example of TD Policy: The Not Supported Policy

InterruptionDomain, the domain requires a set of transaction features which are defined
in the InterruptionScope interface of the transaction manager.

So from the policy, the developer does not need to manage the propagation of the
transaction between the pre invoke and the post invoke methods.

Different possibilities of evolution are possible from the definition of domain. We
could define new domains based on the scopes defined by a transaction manager abstrac-
tion, this domain would contain the use rules of the selected scope applied to transaction
demarcation. But we could also modify the behavior of an existing domain by intro-
ducing for example interactivity such as “commit/rollback choice” for the container
transactions. The behavior of the TD policy is changed without modifying the content
of the policy itself.

5.3 Transaction Policy

Until now, the structure of the framework has been defined and introduced without deal-
ing with the type of policies. Figure 8 presents the implementation of the Not Supported
policy.

Figure 8 promotes that defining a TD policy is easier than before while being both
platform and transactional monitor independent. Moreover, the behavior of a policy
becomes easier to understand. One has just to read the code of the policy to understand
what it is able to do and could notice that only three lines are necessary to define the
policy.

5.4 Platform Usage

This section is an illustration of the integration of JOTDF in a platform which requires
TD policies. Most of the time, platforms are not designed for working with JOTDF so
an adaptation class for converting the formalisms need to be defined for adapting the
framework to the platform.

Figure 9 depicts the mechanism of interception which could be used for integrat-
ing TD policies in a component platform. The component is defined by the Account
interface and the AccountImpl implementation class. The component platform generates
the AccountInterceptor class which would delegate the incoming calls realized by the
Account interface to its implementation. The interceptor calls also the TD policy through
the DemarcationPolicy interface just before and after the delegation.



318 Romain Rouvoy and Philippe Merle

<<container>>
AccountContainer

<<interface>>
Account

+buy(in value:float): void

<<interceptor>>
AccountInterceptor

<<component>>
AccountImpl

{delegates}

<<interface>>
DemarcationPolicy

+pre_invoke(inout ctx:RequestCallContext): void
+post_invoke(inout ctx:RequestCallContext): void

{calls}

Fig. 9. Interception on a Container hosting Account Components

6 Experimentations

All the design patterns introduced in this paper provide lots of architectural properties.
But what about performance? Does this framework introduce a huge overhead to the
execution time? Is it really possible to use an EJB platform over an OTS transactional
monitor? This section will answer to these questions giving valued results of JOTDF
based on various experimentations realized with and without JOTDF.

6.1 Context and Scenario

For evaluating the framework, the computer used is based on an Intel Pentium4 2 GHz
with 1024 MB of RAM (DELL Optiflex GX 240). The operating system installed is a
Linux Debian based on version 2.4.19-686 of the Kernel. The experimentation is realized
on a single computer in order to avoid the interferences generated by the network.

From the software point of view, the Java Development Kit used is the JDK 1.4.1 01
provided by Sun Microsystems. The platform used for the experimentation is an EJB
platform working with a JTS transactional monitor. The platform and the transactional
monitor are provided by version 2.5.3 of the JOnAS Application Server.

The version of JOTDF used during the experimentation is a basic implementation
where we choose to merge the domains and the transaction manager abstraction into one
class. This choice illustrates that more or less flexibility could be applied to the frame-
work. A single object is used, which groups the three main domains and the transaction
manager abstraction. So each policy would be bound to this object and then will delegate
the technical code to the transaction manager.

As an application scenario, a simple example provided with the JOnAS platform is
used. This example is a bank account simulation. It uses a container with transaction
demarcation features. The bank account is the business component which is tested.
A bench component is added and located with the business component on the same
component server.

When the bench component is invoked, it activates the business component. Next it
produces 10 000 invocations on the bank account component under a transaction, and
then it generates 10 000 invocations on the same business component but apart from any
transaction.



Abstraction of Transaction Demarcation in Component-Oriented Platforms 319

Table 2. The Class Evaluation of JOTDF

Transaction Demarcation
without JOTDF with JOTDF

Classes X TD x Y TM X TD + Z D + Y TM
Example 6 TD x 3 TM 6 TD + 3 D + 3 TM
(6 policies, 3 TM) = 18 classes = 12 classes
New TD Y classes 1 class
New TM X classes 1 class

Initially, the standard version of JOnAS is experimented. Next the experiment is
started again using a version of JOnAS coupled to the version of JOTDF described in
the previous section.

The execution time of the 10 000 calls in each of the four situations is measured. As
the business code is negligible, one can consider that the time of crossing of the container
and the TD policy is measured. Moreover the difference of time is taken into account
more than the absolute values of the measures.

6.2 The Memory Evaluation

Before applying the scenario, a static evaluation of the framework could be realized. It
consists with measuring the number of classes and the size of source code used for the
management of transaction demarcation. The study is presented in Table 2.

Observing Table 2, much information could be extracted. The “Transaction Demarca-
tion without JOTDF” term considers a basic implementation of transaction demarcation
which could be the definition of a TD policy for each type of transaction manager (Y
attribute) and each type of policy (X attribute), while the “Transaction Demarcation
with JOTDF” term considers the detailed implementation presented in the paper.

Regarding the size of the framework, a basic implementation would provide much
more classes than JOTDF. Concerning the extensions of transaction demarcation, the
integration of a new TD policy like the Requires New policy depends on the number of
transaction managers in the basic implementation. In JOTDF, the integration of such a
policy results in the definition of only one class. In the same way, the integration of a
new transaction manager like the BTP transaction manager would introduce as much of
the classes as policies in the basic implementation whereas only one class is required in
JOTDF. So in JOTDF, the class evolution is linear whereas it would be exponential in a
classic implementation.

JOTDF introduces predictability of memory. Indeed JOTDF could share the TD
policies between the components of a same component server. So independently of
component count, JOTDF uses one instance of the framework. Actually the size of
transaction manager depends much more of the number of containers using transaction
demarcation features deployed on the server.

6.3 The CPU Evaluation

After the static evaluation, the dynamic evaluation of the framework could be realized.
This section presents the results of the scenario execution. The results are presented in
Table 3.



320 Romain Rouvoy and Philippe Merle

Table 3. The Time Evaluation of JOTDF

Policies JOnAS JOnAS & JOTDF Evolution

Supports 17,697 sec 17,569 sec -0,72 %
Not Supported 18,324 sec 18,302 sec -0,12 %
Required 31,013 sec 30,963 sec -0.16 %
Requires New 42,869 sec 42,832 sec -0,09 %
Never 91,869 sec 90,940 sec -1,01 %
Mandatory 97,419 sec 97,027 sec -0,40 %

Average -0,42 %

The results presented in Table 3 are explicit, the use of JOTDF does not introduce a
higher cost than a handwritten version of TD policies. JOTDF improves the performances
of transaction demarcation of the JOnAS platform.

JOTDF also adds better predictability properties. Indeed the invocation does not
depend on all TD policies anymore. According to the Command Design Pattern, only
the cost of TD policy configured influences the cost of invocations. The more policies
are used by the platform the better performances can be obtained regarding classical
platforms. So the more policy implementation is following our framework the better is
the platform performance.

6.4 Example of Heterogeneity in Middleware: EJB over OTS

Another experiment which has been undertaken is an illustration of the new properties
obtained thanks to JOTDF. Indeed we try to use an OTS transactional monitor with an
EJB platform. These entities are connected through JOTDF.

Thanks to that properties, platforms are no more forced to work with a specific trans-
actional monitor. Going further, heterogenous platforms could execute over a common
transaction manager and even in the same transaction.

7 Lessons

This section will discuss several properties about the OTDF framework and its Java
implementation JOTDF. Next the advantages and limits of this approach are described.
The OTDF framework shows that we obtain:

– Independence to language: OTDF is independent of the programming language.
It uses no language specific technologies and the architecture could be implemented
in any object-oriented programming language.

– Independence to platforms: OTDF could be integrated by any platform requiring
transaction demarcation. The container calls OTDF where transaction demarcation
needs to be applied.

– Independence to transactional monitors: OTDF could interact with any transac-
tional monitor once its abstraction has been integrated to OTDF. Special abstractions
are linked to a type of transactional monitors like JTS, OTS, WS-T or BTP. So dif-
ferent implementations of a same type uses the same abstraction.



Abstraction of Transaction Demarcation in Component-Oriented Platforms 321

– Transaction demarcation abstraction: OTDF defines an abstraction of transac-
tion demarcation which is sufficiently generic in order to be used by most of the
existing platforms. Transaction demarcation introduced by OTDF is based on an
encapsulation of the method invocation using pre-invocation and post-invocation
pattern.

– Modularity: The architecture of OTDF is well defined. It uses several types of
modules (policies, domains, transaction managers) which could give several entities.

– Extensibility: The structure of OTDF has been designed for extensibility. The new
transaction manager could be considered and the same for the new TD policies
even if they need to define specific domains. OTDF would support new models
of transactional monitors thanks to the notion of features presented in the trans-
action manager abstraction. Considering this architecture, it is easy to introduce
new policies with the associated domains, scopes, features and transaction manager
abstraction if needed.

– Dynamic reconfigurability: OTDF models the connection between the components
of the framework. It becomes easy to modify these bindings at runtime.

– Adaptability: TD policies are independent entities. The platform could choose and
configure the policies required by the specification and use a subset of the policies
proposed by OTDF.

– Component and Aspect: OTDF is component-oriented, its architecture is modeled
using component model. Moreover components could be propagated through several
models to the programming level.
Aspects [25] are a way to treat the separation of concerns. So policies could be inte-
grated in an aspect for adding transaction demarcation properties to an application
which has not envisaged such a property during its development.

– Validation and safety: The TD policies of OTDF are validated and reliable. The
development of new middleware could lean on OTDF for transaction demarcation
scope with the confidence of using reliable TD policies. The process of validation is
facilitated by the decomposition of a TD policy in three elementary entities which
are easier to test and are shared by the TD policies.

The JOTDF implementation proves that one can obtain:

– No CPU performance degradation: The benchmark realized shows that even if
the performance is not a hard constraint when OTDF has been defined, one can
obtain nevertheless interesting results. This is an illustration that architecture and
performance are compatible.

– CPU predictability: The Command Design Pattern provides better predictability
and better scalability in terms of CPU computation.

– Memory predictability: Sharing policies and factorizing the demarcation manage-
ment minimize the memory cost of transaction demarcation.

8 Conclusion and Perspectives

This paper has presented a framework for addressing the problem of managing transac-
tion demarcation over heterogenous transactional monitors.



322 Romain Rouvoy and Philippe Merle

It introduced several technical concerns which could be noticed when the problem
of transaction demarcation is studied. The OTDF framework is an answer to these con-
cerns and provides a long-term solution. OTDF provides an architecture based on the
abstraction of technical code for keeping only the business code of the demarcation. The
separation of concerns used by OTDF provides added values to the framework. Next,
OTDF results in a Java implementation called JOTDF. This implementation is then used
in several experiments which provide concluding results.

From there, the work begun by OTDF opens three main perspectives. Considering the
context of transaction demarcation, OTDF answers many of the actual concerns raised by
the current platforms. But OTDF needs to be experimented on other platforms like JBoss,
OSGi or EJCCM. OTDF should experiment new policies like the MandatoryNewSub [26]
in order to validate its extensibility properties. OTDF gives a brief reply to problems
of defining a framework for addressing the transactional deployment. The definition of
deployment policies could be a track. Finally JOTDF would become a plugin of the
JOTM project which targets to provide a framework for addressing all features related
to transactions in distributed systems.

Considering a more generic context, OTDF gives a template for the definition of
policies for log, security, naming or trading services. Some of them are currently sup-
ported by platforms specification like security policies. Other policies are not introduced
by specifications but JOTDF could be a template for integrating new policies inside con-
tainers.

The other perspective is the integration of the policies with the platform. Differ-
ent mechanisms could be considered like interception, Aspect-Oriented Programming
(AOP) [25] or Meta-Object Protocol (MOP) [27] mechanisms. Another aspect of the
integration is to widen the application of policies. Policies could extended to other con-
texts other than method invocation. Indeed policies could be used for the bind/unbind,
create/destroy and activate/passivate events of a component.

References

1. DeMichiel, L., Yalçinalp, L., Krishnan, S.: Enterprise Java Beans Specification Version 2.0
- Public Draft. Sun Microsystems. (2000)

2. OMG: CORBA Components Specification Version 3.0. Object Management Group. (2002)
OMG TC Document formal/2002-06-65.

3. Thai, T., Lam, H.: .Net Framework Essentials. O’Reilly (2001)
4. OSGi: OSGi Service Gateway Specification Release 1.0. Open Service Gateway Initiative.

(2000)
5. Cheung, S.: Java Transaction Service Specification Version 1.0, Sun Microsystems (1999)
6. OMG: Object Transaction Service Specification Version 1.2. In: CORBAservices : Com-

mon Object Services Specification, Object Management Group (2001) OMG TC Document
formal/2001-05-02.

7. Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T., Thatte, S.: Web Services
Transaction Specification Version 1.0, IBM (2002)

8. OASIS: Business Transaction Protocol Specification Version 1.0, Organization for the Ad-
vancement of Structured Information Systems (2002)

9. ObjectWeb: Java Open Transaction Manager (2002) http://www.objectweb.org/jotm.



Abstraction of Transaction Demarcation in Component-Oriented Platforms 323

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Booch, G.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Westley Professional Computing, USA (1995)

11. ObjectWeb: Java Open Application Server (2002) http://www.objectweb.org/jonas.
12. ObjectWeb: Open CORBA Component Model (2002) http://www.objectweb.org/openccm.
13. Barga, R., Pu, C.: Reflection on a legacy transaction processing monitor. In: Proceedings

Reflection ’96, San Francisco, CA, USA (1996)
14. Procházka, M.: Advanced Transactions in Component-Based Software Architectures. PhD

thesis, Charles University, Faculty of Mathematics and Physics, Department of Software
Engineering, Malostranské námestí 25, 118 00 Prague 1, Czech Republic (2002)

15. OMG: Unified Modeling Language Version 1.4. Object Management Group. (2001) OMG
TC Document formal/2001-09-67.

16. Barga, R., Pu, C.: A Practical and Modular Method to Implement Extended Transaction
Models. In: International Conference on Very Large Data Bases, Zurich, Switzerland (1995)
206–217

17. Procházka, M.: Advanced transactions in Enterprise Java Beans. Lecture Notes in Computer
Science (2001) 215

18. Gosling, J., Joy, B., Steele, G.: The Java Language Specification. (1996)
19. JBoss Group LLC: JBoss (2002) http://www.jboss.org.
20. ExoLab: Open Enterprise Java Bean (2002) http://openejb.exolab.org.
21. Computational Physics, I.: Enterprise Java CORBA Component Model (2002)

http://www.cpi.com/ejccm.
22. ObjectWeb: JEFFREE (2003) http://www.objectweb.org/jeffree.
23. SourceForge: OpenORB Transaction Service (2002) http://openorb.sourceforge.net.
24. ExoLab: Tyrex (2002) http://tyrex.exolab.org.
25. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,

J.: Aspect-oriented programming. In Akşit, M., Matsuoka, S., eds.: Proceedings European
Conference on Object-Oriented Programming. Volume 1241. Springer-Verlag, Berlin, Hei-
delberg, and New York (1997) 220–242

26. Procházka, M., Plasil, F.: Container-interposed transactions. In: Proceedings of the
Component-Based Software Engineering special session of the SNPD 2001 Conference,
Nagoya, Japan (2001)

27. Robben, B., Vanhaute, B., Joosen, W., Verbaeten, P.: Non-functional policies. Lecture Notes
in Computer Science (1999) 74


	1 Introduction
	2 What Transaction Demarcation Is
	2.1 The Policies
	2.2 The Domains

	3 Challenges for Transaction Demarcation
	3.1 Transaction Demarcation Abstraction
	3.2 Transaction Monitor Abstraction
	3.3 Organization of TD Policies
	3.4 Integration of New TD Policies

	4 Open Transaction Demarcation Framework
	4.1 Overview
	4.2 Abstraction of Transactional Monitor
	4.3 Abstraction of Transaction Demarcation
	4.4 Integration of New TD Policies

	5 Java Open Transaction Demarcation Framework
	5.1 Transaction Monitor Wrapper
	5.2 Transaction Domain
	5.3 Transaction Policy
	5.4 Platform Usage

	6 Experimentations
	6.1 Context and Scenario
	6.2 The Memory Evaluation
	6.3 The CPU Evaluation
	6.4 Example of Heterogeneity in Middleware: EJB over OTS

	7 Lessons
	8 Conclusion and Perspectives
	References

