
Large-Scale Service Overlay Networking
with Distance-Based Clustering

Jingwen Jin and Klara Nahrstedt�

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

{jjin1,klara}@cs.uiuc.edu

Abstract. The problem of service routing (or dynamic service compo-
sition) has recently emerged as a consequence of the distributed compos-
able services model residing in middleware layer(s). However, existing
solutions are mostly suitable for small- or medium-scale service over-
lay networks, as service routing is performed over flat overlay topologies
such as a mesh. Due to their increasing routing information maintenance
costs, these flat (single-level) topology solutions cannot cope with large-
scale service overlay networking. For better scalability, in this paper, we
provide a hierarchical service routing framework, which comprises three
parts. In the first part, we organize the overlay network nodes into clus-
ters based on their Internet distances. We then construct a hierarchically
fully connected (HFC) topology based on the clustering result. In such
a topology, nodes within a cluster are considered fully connected, and
the clusters themselves are also fully connected by their border nodes.
In the second part, a hierarchical state information distribution protocol
will be provided so that each node in the system maintains full state of
the nodes in its own cluster and aggregate state of other clusters in the
system. In the third part, we present how service paths can be computed
hierarchically in a divide-and-conquer fashion. Through simulation tests,
we demonstrate that while achieving much better scalability, our frame-
work provides also as good and efficient service paths as single-level mesh
solutions.

Keywords: service routing, dynamic service composition, clustering,
topology aggregation, hierarchical routing

1 Introduction

The concept of overlay networking has recently been brought up for support-
ing various kinds of middleware and application services. However, most of the
existing work, such as [1,2,3,4,5,6], targets at small- or medium-scale overlay net-
works, as the constructed overlay topologies are mostly meshes of single level.
� This work was supported by the DARPA grant, F30602-97-2-0121, NSF grants CCR-

9988199 and EIA 99-72884 EQ, and NASA grant NAG2-1406. Jingwen Jin is also
supported by CAPES/Brazil.

M. Endler and D. Schmidt (Eds.): Middleware 2003, LNCS 2672, pp. 394–413, 2003.
c© IFIP International Federation for Information Processing 2003



Large-Scale Service Overlay Networking with Distance-Based Clustering 395

These single-level, flat network organizations do not scale, because of their in-
creasing routing information maintenance cost. To achieve scalability, in this pa-
per, we introduce a middleware framework for hierarchical service routing that
reduces routing information maintenance cost by means of topology abstraction
and state information aggregation. In correspondence to these mechanisms, ser-
vice routing will also be done hierarchically. Assuming that each node in the
system maintains partial global state (full state of the nodes in its own cluster
and aggregate state of other clusters in the system), hierarchical routing shares
advantages of source routing and distributed routing [7].

Although hierarchical (data) routing at the network layer has been exten-
sively studied in the literature [8,9,10], hierarchical service routing in distributed,
overlay service networks (middleware and application layer) presents several ad-
ditional challenges that need special efforts. (1) While at the network layer,
clusters are defined manually by humans based on certain properties of the net-
work (e.g., location, administrative domain, or connectivity), an overlay service
network has a virtual, fully-connected topology1. Hence the first problem is how
to identify virtual clusters and how to define connectivity between nodes and clus-
ters. (2) In a clustered service overlay network, the second problem is how service
routing information should be aggregated and distributed. (3) Compared to data
routing, service routing exhibits two new constraints: service functionality and
service dependency, that make traditional data routing solutions inapplicable
[11]. While solutions such as [11,12,5] exist for service routing over flat, single-
level topologies, how can a single-level topology solution be extended to solve the
hierarchical service routing problem?

We address these challenges as follows. For the first problem, as delay (prox-
imity) will be used as a performance metric when seeking service paths, we will
use proximity as a metric for clustering services. Since services are located in
proxies, the distance between a pair of services can be represented by the dis-
tance between the proxies in which the services are located. Thus the problem of
clustering services by their proximity amounts to the problem of clustering prox-
ies by their proximity. To achieve this goal, a combination of mechanisms (for
distance map obtainment and clustering) will be adopted in this paper, so that
the clustered overlay proxy network is congruent with the underlying physical
network. Once the clusters (of proxies) have been detected, we will create the
topology in such a way that nodes within a single cluster are fully connected, and
the clusters themselves are also fully connected by their border nodes. There-
fore, any pair of intra-cluster nodes can communicate to each other directly, and
any pair of inter-cluster nodes can communicate to each other via their bor-
der nodes. We name such a topology an HFC (Hierarchically Fully-Connected)
topology. Figure 1 depicts an example of a bi-level HFC topology. This topol-
ogy design choice stems from the following observation. Service routing exhibits
some different features (e.g., service functionality and service dependency) than
data routing that make the use of partial mesh topologies, which is suitable for

1 An overlay service network creates a virtual, fully-connected topology with nodes,
called proxies, carrying value-added middleware or application services.



396 Jingwen Jin and Klara Nahrstedt

cluster

border node

regular node

Fig. 1. An example of HFC topology: nodes within each cluster are fully connected,
and clusters are fully connected by their border nodes (in shadow).

data routing, not as suitable. This is so because, in data routing, nodes simply
participate as relays, and pass data as is to their neighboring nodes; however,
in service routing, as the data traverses, nodes may be required to process it
differently using different services. Since how services are to be composed (the
service dependency issue) is mostly resolved at the runtime, two runtime-defined
neighboring services may appear to be several nodes apart in a statically config-
ured partial mesh. In other words, meshes configured statically do not reflect well
service dependency needs that are resolved at execution time. In fact, highest ef-
ficiency in service paths can be only achieved if the overlay network is considered
fully connected (assuming the underlying physical network does not partition).
We thereby try to make the hierarchical topology as fully connected as possible.
While large networks cannot afford full topologies, after having done proximity-
based clustering, small groups of nearby nodes will afford to be fully connected.
In a bi-level HFC hierarchy, two nodes (thus also the services installed on them)
are at most two nodes away. By limiting the number of hops between any pair
of services will potentially increase service path efficiencies.

For the second problem, because service routing involves functionality as the
basic requirement, and certain performance metrics for optimization purposes,
we will need to maintain two pieces of information: service functionality (or capa-
bility) of the nodes and performance status of single or aggregated nodes/links,
by using a hierarchical state information distribution protocol. Topology aggre-
gation with QoS parameters has been studied in [9,13]. We need to further solve
the service capability information (SCI) aggregation problem. Assuming that
each service can be uniquely named, and a single proxy’s SCI is represented as a
set of service names, we can aggregate SCI of a group of proxies as the union of
their individual SCI sets. State information will be further discussed in Section
4. In this paper, we will only consider delay as our service path performance met-
ric, QoS parameters such as bandwidth, machine capacity, and machine volatility
[11], will not be considered at this point.



Large-Scale Service Overlay Networking with Distance-Based Clustering 397

For the third problem, we will adopt the solution developed in our previous
work [11] for intra-cluster service routing, and use a modified version for inter-
cluster service routing. The resulting solution will perform hierarchical service
routing in a top-down, divide-and-conquer fashion, in a sense that a single node
with partial global state of the system first resolves the inter-cluster service
routing problem, and then let certain proxies inside those clusters along the
path to find intra-cluster service routes.

The rest of the paper is structured as follows. In Section 2, we describe the
assumptions made throughout this paper. Section 3 presents the details about
HFC-topology construction. Section 4 provides a hierarchical state information
distribution protocol so that when stabilized, each node in the overlay network
topology has a partial global state of the system. In Section 5, we show how
hierarchical service path finding can be performed. Section 6 is devoted to per-
formance study/comparison of the presented solutions in several aspects, against
other topology organization methods. Section 7 concludes the paper with some
future directions.

2 Assumptions

2.1 Service Model

This research is based on the composable services model [14,15,16,17], assum-
ing services can be composed together to perform more complex tasks. Such a
model allows dynamic customization of services, and is useful, for example, in
multimedia application delivery or in Web applications where customizations
are specially desirable to overcome various kinds of Internet heterogeneities or
to cater to end-users’ special needs. As two application instances that may make
use of the composable services model:

– An MPEG video stream may undergo a series of transformations for cus-
tomization: (1) be watermarked for copyright protection; (2) be converted
from MPEG to H.261 to reduce bandwidth requirement; (3) be incorporated
with a background music, under user’s request; (4) be compressed, again, for
less bandwidth requirement.

– A Web document may (under user’s request): (1) be translated to another
language; (2) be merged with another document residing on a certain ma-
chine; (3) be formatted.

Service composition has to follow certain dependency relations due to either
operational constraints2 or input/output constraints3. We use the notation si →
sj to denote that service si is to be followed by service sj . A service request is
2 For copyright protection, watermarking may need to be applied before any other

service operations.
3 For example, if two transcoding services, MPEG2JPEG and JPEG2H261 are to be

composed, then the former should be applied before the latter due to the data-type
constraints of input/output.



398 Jingwen Jin and Klara Nahrstedt

sink service

source
proxy

destination
proxy

S2P0 P1S0 S1

source services

(a)

SG

source
proxy

destination
proxy

S0

S3

S1

S2P0 P1

(b)

sink service

SG

source services

Fig. 2. Two example service requests (source proxy + SG + destination proxy). (a)
service request with linear SG: s0 → s1 → s2; (b) service request with non-linear
SG which contains three possible configurations: s0 → s1 → s2, s3 → s1 → s2, and
s3 → s2.

to find a service path, between a pair of source and destination nodes, such that
it satisfies a linear or non-linear service dependency graph (service graph or SG
for short), as depicted in Figure 2. While a linear service graph contains only
one single service configuration, a non-linear service graph may contain multiple
feasible service configurations, because a path that leads from any source service
to any sink service is said to satisfy the request (a feasible configuration).

2.2 Overlay Networks

In order to carry out the customizations, services need to be available at cer-
tain locations between the multimedia server and client. Since it is not scalable
performing all customizations at the end points (server and client), proxies have
been introduced to facilitate the deployment of applications[18]. We thus assume
in this paper that composable services are installed on these media proxies. We
do not assume active services or any type of dynamic downloading of services;
i.e., in this work, services are statically installed on proxies. The reason that ac-
tive services are not assumed here is that we believe in the current Internet, they
are still hard to be widely deployed, as most system administrators may not al-
low dynamic installations of software in their systems due to security concerns.
The no-active-services assumption generally implies that proxy nodes become
different in terms of functional capabilities.

Given a distributed, composable service overlay network, applications de-
mand support from middleware so as to automate processes of locating and
composing services. The service path finding problem is, given a service request
(source proxy + SG + destination proxy), to find an efficient mapping between
services and proxies, so that the end-to-end path is efficient in terms of delay
or other QoS metrics [11]. In this paper, we will only consider delay as a per-
formance metric when performing service path finding. A concrete service path
may have the form: sp = 〈−/p0, s1/p1, . . . , sn/pn,−/pn+1〉, where p0 and pn+1
are source and destination proxies, respectively, and si/pj means that service si

is mapped onto proxy pj (note that −/pi means no service is mapped onto pi,
i.e., pi acts as a message relay.).



Large-Scale Service Overlay Networking with Distance-Based Clustering 399

3 HFC Topology Construction

As long as the underlying physical network does not partition, a set of overlay
nodes can be considered fully connected. However, under such an overlay topol-
ogy consideration, routing information distribution cost becomes unfeasibly high
for a large overlay network, because each proxy would have n − 1 neighbors. A
more scalable way is to consider the overlay network as a mesh [1,4,5,6]. How-
ever, static mesh configurations do not take the service dependency issue, which
is mostly resolved at execution time, into consideration. The general consequence
of this is two neighboring services will likely appear to be several nodes apart, so
that in order to reach one service from another, several intermediary proxy nodes
will need to participate in the service path as message relays. Therefore, mesh
topologies would incur longer service paths than the fully connected topology.
Besides, although in terms of state information maintenance scalability, mesh is
better than the fully connected topology, without topology abstraction and state
information aggregation, the improvement is still not sufficient for larger-scale
overlay networks.

A common approach to achieving scalability is to organize large networks into
clusters/groups, so that topology abstraction becomes possible to reduce the size
of global state [19,9,8]. Our HFC topology has the following basic properties:

1. distance-based clustering: Nodes are clustered by their proximity in the
Internet.

2. connectivity: All intra-cluster nodes are fully connected among themselves,
and all clusters are fully connected by their border nodes. Later on, we will
call links crossing two clusters external links, and all other links within single
clusters internal links.

3. border node selections: The border nodes between two clusters are se-
lected to be the two closest nodes belonging to the two clusters.

4. visibility: Each cluster is visible by its border nodes from outside.

An HFC topology makes service routing in a large-scale overlay network feasi-
ble and efficient because of the following reasons. First, clustering allows topol-
ogy abstraction so as to reduce the state information maintenance overhead.
Second, clustering based on the proxies’ proximity makes small groups of closely
located proxies afford to be fully connected to best cater to runtime-defined ser-
vice dependency needs. Third, the border node selection rule maximizes routing
efficiency between clusters due to geometric properties. Also due to geometric
properties, for clusters of reasonable sizes, it’s very unlikely that a single node
will be selected to be border nodes to all other clusters in the system, which
improves load balancing on border nodes. Lastly, when dealing with hierarchi-
cal topologies, the most common way of topology aggregation is to represent a
group of nodes as a single logical node [19]. Such a representation is simplest,
but also introduces too much imprecision [20]. In our framework, we will make
all border nodes of a cluster (several nodes instead of a single one) represent a
group. Such a visibility feature will help find efficient service paths with better
precisions. This issue will become clearer in Section 5.



400 Jingwen Jin and Klara Nahrstedt

The construction of an HFC topology follows three major steps: distance
map obtainment, clustering, and selection of border nodes.

3.1 Distance Map Obtainment

As end-to-end latency is an important application-level measurable metric that
gives a good reflection of the underlying physical network [21,22], we will use
this metric to represent Internet distances. Suppose n is the number of nodes in
the overlay network, if we are to get a complete distance map for the clustering
purpose, then O(n2) end-to-end measurements are needed, and O(n2) entries will
be in the map, which is an expensive operation. However, in [22], the researchers
made two interesting observations, that will allow us to reduce the complexity
of the work significantly. Through real-world Internet distance measurements,
the authors in [22] observed that: (1) Internet hosts can be mapped into a k
dimensional coordinate space such that the geometric distance between every
pair of nodes more or less reflects the network distance (round-trip propagation
and transmission delay) between the nodes; (2) without directly measuring the
distance between a pair of nodes x and y, this distance information can be
calculated (predicted) if we know the distances between x and a set of common
landmark nodes L, and the distances between y and L. Therefore, to obtain the
complete distance map of n overlay proxies, we do the following:

1. Set up a small group of m landmarks - L, and let each of them measure the
distances between itself and all other landmarks. To minimize the effect of
Internet noises, we take the minimum value of several measurements.

2. Map the obtained distance map of L into a k-dimensional geometric space
S with minimum error. This is a function minimization problem solvable by
mathematical methods such as [23].

3. Each proxy obtains the coordinates of L, and measures the distances between
itself and L in order to be able to derive its own coordinates relative to
L’s positions, again through some function minimization method [23]. To
minimize Internet noises, the minimum of several measurements should be
taken.

Using such an approach, a complete distance map of n proxies can be obtained
by using O(m2 +nm) measurements and will only have O(kn) of entries (n � m
and n � k), compared to O(n2) measurements and O(n2) entries in a genuine
approach. Note that the goal of setting up the landmarks is to provide to regular
proxies some reference points in the geometric space - S; the landmarks will not
participate in any other activities.

3.2 Clustering by Graph Theory

We assume a particular proxy - P - is elected to perform the clustering operations
once all of the proxies have reported their own coordinates to it. Clustering is a
big and old research area spanning several fields. Many clustering methods exist



Large-Scale Service Overlay Networking with Distance-Based Clustering 401

(a)

X

X

(b) (c)

Fig. 3. (a) A set of n nodes in space S; (2) an MST connecting the nodes (inconsistent
edges are marked with X; (3) clusters detected by removing the inconsistent edges
in (b).

in the literature for different objectives, and most of them are guided by certain
laws or principles [24]. Among them, we cite the famous Gestalt principle of
grouping by proximity. Based on this principle, Zahn [25] demonstrated how the
minimum spanning tree (MST) can be used to detect clusters. We adopt this
method to detect proxy clusters as follows.

1. Construct the MST for the set of n nodes in S.
2. Identify inconsistent edges in the MST.
3. Remove the inconsistent edges to form connected components and call them

clusters.

The crucial step in the algorithm is the definition of inconsistency. We con-
sider an edge to be inconsistent when its length is significantly larger than the
average of nearby edge lengths [25]. Let a denote the length of the link being
examined - l, and let Tl and Tr denote the left and right sub-trees connected by
l, whose average length of links is denoted by b. We say that l is inconsistent if
a/b > k, where k is a selected number, e.g., 2, 3, . . ..

In this work, we concentrate on clustering an overlay network of size n using
one computation. However, in the real world, we should allow proxies to join and
leave dynamically. While we can let future proxies join clusters of their nearest
neighbors, multiple joins and leaves may deteriorate the quality of clustering.
Hence some kind of re-structuring mechanism needs to be devised. We leave this
as our future work.

3.3 Selection of Border Proxies

We also let P carry out the border proxies selection operation. As stated, in
the HFC topology, clusters are fully connected by their border proxies. Thus,
between every pair of clusters, a pair of border proxies is selected. For maxi-
mum routing efficiency, the two border proxies between a pair of clusters are



402 Jingwen Jin and Klara Nahrstedt

C1.0

C1.1

C1.2 C2.0

C2.1

C2.2

C3.0
C0

C1 C2

C3C0.1 C0.0

My cluster ID is C2
Other intra−cluster members are: C2.0 and C2.2
Border nodes:

(cluster, cluster) (border, border)
(C0, C1) (C0.1, C1.0)
(C0, C2) (C0.0, C2.2)
(C0, C3) (C0.0, C3.0)
(C1, C2) (C1.2, C2.0)
(C1, C3) (C1.1, C3.0)
(C2, C3) (C2.2, C3.0)

Coordinates of:
{C0.0, C0.1, C1.0, C1.1, C1.2,
C2.0, C2.1, C2.2, C3.0}

Fig. 4. Information learned by C2.1 from P .

selected to be the pair of nearest proxies belonging to the two clusters. Let
X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} denote two clusters, and let
[xb, yb] denote their border proxies, where xb ∈ X and yb ∈ Y , then for all other
pairs of proxies [xi, yj ] (such that xi �= xb, yj �= yb, xi ∈ X, and yj ∈ Y ),
distance(xi, yj) ≥ distance(xb, yb).

Once the proxy P is done with clustering and border node selection, it will
distribute the relevant topology information to each proxy in the system. In
particular, each proxy in the system will learn the following from P : (1) its own
cluster’s ID and membership information, i.e., who are other members belong-
ing to this cluster; (2) the cluster IDs in the system and their border proxies;
(3) coordinates of all members within the cluster and coordinates of all border
proxies in the system. Figure 4 depicts the information learned by C2.1 from P .

4 Service Routing Information Distribution

As stated in Section 1, service routing needs two pieces of information: distance
and service functionality/capability. Since each proxy has already the relevant
coordinates information that allows itself to derive distances between any intra-
cluster nodes and between any pair of clusters (represented by the corresponding
border nodes), only the service capability information needs to be further dis-
tributed. Each proxy will maintain two Service Capability Tables, one for all
proxies in its own cluster - SCTP , and the other for all clusters in the system -
SCTC . The following protocol will be adopted for distribution and maintenance
of the nodes’ service capability information.

1. Local State: Every proxy pi in the system periodically distributes its local
service capability information through a local state message4 to all of the

4 In a local state message, pi lists the names of services installed on pi.



Large-Scale Service Overlay Networking with Distance-Based Clustering 403

proxies within its own cluster. A proxy pj that receives a local state message
will update its SCTP .

2. Aggregate State: Each border proxy pb periodically aggregates the service
capability information of its own cluster and distributes it through an ag-
gregate state message5 to the neighboring border nodes in other clusters. A
border node p′

b that receives such a packet updates its own SCTC , and is re-
sponsible for forwarding it to other proxies of its own cluster. Any proxy that
receives a forwarded aggregate state packet simply updates its own SCTC .

5 Hierarchical Service Path Finding

In [11], we provided a generic, global-view-based approach to finding optimal
service paths in flat topologies. Due to the service functionality and service
dependency restrictions in service routing, no existing solutions for data routing
(e.g., Dijkstra’s Algorithm) can be directly applied to solve the service routing
problem. In [11], we showed how to map the service topology and service request
information into a directed acyclic graph (which we call service DAG), to make a
classical shortest-paths algorithm applicable for computation of optimal service
paths. The main objective of the mapping phase was to get rid of the complexities
caused by the two restrictions stated above, so that any path that leads from
the source node of the service DAG to the sink node of the service DAG would
be a viable service path, and applying a shortest-path algorithm will return us
a shortest service path in terms of a given metric.

Since in the HFC framework, the topology and state information has been
abstracted at certain point, we will not be able to find a concrete service path
in one single step. Instead, we will have to perform service path finding hier-
archically, first at the cluster level and then at the proxy level. With only an
abstract state of other clusters in the system, no single proxy is able to find
a concrete service path solely on its own, unless all requested services can be
satisfied in the local cluster. The general idea of hierarchical service routing is
to first let some proxy (e.g., the destination proxy specified in the request) look
for a cluster-level service path, so that to which cluster each service is mapped
to is defined. Later, the proxy can let certain nodes of those particular clusters
decide which specific in-cluster proxies will be the concrete providers of those
services and combine their decisions to obtain the final service path. Figure 5
depicts a picture of hierarchical service routing at high level. We will call such a
service path finding mechanism divide-and-conquer. Different than in [11], which
finds optimal solutions in terms of a given performance metric, now we can no
longer guarantee that the resulting service paths are optimal. That is, although
we sought to optimize distance independently at two levels of service routing,
the overall service path may not be optimal due to topology abstractions.
5 In an aggregate state message, pb lists the names of all services available in its

entire cluster. Assume S1, S2, . . . , Sm are the sets of services available at proxies
p1, p2, . . . , pm in a certain cluster Ci. Then the aggregate service set S of this cluster
is the union of all Si’s; i.e., S = S1 ∪ S2 ∪ . . . ∪ Sm.



404 Jingwen Jin and Klara Nahrstedt

C1

C0

C2

b0.1
b1.0

C3

Ps

b1.2

b2.1

b2.3

b3.2

Pd

C1

C0

C2

b0.1
b1.0

C3

Ps

b1.2

b2.1

b2.3

b3.2

Pd

resolved by b0.1

resolved by b1.2

resolved by b2.3

resolved by Pd

Fig. 5. Hierarchical routing at high level: (a) A single node - pd - first computes an
inter-cluster service path connecting certain border nodes; (b) certain nodes within
each cluster individually compute intra-cluster service paths and return their answers
to pd to form the final service path.

C0.3

C1.0

C1.1

C1.2
C1.3

C2.0

C2.1

C2.2

C3.0

C3.1
C0

C1 C2

C3C0.1

25

20
40

30

50

15

4

1

2
5

C0.0
3

2

24

1

2

3

5

1

2

2

3

C0.2

C0.0: {S1}
C0.1: {S4}
C0.2: {S4}
C0.3: {S1}

C1.0: {S2}
C1.1: {S3, S4}
C1.2: {S3}
C1.3: {S2, S4}

C2.0: {S5}
C2.1: {S2}
C2.2: {S5}

C3.0: {S4}
C3.1: {S1, S4}

Fig. 6. The service topology (network topology + services) of the example.

In parallel to describing the general procedures of hierarchical service routing
below, we provide a small example for better illustration. The topology, as well as
the detailed service capability information, are shown in Figure 6. There are four
clusters, C0, C1, C2, and C3, whose elements (proxies) are labeled as C0.0, C1.2,
. . ., according to how they are clustered, to ease our reading. Services available
at each proxy are listed at the right side of the figure.

5.1 Inter-cluster Service Path Finding

Without loss of generality, we assume a service request, which comprises a source
proxy, a service graph, and a destination proxy, and issued by a client, is sent
to the destination proxy, and the output of this destination proxy will feed into
the client’s input.



Large-Scale Service Overlay Networking with Distance-Based Clustering 405

1. map: Based on the aggregate state information maintained at pd, find in-
stances of the requested services in all clusters in the system by looking up
pd’s SCTC , and construct a service DAG as described in [11].
Example: Based on the aggregate global state perceived by C2.1 (Figure
7(a)), map the service request (Figure 7(b)) into a service DAG(Figure 7(c))
by finding instances of each service in SCTC . The two end nodes of such a
service DAG are, respectively, the IDs of the clusters in which the source
and destination proxies fall; pd knows its own cluster’s ID, and can query
the source proxy for the source proxy’s cluster ID. Note that the distance
labeled on each link between a pair of clusters - Ci and Cj , is the distance
between the border proxies of two clusters. The distance is zero if Ci = Cj .
Although for simplicity the example only considers linear service graph, the
solution can be easily extended to also consider non-linear service graphs, as
shown in [11].

2. apply shortest-paths algorithm: On top of the service DAG, a shortest-
path algorithm such as Dijkstra’s algorithm, or DAG-shortest-paths algo-
rithm can be applied to compute a shortest path. We will call the resulting
path a CSP (Cluster-Level Service Path). Such a CSP is a service path com-
prised by possibly several external clusters, whose fine-resolution states are
not known at pd.
Example: Although simply applying a classical shortest-paths algorithm (e.g.,
DAG-shortest-paths algorithm) on top of the service DAG would result in
a cluster-level shortest service path, whose total distance is the sum of the
lengths of external border links making up the path, we modify the DAG-
shortest-paths algorithm in such a way that selection of a shortest path
also takes into account internal distances as much as possible. If, in the ser-
vice topology of Figure 7, there are two cluster-level service paths (path 1:
C0 → C1 → C2 and path 2: C0 → C3 → C2) that both satisfy the given
request, just judging from the external links, the proxy C2.1 would see no
difference between the two, because both paths have their total external link
lengths of 45. However, if C2.1 considers the internal distances between the
border nodes as well, the latter might be a preferred path because: (1) in
path 1, the service path will leave C0 from C0.1, enter C1 from C1.0, leave C1
from C1.2, enter C2 from C2.0, and finally reach the destination - C2.1, the
total distance will be no less than 20 + 5 + 25 + 2 = 52; (2) in path 2, the
service path will leave C0 from C0.0, enter C3 from C3.0, leave C3 from C3.0,
enter C2 from C2.2, and finally reach the destination - C2.1, the total distance
will be no less than 30+15+1 = 46. At this point, we have no way to know
how long the intra-cluster service paths will be, but since the lower-bound
distance of path 1 is higher than that of path 2, there’s no reason for us
not to prefer the latter to the former. In order to take the internal distances
into account, we need to add a back-tracking procedure before performing
the regular relax procedures in a classical shortest-paths algorithm. Details
of such back-tracking verification are omitted from this paper. Readers can
find similar mechanism used in [11]. The shortest service path is shown in
bold lines in Figure 7(c).



406 Jingwen Jin and Klara Nahrstedt

C1.0

C1.1

C1.2 C2.0

C2.1

C2.2

C3.0
C0

C1 C2

C3C0.1

25

20
40

30

50

15

1

C0.01

5

1

2

2

3

C2.0: {S5}

C0: {S1, S4}
C1: {S2, S3, S4}
C2: {S2, S5}
C3: {S1, S4}

C2.1: {S2}
C2.2: {S5}

system state
perceived by C2.1

SCTp

cSCT

service
request S1C0.2 S2 S3 S4 S5 C2.1

(b)

(a)

C0

S1/C0

S1/C3

S2/C1

S2/C2

S3/C1

S4/C0

S4/C1

S4/C3

S5/C2 C2

20

0

30

50

40

15

0

25

20

0

40

25

50

15

0

on top of the service DAG
apply shortest−paths algorithm mapping

(c)

child request 3

(d)

child requests

S1/C0 S2/C1 S4/C1 S5/C2C0 C2

C0 C1 C2

CSP

child request 1
distribute to C0.1

child request 2
distribute to C1.2 taken care of by C2.1

S2 S5C2.0C0.1S1C0.2 C1.0 S3 S4 C1.2 C2.1

S3/C1

form and distribute

conquer

final service path

C0.2

C0.2 C0.1 C1.0 S2/C1.0 C1.2 C2.0 C2.1

child service path 1 child service path 2 child service path 3

S1/C0.0 −/C0.1 S4/C1.1 −/C1.2

S1/C0.0 S3/C1.1 S4/C1.1 S5/C2.0

−/C2.0 S5/C2.0 C2.1

(e)

S2/C1.0 S3/C1.1

Fig. 7. Inter-cluster service routing (steps performed by the destination proxy C2.1 of
the service request).



Large-Scale Service Overlay Networking with Distance-Based Clustering 407

3. distribute child service requests (divide): Dissect the original service
request into smaller portions, and distribute these child requests to the cor-
responding clusters.
Example: Once getting a shortest cluster-level service path, the destination
proxy C2.1 is responsible for dissecting the original request into pieces. Start-
ing from the source node in the CSP, a new child request is formed for a
consecutive set of nodes if these consecutive nodes are all mapped into the
same cluster. For each child request, the selection of source proxy and desti-
nation proxy is done as follows. Let 〈C0, C1, . . . , Cn〉 denote the sequence of
clusters making up the CSP, and let the notation bi,j denote the border node
inside cluster Ci connecting to cluster Cj , then in general, the source proxy
of a child request i is bi,i−1, and the destination node is bi,i+1. If it is the
first child request (i = 0), the source proxy is that indicated in the original
service request; and if it is the last child request (i = n), the destination
node is that indicated in the original service request. Figure 7(d) shows the
dissected child service requests. The first two child requests are to be sent to
C0.1 and C1.2, respectively, and the third one will be taken care of by C2.1
itself.

4. compose child service paths (conquer): Wait for results of those child
service requests to arrive, and compose all child service paths into a single
one. This is the final service path.
Example: The destination proxy C2.1 waits for all child service paths6 to
arrive, and combine them as shown in Figure 7(e).

5.2 Intra-cluster Service Path Finding

Since at the cluster level, proxy pd only knows in which cluster each requested
service should be located, it will rely on some in-cluster proxies to further decide
which proxy, specifically, will be the concrete provider of each service. A proxy
px, upon receiving a child service request that consists only of services satisfiable
by px’s cluster, will compute an optimal intra-cluster service path by using the
solution described in [11]. The basic procedure consists of two steps: mapping and
applying shortest-paths algorithm on top of the obtained service DAG. Different
from the mapping step done for inter-cluster service routing above, where each
service is mapped into a cluster by looking up SCTC , now each service will be
mapped onto concrete proxies by looking up px’s SCTP . After completing the
computation of a shortest child service path, px sends the result (child service
path) back to pd for it to be composed with others.

Example: Computations of intra-cluster service paths are shown in Figure 8.

6 Performance Studies

In this section, we conduct simulation tests to study the performances of our
hierarchical framework. The simulations are done by using the well-known sim-
ulator ns2, and our Internet topologies are generated following the transit-stub
6 Computations of child service paths are shown in Section 5.2.



408 Jingwen Jin and Klara Nahrstedt

14

2 5

C0.2

S1/C0.0

S1/C0.3

C0.1

child service path 1

0 2

3 1

C2.0

S5/C2.0

S5/C2.2

C2.1

child service path 3

4

20

2

3

1

5

3

2

4

3

0

C1.0

S2/C1.0

S2/C1.3

S3/C1.1

S3/C1.2 S4/C1.3

S4/C1.1

C1.2

child service path 2

Fig. 8. Computations of child service paths. Shortest paths are indicated with bold
lines.

model [26]. We will measure performances of the HFC framework in two aspects:
state information maintenance overhead and service path efficiency.

6.1 State Information Maintenance Overhead

The biggest advantage of hierarchical routing is that state information main-
tenance overhead is reduced through topology abstraction. We will study the
performance of the HFC topology by comparing it to that of single-level topolo-
gies. Since state in service routing includes two pieces of information: distance
and service capability, we will quantify their overheads separately. Overhead is
quantified in number of node-states; if a single node p keeps n node-states for
particular state (either distance or service capability), it means that p maintains
that many entries in its corresponding state table where each entry can be either
for a single node or for a cluster, depending on situations.

Coordinates-Related Overhead: In this work, since we used coordinates-
based distance map in the HFC framework, we will also assume this for single-
level topology service routing. In a single-level topology, each proxy is required
to keep coordinates of all proxies in the system. Therefore, assuming n is the size
of the overlay network, the per proxy coordinates-related overhead is n node-
states. However, in an HFC topology, each proxy is only required to keep the
coordinates of its local cluster nodes and the coordinates of all border nodes in
the system. We set up overlay topologies of different sizes: 250, 500, 750, and
1000 proxies, on top of physical topologies generated by using the TS model [26].
Each overlay topology is tested on top of 10 different physical topologies. Figure
9(a) shows the results averaged over 10 tests.

Service-Capability-Related Overhead: In a single-level topology, each proxy
again, needs to maintain service capability information for all proxies (n nodes)



Large-Scale Service Overlay Networking with Distance-Based Clustering 409

250 500 750 1000
0

100

200

300

400

500

600

700

800

900

1000

1100

Overlay network size (number of proxies)

ov
er

he
ad

 o
f c

oo
rd

in
at

es
−

re
la

te
d 

st
at

e 
(n

um
be

r 
of

 n
od

e−
st

at
es

)

Flat Topology
Hierarchical Topology

250 500 750 1000
0

100

200

300

400

500

600

700

800

900

1000

1100

Overlay network size (number of proxies)

ov
er

he
ad

 o
f s

er
vi

ce
−

re
la

te
d 

st
at

e 
(n

um
be

r 
of

 n
od

e−
st

at
es

)

Flat Topology
Hierarchical Topology

Fig. 9. (a) Number of coordinates-related node-states kept at a single proxy; (b) num-
ber of service-related node-states maintained at a single proxy.

in the system. However, in the HFC framework, the number of such nodes per-
ceived at a single proxy is the sum of the number of nodes in each proxy’s own
cluster plus the number of clusters in the system. Figure 9(b) shows results of
the simulation tests with the same setups as above.

While in flat topologies, both overheads would increase linearly with constant
one, the increases are much slower in the hierarchical case (with dramatically
smaller constants), meaning the HFC framework scales much better than flat
topologies. Although theoretically in the worst case, hierarchical organizations
may not produce advantages, for example, when most of the nodes fall into one
cluster, such undesirable phenomena did not happen in our simulation tests, and
we think that extremely unbalanced network node distribution would not happen
in practice either. We intend to analyze the node distribution issue further in our
future study. Also note that in all of the simulations of this paper, coordinate
spaces of two dimensions are used. It would be also interesting, in the future, to
quantify the precisions of the distance maps obtained by using coordinate spaces
of different dimensions, and see their impact on clustering.

6.2 Service Path Efficiency

The goal of service routing is to find efficient service paths. Since in this paper,
we only consider distance as the routing metric, we say that for a single ser-
vice request, a shorter path is more efficient that a longer one. We will compare
path efficiencies achieved by our hierarchical service routing framework (HFC
with topology abstraction) against those of regular mesh-based solutions. At the
same time, we will also quantify the performance losses solely caused by topol-
ogy aggregation. Hence we will compare path efficiencies achieved by our HFC
framework against those achieved by HFC without topology abstraction. To be
fair, performances will be compared in the same simulation environments. We
wrote programs to generate random simulated environments for overlay topolo-



410 Jingwen Jin and Klara Nahrstedt

Table 1. Simulation test environments.

physical topology landmarks proxies clients services/proxy service req. length

300 10 250 40 4-10 4-10
600 10 500 90 4-10 4-10
900 10 750 140 4-10 4-10
1200 10 1000 120 4-10 4-10

gies with 250, 500, 750, and 1000 proxies. Table 1 shows the settings. We conduct
two sets of tests for different purposes.

We first compare path efficiencies of hierarchical service routing against those
of regular meshes. A regular mesh is constructed with the following rules: each
proxy creates links to its 1-4 nearest neighbors, and 1-2 randomly chosen, farther
located neighbors (to make the topology connected). In a single-level (mesh)
topology solution, each node maintains global state of the system. Thus, a single
node is able to find an optimal service path by applying the methods described
in [11]. The first two bars in each 3-bar set of Figure 10 show the average service
path lengths obtained for the two tests. Each point in the figure corresponds to
the average result of up to 5 runs (on top of 5 different physical topologies), with
1000 client requests per each run. We see that despite the distance information
imprecision introduced in the HFC framework, the performance of the HFC
framework is still comparable to (actually slightly better than) single-level mesh
solutions. This is the case because in the HFC topology, the number of hops
between two overlay nodes (or neighboring services) is constrained to no more
than two. As predicted, this feature potentially increases service path efficiencies.

The biggest disadvantage of hierarchical routing is that path efficiencies may
get compromised due to routing information imprecision. Thus, it is interesting
to examine the performance degradation caused solely by topology aggregation
in hierarchical service routing (i.e., performance compromise of doing hierarchi-
cal service routing). For this purpose, we compare performances achieved by
HFC topologies in two cases. In case one, we perform the topology aggregation
as described throughout this paper. In the second case, we do not perform any
topology abstraction or state information aggregation on top of the HFC topol-
ogy. Therefore, each proxy will have full state of the whole system. The last two
bars in each 3-bar set of Figure 10 give us a comparison between the two; the
differences between the two show the performance deterioration caused by the
distance imprecision in hierarchical service routing.

7 Conclusions

In this paper, we have presented a hierarchical service routing framework that
solves the three challenges described in Section 1, and studied its performances
through simulations. Despite the distance imprecision introduced in hierarchi-
cal service routing, our framework achieved path efficiencies as good as regular
single-level mesh solutions, while also achieving scalability.



Large-Scale Service Overlay Networking with Distance-Based Clustering 411

250 500 750 1000
0

1

2

3

4

5

6

7

8

9

10

Overlay network size (number of proxies)

av
g.

 s
er

vi
ce

 p
at

h 
le

ng
th

 (
un

it 
of

 ti
m

e)

Mesh Topology
HFC w/ State Aggregation
HFC w/o State Aggregation

Fig. 10. A comparison of service path lengths.

Service routing is still a new area. To the best of our knowledge, this is the
only work so far dealing with hierarchical service routing. We expect this re-
search area to be further explored in the future. Some of the improvements that
we can think of for our HFC framework can be dynamic membership and QoS.
The framework so far does the clustering operations all at once. However, in
the real world, we should allow proxies to join and leave dynamically. While we
can let future proxies join clusters of their nearest neighbors, multiple joins and
leaves may deteriorate the quality of clustering. Thus some kind of re-structuring
mechanism needs to be devised. Also, many applications are QoS demanding.
How to embed QoS (e.g., network bandwidth, machine load, machine volatil-
ity) into hierarchical service topologies, and properly aggregate those pieces of
information into meaningful service routing state, are important issues.

Acknowledgments

This material is based upon work supported by DARPA (under Award No.
F30602-97-2-0121), NSF (under Awards No. CCR-9988199 and EIA 99-72884
EQ), NASA (under Award No. NAG2-1406), and CAPES/Brazil. Any opinions,
findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the awarding
agencies.

The authors would also like to thank the anonymous reviewers for their
helpful comments.

References

1. Y. Chu, S. G. Rao and H. Zhang. A Case For End System Multicast. In Proc. of
ACM SIGMETRICS, pages 1–12, Santa Clara, CA, Jun 2000.

2. J. Liebeherr, and M. Nahas. Application-Layer Multicast with Delaunay Triangu-
lations. In Proc. of Sixth Global Internet Symposium (IEEE Globecom 2001), San
Antonio, Texas, Nov 2001.



412 Jingwen Jin and Klara Nahrstedt

3. Jingwen Jin and Klara Nahrstedt. mc-SPF: An Application-Level Multicast Service
Path Finding Protocol for Multimedia Applications. In Proc. of IEEE International
Conference on Multimedia and Expo (ICME2002), Lausanne, Switzerland, Aug
2002.

4. D. Xu, K. Nahrstedt,. Finding Service Paths in a Media Service Proxy Net-
work. In Proc. of SPIE/ACM Multimedia Computing and Networking Conference
(MMCN’02), San Jose, CA, Jan 2002.

5. Xiaohui Gu, Klara Nahrstedt, Rong N. Chang, Christopher Ward. QoS-Assured
Service Composition in Managed Service Overlay Networks. In Proc. of The IEEE
23rd International Conference on Distributed Computing Systems (ICDCS 2003),
Providence, Rhode Island, May 2003.

6. Jingwen Jin and Klara Nahrstedt. On Construction of Service Multicast Trees. In
Proc. of IEEE International Conference on Communications (ICC2003), Anchor-
age, Alaska, May 2003.

7. S. Chen, K. Nahrstedt. An Overview of Quality-of-Service Routing for the Next
Generation High-Speed Networks: Problems and Solutions. IEEE Network Maga-
zine, 12(6):64–79, 1998.

8. King-Shan Lui, Klara Nahrstedt, Shigang Chen. Hierarchical QoS Routing in
Delay-Bandwidth Sensitive Networks. In Proc. of IEEE Conference on Local Com-
puter Networks (LCN 2000), Tampa, FL, Nov 2000.

9. Turgay Korkmaz and Marwan Krunz. Source-Oriented Topology Aggregation with
Multiple QoS Parameters in Hierarchical Networks. ACM Transactions on Model-
ing and Computer Simulation, 10(4):295–325, Nov 2000.

10. F. Hao and E. W. Zegura. On Scalable QoS Routing: Performance Evaluation of
Topology Aggregation. In Proc. of IEEE INFOCOM, Tel Aviv, Israel, Mar 2000.

11. Jingwen Jin, Klara Nahrstedt. QoS Service Routing for Supporting Multimedia Ap-
plications. Technical Report UIUCDCS-R-2002-2303/UILU-ENG-2002-1746, De-
partment of Computer Science, University of Illinois at Urbana-Champaign, USA,
Nov 2002.

12. Sumi Choi, Jonathan Turner, and Tilman Wolf. Configuring Sessions in Pro-
grammable Networks. In Proc. of IEEE INFOCOM, Anchorage, Alaska, Apr 2001.

13. King-Shan Lui, Klara Nahrstedt. Topology Aggregation and Routing in
Bandwidth-Delay Sensitive Networks. In Proc. of IEEE Globecom 2000, San Fran-
scisco, CA, Nov-Dec 2000.

14. F. Kon, R. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J. Ballesteros. 2K:
A Distributed Operating System for Dynamic Heterogeneous Environments. In
Proc. of the 9th IEEE International Symposium on High Performance Distributed
Computing, Pittsburgh, Aug 2000.

15. S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer, D. Culler, N. Borisov, S.
Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao, S. Ross, and
B. Zhao. The Ninja Architecture for Robust Internet-Scale Systems and Services.
Special Issue of Computer Networks on Pervasive Computing, 2001.

16. Xiaodong Fu, Weisong Shi, Anatoly Akkerman, and Vijay Karamcheti. CANS:
Composable, Adaptive Network Services Infrastructure. In Proc. of Third USENIX
Symposium on Internet Technologies and Systems, San Francisco, CA, Mar 2001.

17. A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Partitionable Services: A
Framework for Seamlessly Adapting Distributed Applications to Heterogeneous
Environments. In Proc. of IEEE International Conference on High Performance
Distributed Computing (HPDC), Edinburgh, Scotland, Jul 2002.



Large-Scale Service Overlay Networking with Distance-Based Clustering 413

18. A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Adapting to Network and Client
Variation Using Infrastructural Proxies: Lessons and Perspectives. IEEE Personal
Communications, Aug 1998.

19. The ATM Forum. Private Network-Network Interface Specification Version 1.0
(PNNI 1.0), Mar 1996.

20. B. Awerbuch, Y. Du, B. Khan, and Y. Shavitt. Routing Through Teranode Net-
works with Topology Aggregation. In Proc. of IEEE ISCC, Athens, Greece, Jun
1998.

21. Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker. Topologically-
Aware Overlay Construction and Server Selection. In Proc. of IEEE INFOCOM,
New York, NY, Jun 2002.

22. T. S. Eugene Ng, Hui Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In Proc. of IEEE INFOCOM, New York, NY,
Jun 2002.

23. J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. Com-
puter Journal, 7, 1965.

24. Erich Rome. Simulating Perceptual Clustering by Gestalt Principles. In Proc.
of 25th Workshop of the Austrian Association for Pattern Recognition, Berchtes-
gaden, Germany, Jun 2001.

25. C.T. Zahn. Graph-Theoretical Methos for Detecting And Describing Gestalt Clus-
ters. IEEE Transactions on Computers, C 20, 1971.

26. E. Zegura, K. Calvert, S. Bhattacharjee. How to Model an Internetwork. In Proc.
of IEEE INCOFOM, Apr 1996.


	1 Introduction 
	2 Assumptions 
	2.1 Service Model
	2.2 Overlay Networks

	3 HFC Topology Construction 
	3.1 Distance Map Obtainment
	3.2 Clustering by Graph Theory
	3.3 Selection of Border Proxies

	4 Service Routing Information Distribution 
	5 Hierarchical Service Path Finding 
	5.1 Inter-cluster Service Path Finding
	5.2 Intra-cluster Service Path Finding 

	6 Performance Studies 
	6.1 State Information Maintenance Overhead
	6.2 Service Path Efficiency

	7 Conclusions 
	References

