
M. Endler and D. Schmidt (Eds.): Middleware 2003, LNCS 2672, pp. 433–454, 2003.
© IFIP International Federation for Information Processing 2003

A Middleware-Based Application Framework
for Active Space Applications

Manuel Román and Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801

{mroman1,rhc}@cs.uiuc.edu

Abstract. Ubiquitous computing challenges the conventional notion of a user
logged into a personal computing device, whether it is a desktop, a laptop, or a
digital assistant. When the physical environment of a user contains hundreds of
networked computer devices each of which may be used to support one or more
user applications, the notion of personal computing becomes inadequate. Fur-
ther, when a group of users share such a physical environment, new forms of
sharing, cooperation and collaboration are possible and mobile users may con-
stantly change the computers with which they interact; we refer to these digi-
tally augmented physical spaces as Active Spaces. We present in this paper an
application framework that provides mechanisms to construct, run or adapt ex-
isting applications to ubiquitous computing environments. The framework
binds applications to users, uses multiple devices simultaneously, and exploits
resource management within the users’ environment that reacts to context and
mobility. Our research contributes to application mobility, partitioning and ad-
aptation within device rich environments, and uses context-awareness to focus
the resources of ubiquitous computing environments on the needs of users.

1 Introduction

Future ubiquitous computing will surround users with a comfortable and convenient
information environment that merges physical and computational infrastructures into
an integrated habitat. Context-awareness should accommodate the habitat to the user
preferences and tasks, group activities, and the nature of the physical space. We term
this dynamic and computational rich habitat an Active Space. Within the space, users
will interact with flexible applications that may move with the user, may define the
function of the habitat, or collaborate with remote applications. The research de-
scribed in this paper builds on experiments with applications conducted in a prototype
active meeting room (Figure 1). We have currently developed fourteen applications
that we use regularly in our seminars, meetings, and presentations.

The Active Space consists of the Gaia middleware OS[1] managing a distributed
system composed of four 61" wall-mounted plasma displays, a video wall, 5.1 audio
system (Dolby Digital), touch screens, IR beacons, badge detectors, and wireless and
wired networks connecting 15 Pentium-4 PCs running Windows 2000 and Windows
CE based Compaq iPaq PDAs. Gaia supplies services including event delivery, entity
presence detection (devices, users, and services), context notification, a space reposi-
tory to store information about entities present in the space, and a context-aware file
system.

434 Manuel Román and Roy H. Campbell

The application experiments examine how to construct applications that use mul-
tiple devices simultaneously, take advantage of resources contained in the user habi-
tat, exploit context information (e.g., location and social activity), benefit from auto-
matic data transformation and can alter their composition dynamically (e.g., attaching
and detaching components) to adapt to changes in the Active Space, and move with
the users to different Active Spaces.

The problem we focus in this paper consists on providing an application frame-
work that leverages the functionality provided by the Gaia middleware OS to assist
developers in the construction of Active Space application. The application frame-
work addresses three issues: (1) defining an application model that can accommodate
the requirements of Active Spaces including dynamically changing the cardinality,
location, and quality of input, output, and processing devices used by an application;
(2) providing a mapping mechanism that allows defining applications’ requirements
generically and automatically mapping them to the resources present in a particular
Active Space; and (3) implementing a flexible policy driven application management
interface that allows customizing applications to the dynamic behavior of Active
Spaces.

The paper continues with a description of the issues we consider are key for Active
Space applications (Section 2), a description of the application framework including
information about the application model (Section 3), the mapping process (section 4),
and the application management functionality (Section 5). Section 6 explains how the
application framework addresses the issues listed in Section 2, Section 7 presents an
example of an application we have built using the framework, and Section 8 discusses
performance evaluation. We present related work in Section 9, and conclude in Sec-
tion 10.

Fig. 1. Prototype Active Meeting Room Hosting a Slide Show Application

A Middleware-Based Application Framework for Active Space Applications 435

2 Active Space Applications’ Key Issues

Based on our experiments, we define an Active Space application as a collection of
dynamically assembled components that fulfill the requirements of a user or a group
of users. Dynamism is probably the most important aspect of an Active Space appli-
cation, and requires a flexible component based application architecture capable of
changing its own composition at run-time. We have identified a number of issues that
are common to most Active Space applications. These issues are the cornerstones of
our application framework, which effectively simplifies the development of Active
Space applications. We list these issues next.

2.1 Resource-Awareness

Ubiquitous computing scenarios contain hundreds of resources, including devices
(e.g., sensors, displays, and CPUs), services (e.g., file management, printing, and
temperature controller), and applications (e.g., slideshow presenter, music player, and
calendar). In order to exploit these resources, Active Spaces must provide functional-
ity to discover existing resources, functionality to store information about resources
including their capabilities, their availability, and their cardinality, and functionality
to query for specific resources.

2.2 Multi-device

In an environment where users are surrounded by hundreds of devices, the notion of
interacting with a single device becomes inappropriate. Users may utilize different
devices at different times, or may use multiple devices simultaneously to accomplish
a well defined goal, as long as certain security and availability policies apply. This
"post-pc" scenario requires a new model for application construction that allows parti-
tioning applications into different devices as required by users and their associated
context (e.g., time of the day, location, current task, and number of people). Applica-
tion partitioning allows distributing functional aspects of an application (e.g., applica-
tion logic, output, and input) across different devices. Remote terminal systems (such
as X-Windows) allow redirecting the application output and input to different devices.
However, they do not provide support to redirect the application output to one device
and the input to another device. And for the same application, it is not possible to
redirect multiple outputs to different devices. The type of application partitioning we
seek is conceptually similar to the one proposed by Myers et al. [2], and provides fine
grained control to choose a target device for each individual application functional
aspect, as well as support for altering the application partitioning at run-time.

The application partitioning must be: (1) dynamic, so it may vary at run-time ac-
cording to changes in the Active Space (e.g., new devices introduced in the space, or
new people entering the space), and (2) reliable, in such a way that guarantees appli-
cation integrity even when the application is distributed across different devices.

436 Manuel Román and Roy H. Campbell

2.3 User-Centrism

Resource-awareness and the multi-device approach convey a third essential property:
user-centrism. To accommodate application partitioning into multiple devices that
vary over time, we bind applications to users and map the applications to the re-
sources present in the users’ current environment.

Abowd et. al.[3] use the term "everyday computing" to denote the type of applica-
tions associated with users that do not have a clearly defined beginning and end. Us-
ers may start these applications and use them for several days, months, or even years.
Applications may be periodically suspended and resumed but not terminated. These
applications are bound to users, and take benefit of the resources present in the users'
environment.

User-Centrism requires applications to (1) move with the users, (2) adapt according
to changes in the available resources (it may imply data format transformation, or
internal application composition, or both), (3) provide mechanisms to allow users to
configure the application according to their personal preferences, and (4) allow more
than one user to participate in the same application.

2.4 Run-Time Adaptation

Active spaces are highly dynamic environments, where changes are the norm. De-
vices may be added to and removed from the space at any time, existing software
entities may crash or new ones may be added dynamically, and users may enter and
leave the space to start and stop participating in existing tasks. All these properties
require applications capable of reacting to such changes at run-time. We consider two
types of adaptation, functional and structural.

Application functional adaptation (i.e. changing the behavior of the application al-
gorithm) is an important feature that has already been applied to traditional applica-
tions by means of reflection [4-8].

Adaptation of the interactive components’ composition (altering the number and
location of the components the user utilizes to interact with the application) does not
apply to traditional interactive applications running on desktops due to, at least, three
main reasons:

1. Usage pattern for interactive desktop applications is different from the one ob-
served in Active Space applications. Desktop users sit in front of the computer and
use the local peripherals to interact with the application. If users move to a differ-
ent computer, they restart the application or start a remote session (e.g. X-
Windows, and Windows Terminal Services); it is not possible to split the applica-
tion among several devices dynamically. On the other hand, Active Space applica-
tions’ users are not bound to a single device; they can move freely around the
space and use any available device; therefore, they expect the application to move
and duplicate functionality to different devices dynamically.

2. From an abstraction or granularity point of view, the desktop computer defines the
execution environment, and therefore, there is no concept or need for splitting the
application across different machines. However, in an Active Space, the Active
Space itself (not the individual devices it contains) defines the execution environ-
ment (different abstraction granularities). Therefore, devices contained in the Ac-

A Middleware-Based Application Framework for Active Space Applications 437

tive Space become execution nodes of a larger computing abstraction. From this
perspective, applications require functionality to alter their composition dynami-
cally to adapt to changes in the Active Space, and alter the application composition
to use the most appropriate execution nodes according to user preferences and con-
text parameters.

3. Most interactive desktop applications are disconnected from external context at-
tributes, and therefore, there is no need to adapt the application composition. The
strong connection with context attributes in Active Spaces requires the application
to adapt to new scenarios dynamically.

As an example of structural adaptation, consider a user reading a confidential
document in an active office display. When the context of the Active Space indicates
that another user is entering, the application moves the document to the user’s per-
sonal PDA to protect confidentiality. This requires attaching a new application com-
ponent (the one on the PDA) and removing an existing one (the one in the display).

2.5 Mobility

Application partitioning and user-centrism require applications to be mobile. There
are at least two different types of mobility: intra-space mobility and inter-space mo-
bility. Intra-space mobility is related to the migration of application components in-
side an Active Space and is the result of application partitioning among different
devices. Inter-space mobility concerns moving applications across different spaces,
and is a consequence of user-centrism (users are mobile by definition).

2.6 Context-Sensitivity

One of the main differences between an Active Space and a traditional distributed
system is the utilization of the physical and digital context associated to the space as a
default computational parameter. Context is one of the most important properties in
ubiquitous computing [9] and therefore applications must be able to access and alter
existing context information. Context may trigger both functional and structural adap-
tation. As an example of functional adaptation, a news broadcasting application may
select different types of news depending on who is in the room, the time of the day, or
the mood of the users. And as an example of structural adaptation, a music application
may use a user's laptop to play the music if there are other people present in the room;
or may use the audio system of the room, the displays (to present the list of songs),
and the room's speech recognition system to control the application when the user is
alone.

2.7 Active Space Independence

Active spaces are characterized by containing a collection of heterogeneous devices.
Furthermore, different Active Spaces have different number of resources. These two
properties - heterogeneity and device cardinality – complicate the development of
Active Space portable applications. Applications cannot make any assumption about

438 Manuel Román and Roy H. Campbell

the number and type of devices they will find in different Active Spaces. Traditional
operating systems successfully address the issue of heterogeneity by providing soft-
ware abstractions to represent the real hardware devices. However resource cardinal-
ity is not normally a concern in traditional operating systems, which can assume cer-
tain hardware configurations. For example, most personal computer operating systems
can safely assume the existence of peripherals such as one monitor, one keyboard, one
mouse, one audio device, one video card, and some storage device. Unfortunately,
this does not apply to Active Spaces. While an active meeting room can have several
devices such as displays, keyboards, and mice, an active car may not have any dis-
play, keyboard, or mouse. However, it may offer additional resources (e.g., speakers,
and microphone) that make it possible to use the application prior to dynamic adapta-
tion of the application.

Active space applications must be able to run in heterogeneous Active Spaces
without requiring developers to customize the applications for each environment.
Users must be able to use the same applications in their active home, active car, and
active office.

3 Application Model

We have implemented an application framework that simplifies the development of
applications for Active Spaces. The application framework models applications as a
collection of distributed components, reuses the application partitioning proposed by
the Model-View-Controller pattern[10], and covers all the aspects presented in Sec-
tion 2. The application framework is implemented on top of a Middleware Operating
System (Gaia OS), defines an application model, implements functionality for appli-
cation mapping, and implements a number of application management protocols. In
this section, we present the application model and describe the application mapping,
and the management protocols in the following sections.

The application model consists of five components: Model, Presentation (generali-
zation of View), Controller, Adapter, and Coordinator. The Model, Presentation,
Controller, and Adapter are the application base-level building blocks and are strictly
related to the application domain functionality. The Coordinator manages the compo-
sition of the four base-level components and implements the application meta-level. It
stores information about the composition of the application components and exports
functionality to access and alter the component composition (e.g., attaching and de-
taching presentations and controllers, and listing current presentations). Figure 2 illus-
trates the application model.

3.1 Model

The Model component implements the logic of the application, stores and synchro-
nizes the application’s state, and provides an interface to access the application func-
tionality. The Model maintains a list of listeners and it is responsible for notifying
them about changes in the application's state to keep them synchronized. There is no
restriction on the implementation of the Model, which can be built as a single compo-
nent or as a collection of distributed components. A Model can be as simple as an

A Middleware-Based Application Framework for Active Space Applications 439

integer with associated methods to increase, decrease and retrieve its value and repre-
senting a counter, or as complicated as a specific data structure with some related
methods representing information about a document concurrently manipulated by a
group of users

3.2 Presentation

The Presentation transforms the application’s state into a perceivable representation,
such as a graphical or audible representation, a temperature or lighting variation, or in
general, any external representation that affects the user environment and can be per-
ceived by any of the human senses. The Presentation generalizes the scope of the
View component of the MVC, which was originally defined as a graphical representa-
tion rendered on a display. An important difference with MVC views is that presenta-
tions are output entities and do not handle user inputs. This behavior is required to
model non-graphical presentations such as a music player, which cannot coordinate
input events. Presentations are implemented as listeners that can be attached to and
detached from the Model dynamically. When a Presentation is attached to a Model,
the application framework invokes the attach method on the Presentation and assigns
the Model’s reference to the Presentation. Presentations use this method (attach) as a
constructor to obtain and present the application data when they are first attached to
the Model. When a Presentation is detached from a Model, the middleware infrastruc-
ture invokes the detach method on the Presentation so the Presentation stops present-
ing the application’s data and releases used resources. All presentations must imple-
ment the notify method, which is invoked by the Model whenever there is a change in
the application’s state. The implementation of the notify method is Presentation de-
pendent; however, the common behavior consists on retrieving the new application
state from the Model (using the Model’s interface) and updating the Presentation’s
data, which affects the output perceived by the users.

1 Coordinator

Model Listener

Presentation Controller

Adapter

1

1

* *

1

*

1

*

* 1

Fig. 2. Application Model UML Diagram

440 Manuel Román and Roy H. Campbell

3.3 Controller

A Controller is a component (i.e., hardware and software) capable of altering the
application's state through the Model’s interface. Examples of hardware controllers
are mice, keyboards, and active badges. Examples of software controllers are GUIs
(e.g., MVC and PAC[11] based) containing widgets that can be associated with user
defined events, and context controllers, which are entities that process different con-
text properties and synthesize specific context events that change the application’s
state. Encapsulating context in controllers has all the benefits described by Salber et.
al. [12], and simplifies the development of applications that can easily react to
changes in the context.

Controllers are implemented as Model listeners and therefore receive notifications
from the Model (notify method) so they can be synchronized with the application
state. Controllers that do not require being synchronized with the Model (e.g. array of
push buttons and mouse) simply ignore the notifications. Similarly to presentations,
controllers implement attach, detach, and notify which are invoked when the Control-
ler is attached to, detached from, and notified by the Model.

3.4 Adapter

This component coordinates the interaction between controllers and the application
Model. It maps method calls generated by controllers into requests to the application
Model dynamically, therefore decoupling controllers from specific models.

Figure 3 illustrates an example of an Adapter translating the events received from
three controllers into method requests for the Model. The Adapter’s mappings can be
set dynamically using the setMapping method.

According to the application model, it is possible to associate more than one
Adapter with the same application. Depending on configurable properties (e.g., type
of Controller, user utilizing the Controller, or context properties such as location)
different adapters can be activated at different times, therefore changing the effect of
controllers on the application.

Mouse Controller

A B

Software Controller
(Two Push Buttons)

 Badge Detector
Context Controller

On LeftMouseButton
On PushButton B
On PushButton A
On Entered (Jon)

Zoom In
Next Picture
Previous Picture
Start Slide Show

Adapter Model

Fig. 3. Adapter Example.

A Middleware-Based Application Framework for Active Space Applications 441

3.5 Coordinator

Active space applications are a collection of distributed components composed of a
Model and a number of presentations, controllers, and adapters. The dynamic nature
of these applications challenges traditional interactive applications in terms of number
and location of application components. In most of the cases, traditional interactive
applications run in a single device and therefore those issues are not a concern. For an
Active Space application, the number and location of presentations and controllers
depends on the number of users, the nature of the space, and the activity taking place
in the Active Space. After an Active Space application is started, it is common to add
and remove presentations and controllers, or move these components to different
devices contained in the space.

The Coordinator encapsulates information about the application components’ com-
position (i.e., application meta-level) and provides an interface to register and unreg-
ister presentations, controllers, and adapters. The Coordinator provides also function-
ality to retrieve run-time information about the composition of the application
components, and allows for fine-grained control over the composition rules. This
functionality does not exist in traditional MVC, where changing the application com-
position is not normally required. For example, a user entering an active office con-
taining several plasma displays may want to move the calendar application Presenta-
tion from his or her PDA to the active office. As a result, the application reconfigures
itself to use all plasma displays to present different views of the calendar simultane-
ously (e.g., monthly, daily, and weekly view), and uses a touch screen, a keyboard,
and speech recognition simultaneously to accept data and commands from the user.

The Coordinator monitors the status of the application components and reacts to
failures according to user defined policies. For example, if a component of the appli-
cation stops running, the Coordinator detects it and automatically unregisters the
component from the application. This is the default policy, and can be overridden by
users.

4 Application Mapping

The proposed application mapping mechanism provides functionality to build applica-
tions that can be used in heterogeneous Active Spaces.

Applications based on the application framework are independent of a particular
Active Space by using generic application descriptions that list the application com-
ponents and their requirements. These descriptions are used to create a specific appli-
cation description that uses resources present in the Active Space, which match the
application requirements listed in the generic description. The application framework
defines two types of application descriptions: the application generic description
(AGD), and the application customized description (ACD).

The AGD (Figure 4, left) is an Active Space-independent application description
that lists the components of an application and their requirements. The AGD uses
name-value pairs to describe the component’s requirements and it is used as a tem-
plate from which concrete application configurations (i.e., ACDs) are generated. The
description contains a list of application components consisting of one Model, one
Coordinator, zero or more presentations, and zero or more controllers. Every compo-

442 Manuel Román and Roy H. Campbell

nent entry includes a component name, an optional field with the parameters required,
a field with the component cardinality (minimum and maximum number of instances
of the component allowed), and a list of requirements for the component, which in-
clude information such as for example, required operating system, and hardware plat-
form. The mapping mechanism uses the requirements to query the Active Space Mid-
dleware Operating System (Gaia in our case, also referred to as meta-OS) to obtain a
list of matching entities. Finally, the Controller can include an optional number of
mappings for the Adapter (if no mappings are defined, the Adapter simply forwards
the requests).

The ACD is an application description that customizes an AGD to the resources of
a specific Active Space. The ACD consists of information about what specific com-
ponents to use, how many instances to create, and where to instantiate the compo-
nents. The Controller component includes the mappings specified in the AGD.

Figure 4 (left) presents the AGD defined for an application called Music Player,
which provides functionality to organize and play a collection of music files using
resources present in the ubiquitous computing environment. The Model, for example,

Model {
ClassName JukeboxModel
Cardinality 1 1
Requirements
 device=ExecutionNode
 and OS=Windows2000
}
Presentation {
 ClassName MusicPlayer
 Cardinality 1 *
 Requirements
 device=ExecutionNode
 and type=AudioOutput
 and OS=Windows2000
}
Controller {
 ClassName ListViewer
 Cardinality 1 *
 Requirements
 device=ExecutionNode
 and Type=TouchScreen
 and OS=Windows2000
 or OS=WindowsCE
 Mappings
 selectedEntryChanged =
 playSong
}
Coordinator {
 ClassName Coordinator
 Cardinality 1 1
 Requirements
 device=ExecutionNode
 and OS=Windows2000
}

Application =
{
 Model =
 {{
 ClassName=”JukeboxModel”,
 Hosts={{ “amr1.as.edu”}},
 }}
 Presentation =
 {{
 ClassName =”MusicPlayer”,
 Hosts={{“amr2.as.edu”}}
 }},
 Controller =
 {{
 Classname =”ListViewer”,
 Hosts={{“plasma1.as.edu”},
 {“pda1.as.edu”},
 },
 AdapterMappings = {
 {“selectedEntryChanged”
 ,”playSong”},
 }
 }},
Coordinator =
 {{
 ClassName =”Coordinator”,
 Hosts={{“amr3.as.edu”}},
 }},
}

Fig. 4. Music Jukebox AGD (left). Music Jukebox ACD customized for an active meeting
room (right).

A Middleware-Based Application Framework for Active Space Applications 443

is implemented by a component named JukeboxModel, has a cardinality of one (a
Music Jukebox application has exactly one Model), and requires an ExecutionNode
device running Windows 2000. Gaia uses the term Execution Node to abstract any
device capable of hosting the execution of Gaia components (e.g., Model, Presenta-
tion, Controller, Adapter, and Coordinator). Figure 4 (right) illustrates an ACD cus-
tomized for a prototype active meting room.

The mapping mechanism receives an AGD and a target Active Space, and gener-
ates and ACD customized for such space, according to a mapping policy. The diver-
sity of resources present in an Active Space allow for multiple application configura-
tions. This behavior contrasts with applications running in desktop computers where
applications have a fixed number of resources. For example, the music player applica-
tion presented in Figure 4 could be customized to the active meeting room with one to
as many song selectors as compatible execution nodes present in the space, and as
many music player presentations as devices with audio output capabilities present in
the space. If we also count the personal devices introduced by the users, the possible
configurations are even larger.

The mapping mechanism offers two modes of operation: manual and automatic. In
the manual mode of operation, users interact with a GUI that parses an application
AGD and allows them to drive the mapping process by choosing the devices where
the different application components will be instantiated. The automatic mode uses a
service called ACDGenerator, which does not require user intervention and uses poli-
cies to drive the ACD generation process.

Based on our experience using a prototype Active Space, ACDs are not generated
each time an application is started. Instead, ACDs are generated once (when no ACD
is available for a specific application and a specific Active Space) and reused later on,
as long as the configuration of the Active Space does not change. For example, we
often use a Presentation Manager application to present slide-shows. We have a num-
ber of default ACDs for this application that allows us to instantiate the application
using the displays on the left side of the room, right side of the room, and all available
displays (each one using an appropriate touch-screen to instantiate the Controller,
located in the appropriate side of the room). When a user selects an application, he or
she is presented with a list of default configurations. However, the user is also al-
lowed to create his or her own ACD (which can be saved and reused later).

5 Application Management

This section describes the application management functionality provided by the
application framework, including instantiation, adaptation, suspension and resump-
tion, mobility, reliability, and termination. Because of the dynamic nature of Active
Spaces, there is no single algorithm for the different management tasks that fits all
possible Active Space scenarios. We use policies (e.g., scripts, and services) that
leverage the interfaces exported by the application framework services to perform
each of the management tasks. Policies allow users and developers to customize each
of the application management tasks according to their preferences, the nature of the
Active Space, or the specific type of application. The use of policies allows also creat-
ing libraries with groups of policies customized to specific Active Spaces and tasks
(e.g. active home, active office, and classroom assistant).

444 Manuel Román and Roy H. Campbell

5.1 Application Instantiation

Active space applications are a collection of distributed components that interoperate
using inter-process communication mechanisms such as RPC. A component is the
smallest distributable execution unit in the system; it can have several formats, includ-
ing an executable, a dynamic library, and a java class. Unlike traditional applications,
Active Space application components do not necessarily share the same address
space, or even the same machine. Therefore, they require an instantiation mechanism
capable of starting application components in any device present in the Active Space
and responsible for assembling the components together.

The application ACD contains information about the components required for the
application, their names, initial parameters, and their target execution nodes. The
application framework leverages the functionality provided by Gaia OS to instantiate
the application components and to assemble them together. There are two default
instantiation policies: strict and best-effort. Due to the distributed nature of Active
Space applications, the instantiation mechanism must take into account the possibility
of components crashing during the instantiation, and therefore must define what ac-
tions to take in case of failures. The strict policy guarantees that the application will
be instantiated only if all components of the application are successfully created and
connected. The best-effort policy guarantees that the application will be started if the
Model, Coordinator, and at least one Presentation and Controller are successfully
created and connected. This policy is useful in situations where the application has
duplicated presentations and controllers, and therefore, if some of the presentations or
controllers crash it does not affect the usability of the application.

5.2 Application Termination

Terminating an application requires removing all application components from all
machines. The application Coordinator’s interface provides a method that automati-
cally contacts all application components and terminates them. The Coordinator uses
the meta-level information that it stores to locate the appropriate components.

Although the default Coordinator implementation terminates all components, an al-
ternative implementation could disconnect the interactive components from the appli-
cation (presentations and controllers) and terminate the Model and the Coordinator.
This approach keeps the interactive components running (although disconnected from
any application) so they can be re-used by another compatible application.

5.3 Application Suspension and Resumption

The Model and the Coordinator are the only two components that maintain state. The
Model stores state related to the functional aspect of the application (application base-
level) while the Coordinator stores information about the application composition
(application meta-level). Presentations and controllers are both stateless, and obtain
the state from the Model.

The Coordinator provides two methods to save the state of the application. The
saveState method provides support to save the state of the application related to the
application base-level. That is, the state relevant to the application functionality (e.g.

A Middleware-Based Application Framework for Active Space Applications 445

current song being played, and volume). The default Coordinator implementation
forwards the request to the Model of the application, which is responsible for saving
the state in some appropriate format. The method receives a Gaia Context File System
path[13], where it can save the data. This data can be accessed remotely from differ-
ent Active Spaces. Saving the application state persistently is application dependent.
The second method related to state saving is called generateCurrentACD, and it pro-
vides functionality to generate an ACD that matches the current application layout,
including the number of components, their location, and their names. The returned
ACD can be used to re-instantiate the application, creating the same number of com-
ponents, and in the same locations. The ACD is only useful if the application is re-
sumed in the same space where it was suspended, and the space still has the resources
the application used (mobile devices might not be present anymore). Otherwise, the
ACD can be used to learn about the number of components the application had before
it was suspended, and negotiate with the new space to find appropriate new resources.
This is the task of a specific instantiation policy. The application framework provides
a default policy to suspend and resume an application in the same Active Space.

5.4 Application Reliability

When an application is composed of a collection of distributed components running
on multiple machines simultaneously, reliability becomes a key factor. The applica-
tion must be able to monitor the status of the different components, detect faulty com-
ponents, and react accordingly. Furthermore, due to the diversity of applications,
reliability must be configurable at different granularities such as per-application in-
stance basis or per-application type basis.

Current implementation of the application framework encapsulates the reliability
policies in the Coordinator. The default policy detects when an application component
stops functioning and automatically detaches it from the application using the Coordi-
nator’s interface. However, this policy can be replaced with more sophisticated strate-
gies such as for example, automatically restarting and reassembling the crashing
component.

5.5 Application Mobility

The application framework provides support for both inter and intra-space mobility.
Intra-space mobility is implemented as a library that interacts with the Middleware
Operating System to create and terminate components, and with the Coordinator to
attach and detach new and terminated components. For example, moving a Presenta-
tion requires creating a new instance of the Presentation, attaching it to the application
via the Coordinator, and terminating the original instance. The only difference with
duplicating is that the latter does not terminate the original instance.

Inter-space mobility is implemented by a service (Mobility Service) that reuses the
application management suspension and resumption methods. The service interacts
with the Middleware Operating System to detect people leaving and entering the
space. When a user leaves, the service obtains a list of associated applications and
suspends them. Then, when the user enters an Active Space, the service resumes the
suspended applications. More details about mobility can be found at [14].

446 Manuel Román and Roy H. Campbell

6 Addressing the Active Space Application Development
Key Issues

This section details how the application framework presented in this paper addresses
the issues listed in Section 2. Resource-Awareness (first issue) is addressed by the
Gaia Middleware Operating System; the application development middleware ser-
vices simply leverage the existing functionality (Gaia OS Space Repository) to find
resources present in the current environment and relevant to the application. Multi-
Device utilization (second issue) is supported by the application model defined by the
middleware. The functional decomposition of applications into a Model, a number of
presentations, controllers, adapters, and a Coordinator to manage all previous compo-
nents, simplifies the mapping of different application aspects to different (heterogene-
ous) devices. Furthermore, implementing each functional unit as a distributed compo-
nent allows instantiating them in different devices. User-Centrism (third issue) is
supported by the intra- and inter-Active Space application mobility functionality pro-
vided by the Application Management. Users can move and duplicate components
across the Active Space and can move to different Active Spaces and have their ap-
plications following them. Run-Time Adaptation (fourth issue) allows controlling the
composition of the application dynamically. This functionality is implemented by the
application Coordinator (functionality to attach and detach components dynamically)
and it is supported by the distributed nature of the Application Model. Application
mobility (fifth issue) is directly supported by the Application Management Function-
ality via the inter- and intra-Active Space mobility protocols. Context-Sensitivity
(sixth issue) is supported by the Application Model by means of context Controller.
These are controllers that receive context information and trigger changes in the ap-
plication accordingly. The Controller is the mechanism to introduce context in the
application, but it does not provide functionality to synthesize context information
from sensors. Instead, it relies on existing services, such as the Gaia OS Context Ser-
vice. Finally, Active Space Independence is supported by the Application Mapping
mechanism, which supports the generation of Active Space customized ACDs .These
ACDs allow portability of applications across heterogeneous Active Spaces.

The application framework provided by Gaia meta-OS covers the challenges re-
lated to Active Spaces and simplify the development of portable applications. Appli-
cation developers focus on the functionality related to the application (e.g., playing
music or collaboratively editing a document) and leverage the functionality provided
by the application framework to supports tasks that are common to most Active Space
applications (e.g., mobility, multi-device utilization, and context-awareness).

7 Music Player Example

We present in this section the Music Player Application, an application based on our
application framework that provides functionality for playing music files taking bene-
fit of the resources contained in the Active Space where the application is instantiated.
The application base-level provides functionality for managing a collection of music
files distributed among different devices located in different Active Spaces, allows
selecting, controlling, and playing a specific song in the user’s current location, and

A Middleware-Based Application Framework for Active Space Applications 447

exports information about the play list contents, as well as the currently selected song.
The application provides also functionality to register, unregister, duplicate, and move
presentations and controllers dynamically, adapts to context changes, and uses mobil-
ity policies to follow the user to different Active Spaces.

7.1 Implementation Details

In this example we focus on our active meeting room (Figure 1), managed by Gaia
OS. Figure 4 illustrates the AGD for the music application, which consists of a
Model, a Presentation (player), a Controller, and a Coordinator. The Coordinator
automatically instantiates a default Adapter that maps the events from the Controller
(e.g. entry selected) into method requests to the Model (e.g. play). The MusicPlayer
Presentation interacts with a commercial-off-the-shelf application to play the audio.
The response time of the application is within an acceptable range from an interactive
point of view. For example, selecting a song requires less than a second to execute
and manipulating the meta-level (duplicating, moving, attaching and detaching pres-
entations and input sensors) takes from 3-6 seconds depending on the request.

7.2 Instantiating and Using the Application

We describe in this section the Music Application’s instantiation process. The user
enters the active meeting room, registers his or her PDA, and selects a strict instantia-
tion policy to create the application according to the ACD illustrated on the right side
of Figure 4. The diagram depicted in Figure 5 illustrates the resulting application
partitioning.

When the user selects a song using the PDA’s Controller, this sends an event (se-
lectedEntryChanged) to the Adapter with the name of the song. The Adapter sends a
request to the Model (playSong), which sends an update to the music player Presenta-
tion, and to the two controllers (List Viewers). The player gets the music data from
the Model and starts playing, and the list viewers get the name of the currently se-
lected song and highlight the name in their list.

Plasma Display 1 pda1

Play List 2
(Controller)

Music
Player
(Presenta-

Play List 1
(Controller)

amr2.as.edu

App.
Model

Adapter

amr1.as.edu

update

update

selectSong
Coordinator

App. Model
 Adapter
 Play List 1
 Play List 2
 MusicPlayer

amr3.as.edu

update

select
song

Fig. 5. Music Application Composition.

448 Manuel Román and Roy H. Campbell

8 Performance Evaluation

The main goal of the application framework is to provide support for the construction
of a new type of applications we refer to as Active Space applications. In order to
evaluate the framework, we have focused on whether or not the functionality provided
is sufficient, rather than performance. Both Gaia OS and the application framework
are built on top of Orbacus, which is an efficient and fast CORBA implementation,
and CORBA UIC[15], a customized and efficient minimalist CORBA ORB. There-
fore, the response time of the system is well within an acceptable interactive response
time and comparable to interactive desktop applications.

In order to evaluate the application framework, we have built fourteen applications
that have allowed us to validate the framework. The fourteen applications show that
the application framework is generic enough to cover a large range of interactive
Active Space applications.

We present in this section a performance evaluation for a slideshow application we
use regularly in our Active Space (Presentation Manager). The application consists of
a Model that keeps information about the state of the slideshow (e.g., slideshow name,
slideshow file’s path, and current slide), a Presentation that uses Microsoft Power
Point to render the slides (via the COM interface), and a VCR Controller with func-
tionality to start and stop the slideshow and navigate the slides. The application al-
lows presenting synchronized slides in multiple displays simultaneously, and can also
have multiple VCR controllers attached simultaneously. Furthermore, it provides
functionality for intra- and inter-space mobility (default application framework func-
tionality). We present next, a performance evaluation for application instantiation,
moving a Presentation (slide viewer) from one display to another (intra-space mobil-
ity), navigating slides, and terminating the application. All the tests were performed in
our prototype Active Space, which has a 1Gb Ethernet network, 802.11b, 15 Pentium
IV at 1.2 GHz with 256MB of RAM, and 4 61” Plasma displays. All the times pre-
sented are the average result of ten experiments.

Figure 6 illustrates the average time required to instantiate the Presentation Man-
ager application, which consists of a Model, a Coordinator, a number of presentations
(one, two, three, and four, each in a different display), and one or zero controllers.
Each configuration corresponds to a different ACD. The time was calculated from the
time we start the application until the first slide is displayed by all presentations. The
average time increases linearly as the number of presentations increases. The time
required to start Microsoft PowerPoint in one machine by double-clicking the icon
and starting the slideshow is 0.85 seconds (no Gaia OS or application framework).
Starting the Presentation Manager with one Presentation and one VCR Controller
takes 2.18 seconds, while the same application without the VCR Controller requires
1.13s. These times include creating the Model, the Coordinator, a Presentation, and
one or zero controllers, and assembling them together using the Coordinator interface.
All components except the VCR Controller are implemented as DLLs and creating
them requires loading them in a pre-created process (Component Container). The
VCR Controller, on the other hand, is an executable. Creating a new executable takes
longer than loading a DLL (at least in Windows), which explains the 1.05 additional
seconds required to instantiate the application with the Controller. Based on the pre-
vious results, the impact of the application framework is negligible. According to
Figure 6, there is a penalty of approximately 1s for each additional Presentation. This

A Middleware-Based Application Framework for Active Space Applications 449

number is the time required to create the PowerPoint COM object plus the time re-
quired by this object to render the first slide (the Presentation creates the COM object
and sends requests to display slides). It is possible to improve the instantiation time.
Our current instantiation policy instantiates all presentations sequentially, and there-
fore, it waits until a Presentation is properly created before creating a new one. It is
possible to implement an optimistic instantiation policy that uses asynchronous
method invocations (it does not wait for a response) and simply checks at the end
whether or not all components were created successfully (interacting with the Gaia
OS Space Repository). In this case, the time would be significantly smaller, regardless
the number of presentations because all presentations would be instantiated in paral-
lel.

Fig. 6. Average time to instantiate the Presentation Manager application.

Next experiment calculated the time required to move a Presentation (slide) from
one display to another. This time included creating a Presentation in the execution
node associated to the target display, attaching it to the Coordinator, unregistering and
terminating the original Presentation, and finally the time required by the new Presen-
tation to display the current slide (the new Presentation gets the current state by inter-
acting with the Model). The average time based on ten experiments was 2 seconds.

Based on our experience with all the applications, the interactive application re-
sponse time is similar to a desktop application. For example, in the case of the Presen-
tation Manager, the time it takes to move to the next or previous slide since we press a
button in a VCR Controller (running on a wireless connected PDA or on a wired con-
nected touch screen) is the same as in a standard Power Point application running on a
PC (e.g., pressing the space bar), which is on average below a second. This time in-
cludes sending an RPC request over the network from the VCR Controller to the
Adapter, the Adapter mapping the request to the appropriate method request for the
Model, sending an RPC to the Model, the Model updating the current slide number
and sending a notification (asynchronous RPC) to the presentations (the notification
includes the slide number), and the presentations parsing the notification and render-
ing the appropriate slide via the PowerPoint COM object. Presentations cache the

450 Manuel Román and Roy H. Campbell

slideshow file locally at the beginning of the slideshow so they only ask for the file
once (they obtain the file from the Gaia Context File System). The time is bounded by
the Power Point rendering engine, not by the mechanisms implemented by the appli-
cation framework

Fig. 7. Average time to terminate the Presentation Manager.

Our next performance evaluation calculates the time required for terminating the
application. The Coordinator exports a method that implements this functionality. The
method interacts with the Model, Presentation(s), Controller(s), and Adapter(s), noti-
fies them that they are being unregistered from the application (the components can
then implement cleaning-up procedures including resource release), and uses the Gaia
Component Management Core functionality to terminate all components, including
itself. In the Presentation Manager application, the only components that implement
clean-up functionality are the Presentations. When they receive the notification, they
stop rendering the slide and terminate the execution of the PowerPoint COM object.
For our experiment, we calculated the execution time of the Coordinator’s termi-
nateApplication method. We used the same configurations as in the instantiation ex-
periments, that is, one, two, three, and four presentations, once with a VCR Control-
ler, and the second time without the VCR Controller. Figure 7 illustrates the
termination times. In this case, the average time for terminating an application with or
without a VCRController is roughly the same (the time required by Windows to ter-
minate the VCR Controller executable is negligible).

Finally, suspending and resuming an application is similar to terminating and in-
stantiating an application respectively, with additional required time to save the state
(suspend) and restore the state (resumption). We have performed some experiments
suspending and resuming Presentation Manager in the same Active Space (we reuse
the same ACD). The time to save the state stored by the model and the coordinator is
on average 30ms (using Gaia’s distributed file system), while the time to restore the
state took, on average, 50ms. Therefore, the time required to suspend and resume an
application is bounded by the termination and instantiation times.

Based on the performance evaluation and on our experience with the rest of Gaia
applications, the Application Framework does not introduce any overhead on the
overall application response time, compared to most traditional desktop applications.

A Middleware-Based Application Framework for Active Space Applications 451

9 Related Work

The Pebbles [2] project is investigating partitioning user interfaces among a collection
of devices. Pebbles is mostly concerned with issues related to GUIs, and the proposed
infrastructure does not provide functionality for dynamically altering the partitioning
layout. Our application framework focuses on the application composition, manage-
ment, adaptability and configurability, and provides reflective functionality that al-
lows altering the application structure at run-time.

BEACH [16] is a component-based software infrastructure that provides support
for constructing collaborative applications for active meeting rooms. BEACH applica-
tions are similar to the applications we propose in that they contemplate one user
exploiting multiple devices at the same time, dynamic reconfigurations, integration of
the physical space, interoperation among all resources contained in the space, and
they rely on a software infrastructure to access resources contained in the space.
However, the main differences between BEACH and our approach are that BEACH
concentrates on collaborative applications while we consider both collaborative and
single user applications, BEACH is customized for meeting room-like environments
while our framework can be used in different scenarios.

Graspable Interfaces [17] presents an evolutionary model for GUIs where physical
objects are used to interact with applications. This approach distinguishes time-
multiplexed input devices from space-multiplexed input devices. Our framework
combines both concepts and defines the time-space-multiplexed model.

The PIMA [18] and I-Crafter [19] projects propose a model for building platform
independent applications. Developers define an abstract application that is automati-
cally customized at run-time to particular devices. PIMA and I-Crafter generate appli-
cations for a single device, while we consider applications partitioned across devices.
However, we can leverage the functionality provided by both approaches to dynami-
cally generate application presentations customized to specific devices.

The Presentation-Abstraction-Controller[20] (PAC) is a framework that specifies
interactive application components and their interrelation rules. The Presentation
defines the concrete syntax of the application (i.e., input and output behavior of appli-
cation), the Abstraction corresponds to the semantics of the application (i.e., functions
that the application is able to perform), and the Control maintains the consistency
between abstractions and presentations. PAC combines the input and output mecha-
nisms in the Presentation component, while MVC requires two components, namely
View and Controller. In PAC, Presentations do not need to know the details about the
Abstraction. This functionality is encapsulated in the Control, which keeps Presenta-
tions and Abstractions synchronized. The advantage is that in PAC, all control func-
tionality is encapsulated in the Control component, while in MVC, the functionality is
distributed across View-Controller pairs. The Abstraction-Link-View[21] (ALV) is
also a framework to build interactive applications that are used by multiple users
simultaneously. Its goal is to maximize the separation between the user interface and
the application logic. The main rationale behind ALV is to foster human-to-human
communication and share common data during the interaction to facilitate the interac-
tion. ALV is based on constraints, which allows registering a function with a specific
variable. Shall the variable change, the function is automatically invoked. Constraints
allow for fine grained control over the synchronization rules, which contrasts with
MVC, where the View is responsible for determining what changed in the Model. The

452 Manuel Román and Roy H. Campbell

Abstraction implements the semantics of the application, the View presents the in-
formation managed by the Abstraction to the user and coordinates user input, and the
Link stores all constraints and implements the functionality for synchronizing Views
and the Abstraction. Every application has at least one View per user. The Link al-
lows the View and the Abstraction to ignore each other, which simplifies application
development and encourages component reuse. The Active Space application frame-
work described in this paper, although reusing the original concepts from MVC, uses
techniques present in PAC and ALV.

Projects such as Stanford’s iROS [22] and CMU’s Aura [23] provide a middleware
infrastructure to manage ubiquitous computing environments. However, none of them
provides an explicit middleware infrastructure customized to support application
development.

10 Conclusions and Future Work

This paper presents our application framework for designing and building user-
centric, resource-aware, context-sensitive, multi-device, mobile applications. These
applications are bound to users instead of devices, can take benefit of resources pre-
sent in the users' environment, can react to changes in the environment, and can be
partitioned among different devices.

The application framework defines an application model that provides a compo-
nent (Coordinator) to access and modify the composition of the application dynami-
cally, implements a mechanism to define applications abstractly and manually or
automatically map them to arbitrary environments, uses flexible policies to separate
the basic application construction and modification functionality from particular
strategies.

We have successfully implemented the functionality described for Gaia OS and the
application framework, and have fourteen applications that prove that the framework
simplifies the design and implementation process. Furthermore, the flexibility and
dynamism of such applications has simplified the interaction with Active Spaces such
as our prototype active meeting room. The framework allows integrating existing
components including Microsoft COM objects (e.g., Power Point) as presentations,
controllers, and models, and extends the functionality of these components by allow-
ing users to move the component across different devices, and even extend them for
collaborative environments. Integrating existing components is done by having a
Presentation, Controller, or Model wrapping the existing components and delegating
the application framework-related requests to the wrapped component.

Although we have not fully reached the proposed customizable habitat vision yet,
we believe that the application framework presented in this paper is a valid solution to
program existing device rich environments.

Acknowledgements

This research is supported by the National Science Foundation grant NSF 98-70736,
NSF 9970139, and NSF infrastructure grant NSF EIA 99-72884

A Middleware-Based Application Framework for Active Space Applications 453

References

1. Roman M, Hess CK, Cerqueira R, Ranganat A, Campbell RH, Nahrstedt K: Gaia: A Mid-
dleware Infrastructure to Enable Active Spaces. IEEE Pervasive 1:74-82, 2002

2. Myers BA: Using Hand-Held Devices and PCs Together, Communications of the ACM,
vol 44, 2001, pp 34-41

3. Abowd GD, Mynatt ED: Charting Past, Present, and Future Research in Ubiquitous Com-
puting. ACM Transactions on Computer-Human Interaction 7:29-58, 2000

4. Costa FM, Blair GS, Coulson G: Experiments with an architecture for reflective middle-
ware. IOS Press 7:313-325, 2000

5. Kon F, Singhai A, Campbell RH, Carvalho D, Moore R, Ballesteros FJ: 2K: A Reflective,
Component-Based Operating System for Rapidly Changing Environments. Paper presented
at the ECOOP’98 Workshop on Reflective Object-Oriented Programming and Systems,
Brussels, Belgium, July 1998 1998

6. Kiczales G, Rivires Jd, Bobrow DG: The Art of the Metaobject Protocol. MIT Press, 1991
7. Kiczales G: Beyond the Black Box: Open Implementation. IEEE Software 13:137-142,

1996
8. Blair G, Coulson G, Robin P, Papathomas M: An Architecture For Next Generation Mid-

dleware. Paper presented at the IFIP International Conference on Distributed Systems, Plat-
forms, and Open Distributed Processing, Lake District, England, September 1998

9. Dey AK: Providing Architectural Support for Building Context-Aware Applications, PhD
Thesis in Computer Science. Atlanta, Georgia Institute of Technology, 2000, pp 188

10. Krasner GE, Pope ST: A Description of the Model-View-Controller User Interface Para-
digm in the Smalltalk-80 System. Journal of Object Oriented Programming 1:26-49, 1988

11. Coutaz J: PAC: An object-oriented model for dialog design. Paper presented at the
INTERACT’87: The IFIP Conference on Human Computer Interaction, Stuttgart, Germany,
1987

12. Salber D, Dey AK, Abowd GD: The Context Toolkit: Aiding the Development of Context-
Enabled Applications. Paper presented at the CHI’99, Pittsburgh, May 1999

13. Hess C, Campbell RH: A Context-Aware Data Management System for Ubiquitous Com-
puting Applications. Paper presented at the International Conference in Distributed Com-
puting Systems (ICDCS 2003), Providence, Rhode Island, May 19-22, 2003 2003

14. Roman M, Ho H, Campbell RH: Application Mobility in Active Spaces. Paper presented at
the 1st International Conference on Mobile and Ubiquitous Multimedia, Oulu, Finland,
2002

15. Roman M, Kon F, Campbell RH: Reflective Middleware: From Your Desktop to Your
Hand. IEEE Distributed Systems Online. Special Issue on Reflective Middleware, 2001

16. Tandler P: Software Infrastructure for Ubiquitous Computing Environments: Supporting
Synchronous Collaboration with Heterogeneous Devices. Paper presented at the Ubicomp
2001: Ubiquitous Computing, Atlanta, Georgia, September 30 - October 2 2001

17. Fitzmaurice GW: Graspable User Interfaces, PhD Thesis in Computer Science. Toronto,
University of Toronto, 1996

18. Banavar G, Beck J, Gluzberg E, Munson J, Sussman JB, Zukowski D: An Application
Model for Pervasive Computing. Paper presented at the 6th ACM MOBICOM, Boston,
MA, 2000

19. Ponekanti SR, Lee B, Fox A, Hanrahan P, Winograd T: ICrafter: A Service Framework for
Ubiquitous Computing Environments. Paper presented at the Ubicomp 2001: Ubiquitous
Computing, Atlanta, Georgia, September 30 - October 2 2001

20. Coutaz J: PAC, an Object Oriented Model for Dialog Design. Paper presented at the Hu-
man Computer Interaction. INTERACT 1987 1987

454 Manuel Román and Roy H. Campbell

21. Hill RD: The Abstraction-Link-View Paradigm: Using Constraints to Connect User Inter-
face to Applications. Paper presented at the CHI May 3-7 1992

22. Johanson B, Fox A, Winograd T: Experiences with Ubiquitous Computing Rooms. IEEE
Pervasive Computing Magazine 1:67-74, 2002

23. Sousa JP, Garlan D: Aura: an Architectural Framework for User Mobility in Ubiquitous
Computing Environments. Paper presented at the IEEE/IFIP Conference on Software Ar-
chitecture, Montreal, August 25-31 2002

	1 Introduction
	2 Active Space Applications’ Key Issues
	2.1 Resource-Awareness
	2.2 Multi-device
	2.3 User-Centrism
	2.4 Run-Time Adaptation
	2.5 Mobility
	2.6 Context-Sensitivity
	2.7 Active Space Independence

	3 Application Model
	3.1 Model
	3.2 Presentation
	3.3 Controller
	3.4 Adapter
	3.5 Coordinator

	4 Application Mapping
	5 Application Management
	5.1 Application Instantiation
	5.2 Application Termination
	5.3 Application Suspension and Resumption
	5.4 Application Reliability
	5.5 Application Mobility

	6 Addressing the Active Space Application Development Key Issues
	7 Music Player Example
	7.1 Implementation Details
	7.2 Instantiating and Using the Application

	8 Performance Evaluation
	9 Related Work
	10 Conclusions and Future Work
	References

