
M. Endler and D. Schmidt (Eds.): Middleware 2003, LNCS 2672, pp. 474–492, 2003.
© IFIP International Federation for Information Processing 2003

A Flexible Middleware System
for Wireless Sensor Networks*

Flávia Coimbra Delicato, Paulo F. Pires, Luci Pirmez,
and Luiz Fernando Rust da Costa Carmo

Núcleo de Computação Eletrônica – NCE & Computer Science Department – DCC
Federal University of Rio de Janeiro

P.O Box 2324, Rio de Janeiro, RJ, 20001-970, Brazil
{fdelicato,paulopires,luci,rust}@nce.ufrj.br

Abstract. The current wireless sensor networks (WSN) are assumed to be de-
signed for specific applications, having data communication protocols strongly
coupled to applications. The future WSNs are envisioned as comprising of het-
erogeneous devices assisting to a large range of applications. To achieve this
goal, a flexible middleware layer is needed, separating application specific fea-
tures from the data communication protocol, while allowing applications to in-
fluence the WSN behavior for energy efficiency. We propose a service-based
middleware system for WSNs. In our proposal, sensor nodes are service provid-
ers and applications are clients of such services. Our main goal is to enable an
interoperability layer among applications and sensor networks, among different
sensors in a WSN and eventually among different WSN spread all over the
world.

1 Introduction

Recent advances in micro-electro-mechanical systems (MEMS) technology, wireless
communications, and digital electronics have enabled the development of low-cost,
low-power, multifunctional sensor nodes that are small in size and communicate over
short distances. These tiny sensor nodes, which consist of sensing, data processing,
and communicating components, leverage the idea of sensor networks based on col-
laborative effort of a large number of nodes [3].

A wireless sensor network (WSN) is composed of a large number of such sensor
nodes, which are densely deployed either inside the monitored phenomenon or very
close to it and are interconnected by a wireless network. Sensor networks can play the
role of a highly parallel, accurate and reliable data acquisition system.

Typically, sensors are devices with limited energy and processing capabilities, de-
ployed in an ad-hoc fashion and communicating through low bandwidth wireless
links. Sensor nodes have to operate unattended, since it is unlikely to service a large
number of nodes in remote, possibly inaccessible locations. Therefore, energy saving
is a crucial requirement in such an environment.

Examples of sensor networks include military networks for intruder detection,
networks for environment monitoring, parking lot networks, surveillance networks
and so on.

* This work is partially supported by the Brazilian funding agency CAPES

A Flexible Middleware System for Wireless Sensor Networks 475

Sensor tasks usually have high-level descriptions, such as “report the detection of
any 10 tons four-legged animal in region X”. However, individual sensor nodes typi-
cally provide very simple and low level functionalities. Therefore, to meet a complex
sensing task, sensor nodes must coordinate among themselves and the individually
collected data must be aggregated to provide more accurate and significant results.
The coordination among sensor nodes must take into account their heterogeneity and
their individual features such as location, sensor type and residual energy.

Sensor data are transmitted from multiple acquisition sources toward one or more
processing points, which may be connected to external networks. Since sensors moni-
tor a common phenomenon, it is likely to appear significant redundancy among data
generated from different sensors. Such a redundancy can be exploited to save trans-
mission energy, through filtering and data aggregation procedures in-network. Also
to save energy, the short-range hop-by-hop communication is preferred over the direct
long-range communication to the final destination. Therefore, to achieve energy effi-
ciency, applications should be able to dynamically change the network behavior, for
example, influencing the way sensor data are routing throughout the network.

Current works [6,12,13,14] consider sensor networks as being designed for specific
applications, with data communication protocols strongly coupled to the application.
In fact, the network requirements and organization, as well as the way data should be
routed, change according to the application. In spite of the application specific behav-
ior of the current sensor networks, many authors [17] envision the future sensor net-
works as being composed of heterogeneous sensor devices and assisting to a large
range of applications for different groups of users. To achieve this goal, a middleware
service is needed to provide a layer of abstraction that separates application specific
requirements from underlying data dissemination protocols.

A middleware for WSN should support the implementation and basic operation of
a sensor network, such as described in [23]. This is a non-trivial task, since WSNs
have some unique features, such as the resource constraint of nodes (energy, storage
and processing) and the high dynamic and fault prone characteristics of the WSN
environment. Furthermore, sensor nodes in the same network can be heterogeneous
regarding their processing and storage capabilities. To deal with the intrinsic charac-
teristics of sensor networks, some software design principles for WSN have been
proposed in [18] and have been used by most of the WSN specific protocols. These
principles are the adoption of localized algorithms, data-centric communication and
the utilization of application-specific knowledge. A WSN middleware must take into
account such design principles.

We propose a distributed middleware system for sensor networks sitting above the
data dissemination protocol. Our approach is motivated by the fact that despite of the
advantages of the middleware technology, current works on WSN do not consider
such a technology in the design of WSNs. The proposed system addresses the specific
requirements of WSN and it is based on the concept of services. Services are defined
as the data provided by the sensor nodes and the applications (for instance, a filtering
program) to be executed on such data. Clients access the sensor network submitting
queries to those services.

Services are published and accessed through an XML-based language (Extensible
Markup Language [27]) named WSDL language (Web Services Description Lan-
guage) [25]. WSDL is used for describing services available on the Web, named Web
services, in a standardized way. One important point is that a Web Service, despite of

476 Flávia Coimbra Delicato et al.

its name, needs not necessarily exist on the World Wide Web. A Web Service can live
anywhere on the network (Inter- or intranet).

By adopting the Web Services paradigm, we propose an interoperability layer for
sensor networks systems that is generic and flexible, providing the basic functional-
ities required for any WSN. Such a middleware layer is composed of the SOAP pro-
tocol [29] and interfaces provided by WSDL documents. Using specific data dissemi-
nation protocols for sensor networks, such as direct diffusion [12] and LEACH [10],
among others, and the service-based middleware layer, we intend to offer a flexible
and powerful way of manipulating, extracting and exchanging data from sensor net-
works. Applications access the sensor network and modify the underlying data dis-
semination behavior through a common and application independent interface pro-
vided by the middleware layer.

The middleware interface provides a mechanism through which application spe-
cific code (such as programs to data filtering and data fusion) can be injected and
triggered inside the network, allowing energy efficiency in data dissemination, thus
increasing the WSN performance and time life. The middleware also enables the
generation and communication of high level tasks, as well as the coordination of such
tasks among nodes, even if the nodes have heterogeneous features. In order to suit to
the WSN resource constraint and fault prone, the proposed middleware is designed to
be robust and fault tolerant, demanding little processing and storage requirements, and
keeping the messages exchanged as short as possible.

Our approach enables the construction of generic sensor networks capable of meet-
ing the requirements of a large range of independently designed applications. Fur-
thermore, the use of standard protocols in the middleware layer provides the neces-
sary mechanisms to enable the interoperability among different networks.

The present work describes the main features and the components of the proposed
middleware service. The paper is organized as follows. Section 2 covers the back-
ground concepts. Section 3 presents the components of the proposed middleware
system. Next, Section 4 details the system operation and Section 5 presents the related
work. Section 6 discusses system features according to the specific requirements of
sensor networks. Finally, Section 7 outlines the conclusions and future works.

2 Background

This section presents some background concepts needed for the comprehension of the
remaining of the paper. The concepts outlined encompass WSN, middleware systems
(generic and specific for WSN) and Web services technology.

2.1 Wireless Sensor Networks (WSN)

Most of the wireless sensor networks work as a reliable data capture network. Data
are collected in the distributed sensors and relayed to a small number of exit points,
called sinks, for further processing.

The dissemination of information in a WSN is done by nodes performing meas-
urements and relaying data through neighboring nodes to reach some sink in the net-
work. Data sent by different nodes can be aggregated in order to reduce redundancy

A Flexible Middleware System for Wireless Sensor Networks 477

and minimize the traffic and thus the energy consumption. To enable data aggregation
in network in an efficient way, application-specific code, such as data caching and
collaborative signal processing should occurs as close as possible to where data is
collected. Such a processing depends on attribute-identified data to trigger applica-
tion-specific code and hop-by-hop processing of data [9].

WSN can be classified in proactive and reactive networks, according to the class of
the target application. In proactive WSNs, nodes periodically (in a pre-defined inter-
val) sense the environment and transmit data of interest. In reactive WSNs, nodes
react immediately to sudden and drastic changes in the value of a sensed attribute.
The later is well suited for time critical applications.

Once the type of network is defined, protocols that efficiently route data from
nodes to users have to be designed. Several WSN specific protocols have been pro-
posed in the last few years [6,9,10,12]. Some protocols are sender-initiated [14] while
others are receiver-initiated [12]. Some protocols are based on a flat network topology
[12, 14] while others are based on a hierarchical topology [6,10]. In the latter case,
protocols adopt a cluster-based approach and make use of some algorithm for cluster
formation [24] requiring the coordination among nodes in a cluster.

For large-scale networks, grouping nodes in clusters can be beneficial for a number
of reasons [24]. From a routing perspective, clustering allows network protocols to
operate in a hierarchical fashion, breaking transmissions into different levels. Such an
approach is highly fault-tolerant, providing better isolation and recovery of network
problems. Clustering can also be beneficial for data collection algorithms. Some ap-
plications do not require the data collection from all nodes during all time. Cluster
members can collaborate about recent data measurements and determine how much
information should be transmitted to the user application. By averaging data values
collected within the cluster, the algorithm can trade data resolution for transmission
power [24]. Finally, clustering can help dealing with non-ideal distribution of sensor
networks. In areas where there are a redundant number of sensors, a clustering algo-
rithm can be used to select which nodes better represent data samples for the region
and which ones can be put in a power-save mode, thus saving energy and increasing
the lifetime of the network as a whole.

Most of WSN protocols rely on localized algorithms and data-centric communica-
tion, besides to exploit application-specific knowledge in the data dissemination.
Localized algorithms are a special kind of distributed algorithms that achieve a global
goal by communicating with nodes in a restricted neighborhood. Such algorithms
scale well with increasing network size and are robust to network partitions and node
failures [18]. Data-centric communication introduces a new style of addressing in
which nodes are addressed by the attributes of data they generate (sensor type) and by
their geographical location, instead of by their network topological location. Finally,
the use of application knowledge in nodes can significantly improve the resource and
energy efficiency, for example by application-specific data caching and aggregation
in intermediate nodes [18].

Regardless the specific protocol adopted, all protocols depend on some mechanism
for representation of user application queries and of generated sensor data, and for
execution of application-specific processing triggered by pre-defined data attributes.
Data-centric protocols represent queries and data through high level descriptions
(meta-data) and disseminate such descriptions in the network instead of the collected
raw data. When a cluster-based approach is adopted, a further mechanism for repre-
sentation of coordination messages exchanged among nodes is needed.

478 Flávia Coimbra Delicato et al.

2.2 Middleware Technology

Middleware technologies free application designers of explicitly dealing with prob-
lems related to distribution, such as heterogeneity, scalability, resource sharing, and
the like. Middleware provides application designers with a higher level of abstraction,
hiding the complexity introduced by distribution.

The term middleware is widely used to denote a layer comprised of groups of ge-
neric services sitting below user applications. Typical middleware services include
directory services, service discovery, transaction management, and provide different
types of transparencies, such as location transparency and fault transparency. CORBA
[16], J2EE and J2ME [22], and COM [15] are examples of traditional middleware
technologies. The use of middleware systems speeds up the development and de-
ployment of new applications, leaving to the developers only the task of designing
business specific components.

Traditional middleware technologies have been developed assuming the require-
ments of fixed distributed systems. Such systems are composed of fixed devices, with
high processing and storage capabilities, usually permanently connected to the net-
work through continuous and high bandwidth connections. These distributed systems
operate in a relatively static execution context. For static context we mean the band-
width is high and continuous and the location of the devices and services hardly ever
changes.

WSN are a category of ad-hoc networks having all the features of such networks
and some further constraints. Devices in WSN have low processing and storage capa-
bilities, can be mobile or not, can be destroyed or suffer battery depletion and are
subject to environmental dynamics. Furthermore, they are typically connected through
wireless links with low capability and error prone. The adopted communication para-
digm is typically asynchronous and event-driven.

The essential requirements for WSN middleware include providing mechanisms
that assure the efficient use of communication resources available and that allow the
dynamic configuration of user applications. Besides, it must be robust, fault tolerant,
lightweight and with short storage requirements, given the WSN low capabilities.

One additional requirement concerns the execution context information. Middle-
ware collects information on the execution context, such as actual location of a de-
vice, value of network bandwidth, latency, available remote services, etc. Most of
middleware developed for traditional distributed systems adopts the principle of
transparency. By transparency, we mean that such a context information is used pri-
vately by middleware and not shown to the applications. For example, middleware
may discover a congestion in a portion of the distributed system and therefore redirect
requests to access data to a replica residing on another part of the distributed system,
without informing the application about this decision [5]. In the other hand, in WSN,
applications must be aware of context information, in order to accomplish some strat-
egy for efficient use of the scarce network resource. Such a feature is named principle
of awareness. By awareness we mean that information about the execution context (or
part of it) is passed up to the running applications, that are now in charge of taking
strategic decisions [5].

The next section gives a more detailed view of WSN middleware characteristics.

A Flexible Middleware System for Wireless Sensor Networks 479

2.3 WSN Middleware Requirements

The main purpose of middleware for sensor networks is to support the development,
maintenance, deployment and execution of sensing-based applications. This includes
mechanisms for formulating complex high-level sensing tasks, communicating those
tasks to the WSN, coordination of sensor nodes to split the tasks and distribute them
to the individual sensor nodes, data fusion for merging sensor readings of individual
sensor nodes into a high-level result, and reporting the result back to the task issuer.
Moreover, appropriate abstractions and mechanisms for dealing with the heterogene-
ity of sensor nodes should be provided [5]. All mechanisms provided by a middle-
ware system should respect the special characteristics of WSN, mainly the energy
efficiency, robustness, and scalability. The communication style to be adopted should
typically be asynchronous, event-driven and data-centric.

Another unique feature of WSN middleware is the application knowledge in sensor
nodes. Traditional middleware is designed to accommodate a wide variety of applica-
tions without necessarily needing application knowledge. Middleware for WSN, how-
ever, has to provide mechanisms for injecting application knowledge into the WSN
[18].

A further characteristic addresses the concepts of time and location of sensed
events. Since WSNs monitor real world data, time and spatial information are rele-
vant, being key elements for fusing individual sensor readings. Therefore, support for
time and location management should be tightly integrated into a middleware for
WSN [5].

Finally, it is important to note that the scope of middleware for WSN is not re-
stricted to the sensor network alone, but also covers external networks connected to
the WSN (such as Internet) as well as the applications interested in querying sensor
data through such external network.

Despite of the advantages of the middleware technology, current works on WSN
are not considering such a technology in the network design. WSNs have been built
with a high degree of dependency between the applications and the underlying com-
munication protocol. Such a dependency generates rigid systems, with sensor net-
works being specifically designed to particular applications.

In fact, WSN applications should be able to access the network and modify the un-
derlying data dissemination behavior in order to achieve energy efficient. The adop-
tion of a middleware service provides a flexible, application independent layer that
allows the interaction among different applications and the WSN, separating the data
communication functionalities from the application specific processing.

In this work, we propose a middleware layer for sensor networks that aims to meet
their specific requirements. Our proposal is based on the concept of service, and on
the Web services technology. The next section gives an overview on the Web services
technology.

2.4 The Web Services Technology

Web services can be define as modular programs, generally independent and self-
describing, that can be discovered and invoked across the Internet or an enterprise
intranet. Like component-based middleware systems, Web services expose an inter-
face that can be reused without worrying about how the service is implemented.

480 Flávia Coimbra Delicato et al.

Unlike current component-based middleware [15, 16, 22], Web services are not ac-
cessed via protocols dependent on a specific object-model. Instead, Web services are
accessed via ubiquitous Web protocols and data formats, such as Hypertext Transfer
Protocol (HTTP [7]) and XML [27], which are vendor independent.

The Web Services Description Language (WSDL) [25] is an XML language for
describing the interface of a Web service enabling a program to understand how it can
interact with a Web service. Each Web service publishes its interface as a WSDL
document (an XML document) that completely specifies the service’s interface so that
clients and client tools can automatically bind to the Web service.

A WSDL document defines services as collections of network endpoints or ports
[25]. Besides, messages and port types are defined. Messages are abstract descriptions
of the data being exchanged, and port types are abstract collections of operations. In
WSDL, there is a separation between the abstract definition of messages and their
concrete network implementation. This allows the reuse of abstract definitions of
messages and port types. The concrete protocol and data format specification for a
particular port type defines a reusable binding. A port is specified by associating a
network address with a reusable binding. A service is defined as a collection of ports.

The SOAP protocol extends XML so that computer programs can easily pass pa-
rameters to server applications and then receive and understand the returned semi-
structured XML data document.

Since the Web services technology uses XML as the encoding system, data is eas-
ily exchanged between computing systems with incompatible architectures and in-
compatible data formats. WSDL completely describes the Web service interface,
while SOAP completely describes parameters, data types and exceptions included in a
message being exchanged between Web services.

The Web services technology is based on a flexible architecture named SOA (ser-
vice-oriented architecture [8]). In a service-oriented architecture three roles are de-
fined: a service requestor, a service provider and a service registry.

A service provider is responsible for creating a service description, publishing that
service description to one or more service registries, and receiving Web services in-
vocation messages from one or more service requestors.

A service requestor is responsible for finding a service description published to one
or more service registries and for using service descriptions to invoke Web services
hosted by service providers. Any consumer of a Web service is a service requestor.

The service registry is responsible for advertising Web service descriptions pub-
lished to it by service providers and for allowing service requestors to search the col-
lection of service descriptions contained within the service registry. The service regis-
try role is to be a match-maker between service requestor and service provider.

Besides the roles just described, three operations are defined as part of SOA archi-
tecture: publish, find and bind. These operations define the contracts between the
SOA roles.

The publish operation is an act of service registration or service advertisement.
When a service provider publishes its Web service description to a service registry, it
is advertising the details of that Web service description to a community of service
requestors.

The find operation is the logical dual of the publish operation. It is the contract be-
tween a service requestor and a service registry. With the find operation, the service
requestor states a search criterion, such as type of service. The service registry
matches the find criteria against its collection of published Web services descriptions.

A Flexible Middleware System for Wireless Sensor Networks 481

The bind operation embodies the client-server relationship between the service re-
questor and the provider [8]. It can be sophisticated and dynamic, such as on-the-fly
generation of a client-side proxy based on the service description used to invoke the
Web service, or it can be a static model [8].

Besides to comply to the SOA pattern, the Web service technology can be factored
into three protocols stacks [8]: the wire stack (or exchange format), the description
stack and the publish and discovery stack.

The wire stack represents the technologies that determine how a message is
sent/received from the service requestor to the service provider. The stack is com-
posed of three levels. The first level is a network protocol, which can be an Internet
wire protocol, such as HTTP [7], or sophisticated enterprise-level protocols. The sec-
ond level is the data encoding mechanism that is based on XML. The third level refers
to XML messaging layers. For XML messaging, Web services use SOAP [29], which
acts as a wrapper to XML messages, guaranteeing a solid, standard-based foundation
for Web services communication.

The description stack provides aspects of a service that are important to the service
requestor. In Web services, XML is the basis of service description. The XML
Schema specification (XSD) [28] defines the canonical type system. Besides this
level, the next levels of the stack are the descriptions of the service interface, the ser-
vice concrete mapping and the service endpoint. An endpoint defines the network
address where the service itself can be invoked. All of those levels use WSDL [25],
which is an XML-based language for describing the interface of Web services. WSDL
is a very flexible model for services descriptions but it is also rather verbose. A typi-
cal sensor device has very limited capacities. So, a more compact mechanism for data
representation is needed. One example of such a mechanism is the WAP Binary XML
Content Format (WBXML [26]). This format defines a compact binary representation
for XML, intended to reduce the size of XML documents for transmission and to
simplify parsing them.

The publish and discovery stack corresponds to the directory service for Web ser-
vices. Service providers need a publication mechanism so that they can provide in-
formation about the Web services they offer and service requestors need well-defined
find APIs for using such Web services.

3 Proposed Middleware Service

Our work proposes a distributed middleware system for sensor networks sitting above
the data dissemination protocol and basing on the Web services technology. Such a
middleware aims to provide a generic and flexible interoperability layer allowing
different user applications to access and extract data from sensor networks.

The main goal of our middleware is to provide an interoperability layer:
• among user applications and the WSN, allowing the execution of data queries and

of application specific processing in-network;
• among different sensors in the same WSN, allowing data communication and sen-

sors coordination according to an underlying protocol;
• eventually, among different sensor networks.

482 Flávia Coimbra Delicato et al.

Fig. 1. System Architecture.

The proposed system is based on the Web services technology. Web services are
built according to a pattern called service-oriented architecture (SOA) and they can be
described by a trio of interoperability stacks [8] (see Section 2.4).

Section 3.1 describes the sensor network physical components considered in the
proposed system. Section 3.2 describes the roles played by the middleware compo-
nents in agreement with the SOA pattern, while Section 3.3 describes such compo-
nents according to the Web services interoperability stacks.

3.1 Sensor Network Physical Components

In our system, we consider a sensor network as comprising of two main physical
components: sensor nodes and sink nodes. Our distributed middleware runs in both
sensor and sink nodes above the data dissemination and the location services. Fur-
thermore, a proxy provides the communication interoperability between user applica-
tions and the sensor network (Fig. 1). It is important to note that this proxy is not
coupled to our middleware design, neither it is required to be built with any specific
technology. It is actually a generic proxy responsible for generating SOAP messages
to be exchanged between the user application and the WSN.

A sensor node can contain one or more specialized sensing devices. Furthermore,
it can have routing and data aggregation capabilities. Thus, the routing function is
distributed among all nodes. We assume that all the sensor nodes have enough proc-
essing and storage capacities to store and execute aggregation programs.

Sink nodes provide an interface through which external systems can obtain the in-
formation collected by the sensor network. Such interfaces can be accessed locally or
remotely (i.e., through the Internet). Sink nodes can also aggregate data, but they do
not have sensor devices. We assume that they are more powerful regarding to
processing and communication capabilities than sensor nodes.

Data
Dissemination

Protocol

Sink Node Sensor Node

SOAP Module

User Node

User App. SOAP Module

Registry

Data
Dissemination

Protocol

TCP/IP TCP/IP

Any SOAP
Proxy SOAP

Engine

Handle

Handle

SOAP
Engine

A Flexible Middleware System for Wireless Sensor Networks 483

3.2 System Components According
to the Service-Oriented Architecture Pattern

The proposed system is based on the concept of service-oriented architecture (SOA)
[8] (see Section 2.4). A user application querying data from a sensor network plays
the role of a service requestor. Sink nodes act primarily as service providers to the
external environment. They provide the service descriptions of the whole sensor net-
work, and they offer access to such services. At the same time, sink node act as re-
questors to the sensor nodes, requesting their specialized services, in order to meet
the user application needs. Sensor nodes are service providers, providing data and
programs (for application-specific processing). Sensor nodes send their services de-
scription to sink nodes, thus executing the basic publish operation. Sink nodes also act
as registries, keeping a repository with services descriptions of each sensor type ex-
isting in the sensor network.

In our system, the functionality of the publish operation is accomplished through
the Publish_content operation, and the functionalities of find and bind operations
are both accomplished through the Subscribe_interest operation.

Our system groups the functionalities described by the operations find and bind in
one single operation. Sink nodes provide the services description interface and, at the
same time, provide access to such services. The user application interacts only with
sink nodes, and sink nodes in its turn access sensor nodes services passing the result-
ing data to the application. In fact, the operation find is only accomplished internally
by the sink nodes, which consult their repositories of services descriptions. When an
application submits a query to the sensor network, it is actually executing a bind to
the services supplied by the sensor nodes. However, the application only interacts
with the sink. The operation Subscribe_Interest is translated by the sink to a
find operation followed by a bind to the sensor nodes that can meet the application
request.

3.3 Interoperability Stacks

In our system, the wire stack is composed of the SOAP protocol and an underlying
data dissemination protocol. We do not make assumptions about the underlying pro-
tocol. Instead, we provide a generic interface for a class of protocols. The description
stack has all of its levels based on WSDL documents, in the document-centric ap-
proach [8]. The functionalities of the publish and discovery stack are accomplished
by a software module executing in sink nodes. Sink nodes act as service registry
agents. During the network configuration, sensor nodes send messages publishing
their services and sink nodes keep a repository with such descriptions. Besides such
functionalities, sink nodes act as interceptors for network services requests. External
applications access the network via sink nodes. Sinks receive requests and direct such
requests to sensor nodes according to the information stored in the sink repository.

In the next sections we detail the wire and description stacks. We do not describe
the discovery stack in detail since it is not relevant to this work.

The Wire Stack: The Communication Framework. Users applications interested in
submitting queries to the sensor network must access some sink node. The communi-

484 Flávia Coimbra Delicato et al.

cation between user applications and sink nodes can be accomplished through
conventional TCP/IP sockets. Applications must generate a SOAP message
describing the user interests. Such a message is generated based on the sensor
network service descriptions stored in the sink repository. Services descriptions are
written in WSDL language. Since WSDL is an open and ubiquitous standard for
services description, there are many tools [11] for automatic generation of SOAP
proxies. Proxies build SOAP messages and receive back query results thus, they
represent the software interface among applications and sink nodes. The proposed
WSN middleware provides a service interface allowing user applications to interact
with the sensor network system in an application-to-application communication style,
offering more flexibility than a direct user interface. Instead of submitting queries in a
proprietary and pre-defined format, specified through the user interface, applications
are free to choose the way they want to view and receive data.

All the communication inside the sensor network is accomplished using the under-
lying data dissemination protocol and formatted as SOAP messages. The sending and
receiving of SOAP messages by a SOAP node is mediated by a binding to an underly-
ing protocol. SOAP messages can be transported using a variety of underlying proto-
cols. The SOAP specification includes a binding to HTTP. Additional bindings can be
created by specifications that conform to the binding framework. Specific bindings
for each data dissemination protocol should be defined as needed.

The SOAP protocol is responsible for defining exchanging rules and messages
format in our system. In order to reduce the messages size, thus saving energy in
sending/receiving, the XML compact binary representation [26] is adopted for SOAP
messages exchanged inside the sensor network

The SOAP module, as well as a module representing the data dissemination proto-
col must be present in every node in the network.

SOAP Module. The SOAP module in our system is composed of three main compo-
nents: the SOAP engine, a set of handles and a binding with the underlying protocol.
The SOAP engine acts as the main entry point into the SOAP module. It is responsi-
ble for coordinate the SOAP message’s flow through the various handles and for
ensuring that the SOAP semantics are followed. Handles are the basic building blocks
inside the SOAP module and they represent the messages processing logic. Three
kinds of handles are defined: common handles, transport handle and specific handle.
Common handles are responsible for marshalling/unmarshalling of messages, header
and attachments processing, serialization, conversions of data type to the types sup-
ported by the local software, among any other basic functions. The transport handle
Matching_Data is specifically built for sending and receiving messages through the
underlying protocol. The handle Matching_Filter is a sensor’s specific handle
which is built for representing the activation of application-specific programs inside
the network. More details about the use of specific handles are described in Section 4.

Sink nodes contain common handles only. Sensor nodes contain, besides common
handles, the transport handle Matching_Data and the Web services specific handle
Matching-Filter.

The Services Description Stack: WSDL Documents. The generic services provided
by a sensor network are described through a WSDL document. In that document, port
types elements (see Section 2.4) contain two types of service descriptions: descrip-
tions of services provided by sensor nodes and descriptions of services provided by

A Flexible Middleware System for Wireless Sensor Networks 485

sink nodes. Each service port type contains operations, which can be thought as sys-
tem APIs. Those operations contain parameters, defined in the document through
messages. Bindings of operation definitions to their concrete implementation should
be defined according to the underlying protocol. The WSDL language allows a bind-
ing to be defined through SOAP or directly to a lower level protocol. A port identifi-
cation, indicating the place containing the operation implementation, can be done
through any unique identifier, as a device address.

The operations defined for the Web services specified in our system address the
requirements of a generic sensor network. Despite of the data dissemination protocol
adopted, a WSN needs mechanisms to: represent user queries and sensor data; repre-
sent and trigger application specific code; and to represent coordination messages in
cluster-based approaches. The following operations aims to provide such mecha-
nisms.

Publish_Content: used by the sensor node to create and disseminate a SOAP
message containing its service descriptions. Services include types of sensing data
and filters existent in the sensor node.

Publish_Data: used by sensor nodes to create SOAP messages communicating
generated data.

Subscribe_Interest: used by an application to submit a query to a sink node.
The query includes the interest description and the filters to be activated.

Subscribe_Filter: used by an application in a sink node to inject a new filter in
the network. A filter contains the attributes to be matched for its execution and the
syntax to invoke the filter program.

Join_Cluster: used by sensor nodes to declare their intention to join in a clus-
ter.

Advertising_Leader: used by the elected leader node to announce its identity
to the others cluster members.

4 System Operation

Sensor networks have an initial setup stage comprising of four different phases: de-
ployment, activation, local organization and global organization [23]. Deployment is
the physical placement of sensors in the target area. In order to reduce energy con-
sumption, sensor nodes reside in a sleep state until the deployment. Therefore, sensors
need to undergo an activation phase after they are scattered in the region of interest.
The local organization phase includes the neighbors’ discovery. During the global
organization phase, nodes establish the communication path to some sink in the net-
work. It is essential that all nodes reach a sink through some path so that their data
can be delivered to the application. After the organization phase, each node is sup-
posed to know and distinguish the nearby nodes. Any unique identifier can be used as
a node identifier, as for example, its MAC address or a device serial number. When
adopting a hierarchical, cluster-based protocol, besides the phases just described, the
WSN initial organization includes a phase for clusters formation, in which nodes
group themselves in clusters with a chosen leader or cluster-head responsible for the
management of the communication among cluster members.

486 Flávia Coimbra Delicato et al.

Our middleware system operates according to four different steps: intial setup, in-
terest advertisement, data advertisement, and (optionally) cluster formation. We dis-
cuss each one of those steps in the next sections.

4.1 Step 1 – Initial Set Up

In our system, during the local and global organization phases, nodes exchange SOAP
configuration messages (Fig. 2), describing the services (data and filters) supplied by
them. Such messages include the node and network identification (the latter used
when there are several interconnected sensor networks), a TTL (sensor time-to-live),
sensor type(s), geographical location, current amount of energy, maximum and mini-
mum confidence degrees, maximum and minimum acquisition intervals (data rate),
filters that exist in the node and specific information of each sensor type. The SOAP
configuration message is broadcasted in the network using the functionality of the
underlying data dissemination protocol. When a sensor node receives a configuration
message, it can decide to transmit it or not. If the message describes a sensor type
matching its own features or if a similar message has already been sent before, the
node does not need to transmit it again. Sinks keep entries for each different sensor
type, therefore their repositories scale with the number of sensor types.

Sink nodes store the content of received configuration messages in a local reposi-
tory. Such a repository is based on soft-state, since active sensors in a particular in-
stant of time can be inactive in a subsequent instant. It is important that every sink in

<SOAP-ENV:Envelope xmlns:m0=”http://SensorDescTypes” ...
 <SOAP-ENV:Body>
 <m:PublishContent xmlns:m="http://namespace">
 <parameter ID="MAC_ADDR" NetworkID="NET_ID">
 <m0:TTL unit="Seconds">3600</m0:TTL>
 <m0:Type>Motion</m0:Type>
 <m0:DataDomain>
 <m0:Value>Four Legged Animal</m0:Value>
 <m0:Value>Two Legged Animal</m0:Value>
 <m0:Value>Creeper Animal</m0:Value>
 </m0:DataDomain>
 <m0:GeographicLocation unit="LatLong">
 <m0:x>35.00</m0:x> <m0:y>-23.00</m0:y>
 </m0:GeographicLocation>
 <m0:Energy unit="J">1</m0:Energy>
 <m0:Confidence>
 <m0:Max>1.0</m0:Max> <m0:Min>0.2</m0:Min>
 </m0:Confidence>
 <m0:DataRate unit="mSeconds">
 <m0:Max>10</m0:Max> <m0:Min>1000</m0:Min>
 </m0:DataRate>
 </parameter>
 </m:PublishContent>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 2. SOAP configuration message.

A Flexible Middleware System for Wireless Sensor Networks 487

the network has the complete knowledge on all existent sensor types. Sinks may peri-
odically exchange messages, so that all sinks contain the same information.

Since configuration messages traverse intermediary nodes until reaching a sink,
such nodes can also store messages exploiting their content, for example, extracting
geographic and energy information when disseminating interests through the network.
The information about sensor geographical location can be used when the underlying
protocol implements some kind of location-based routing optimization [31]. The data
dissemination protocol adopted can be further optimized considering the sensor cur-
rent energy in the decisions about routing. The optimization procedures based on
geography location or current energy are included as application-specific programs in
the network, and are executed only when the application asked for it.

4.2 Step 2 – Interest Advertisement

Applications requesting data from a sensor network should subscribe an interest in
some sink. An interest contains the sensor type, the data type, the geographical loca-
tion of interest, the acquisition interval (data rate) and the acquisition duration. For
time critical applications, a threshold value can be included, as a limit from which the
sensors must inform data, regardless the current data rate.

Applications can request the activation of application-specific programs existent in
nodes. Furthermore, new programs can be injected in the network. A program de-
scription contains an identifier and a list of data types with their respective values.
The identifier is used to trigger the execution of the appropriate program already
existent in the sensor node when such a node receives data matching the values speci-
fied in the program description. When injecting a new program, it is transported as a
SOAP message attachment [29].

SOAP messages advertising interests (Fig. 3) are disseminated in the sensor net-
work using the underlying data dissemination protocol. A handle responsible for
matching data to interests, named Matching_Data handle is provided as part of the
middleware layer.

4.3 Step 3 – Data Advertisement

A sensor generates data in an initial rate specified in its configuration message. The
sensor only sends SOAP data advertisement messages if it had received a previous
interest message advertising interests matching its own data type. Sensors change
their acquisition interval according to the received SOAP interest messages. When
detecting data for which they have received an interest, sensors issue data advertise-
ment messages.

SOAP messages advertising data contain the data type, the instance (or value) of
that type that was detected, the sensor current location (sensors can be mobile), the
signal intensity, the confidence degree in the accomplished measurement, a time-
stamp, and the current sensor amount of energy.

The message dissemination involves a matching stage among data and interests,
and the possible execution of filters. The matching data to interest stage is accom-
plished by the handle Matching_Data. The handle Matching_Filter matches

488 Flávia Coimbra Delicato et al.

data to programs and dispatches programs execution whenever it is necessary. The
resulting (possibly aggregated or filtered) data are delivered to the dissemination layer
as a new SOAP data advertisement message to be sent along the network.

4.4 Step 4 – Cluster Formation

Cluster-based protocols have additional cluster formation and cluster-leader election
phases according to a specific algorithm [24]. After nodes are relatively confident that
they are aware of their neighbors (organization phase), the next task is to form rela-
tionships with nearby nodes resulting in clusters. Clusters should contain a manage-
able number of nodes that are close [24]. Usually cluster formation algorithms include
a step in which nodes declare their interest in joining in a particular cluster as a leader
and a further step of deciding which node will be the leader, advertising the chosen
node to the other cluster members. Specific code representing the algorithm must be
injected in the network in a interest advertising message. Two messages are needed to
accomplish the functionality of a generic cluster algorithm: the Join_cluster mes-
sage is used by nodes advertising their desire of joining in a cluster and the Adver-
tising_Leader message announces the elected cluster leader. Join_cluster
messages contain the node identification, a timestamp and the node current energy
amount. The node energy can be considered or not for the cluster algorithm being
used. Join_cluster messages can be multicasted or broadcasted in a target area,
according to the underlying data dissemination protocol. Advertising_Leader
messages contain a timestamp and the elected leader node identifier.

<SOAP-ENV:Envelope xmlns:m0=”http://SensorDescTypes” …
 <SOAP-ENV:Body>
 <m:SubscribeInterest xmlns:m="http://namespace">
 <parameter>
 <m0:SensorType>Motion</m0:SensorType>
 <m0:DataType>Four Legged Animal</m0:DataType>
 <m0:DataRate unit="mSeconds">20</m0:DataRate>
 <m0:Duration unit="Seconds">20</m0:Duration>
 <m0:Area>
 <m0:PointA unit="LatLong">
 <m0:x>35.00</m0:x> <m0:y>-23.00</m0:y>
 </m0:PointA>
 <m0:PointB unit="LatLong">
 <m0:x>35.02</m0:x> <m0:y>-23.03</m0:y>
 </m0:PointB>
 </m0:Area>
 <m0:Threshold>0</m0:Threshold>
 </parameter>
 </m:SubscribeInterest>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 3. SOAP message advertising interests.

A Flexible Middleware System for Wireless Sensor Networks 489

5 Discussion

In this section we discuss the features of the proposed middleware system according
to the specific requirements sketched for WSN presented in Sections 2.2 and 2.3.
Efficient Usage of WSN Resources. The content of SOAP messages includes informa-
tion on node energy and geographical location. Both information are parameters for
resource usage optimization algorithms. Application specific code implementing such
algorithms is deployed in sensor nodes and triggered by SOAP messages containing
some pre-defined data values.
Robustness and Fault Tolerance. The proposed middleware system is fully distrib-
uted, with application specific code deployed in every sensor node and with the in-
formation on services provided by the WSN being replicated in every sink node. Such
a distributed feature naturally increases the system robustness and fault tolerance.
Lightweight and Short Storage and Energy Requirements. SOAP is a lightweight
protocol. We have implemented a compact version of the SOAP engine, which re-
quires minimal processing capacities, to run inside the sensor network. To allow ac-
cess to the WSN through the internet, sink nodes, which are not energy constraint
nodes, have installed a standard SOAP engine. The SOAP messages exchanged
through the system as well as the WSDL documents stored in repositories are repre-
sented with the XML binary compact format, in order to reduce their length. The use
of the compact format also reduces the message payload and thus the energy spent in
message transmission.
Statement and Communication of High Level Tasks and Coordination among Nodes.
Functionalities of node coordination as well as the communication of high level tasks
are accomplished through generic SOAP messages defined by the middleware system
(see Section 4).
Data Fusion and Data Filtering. Data filtering and aggregation programs can be
loaded in sensor nodes during the WSN deployment or they can be injected on-the-fly
as SOAP message attachments. Such programs are triggered when pre-defined data
arrive in sensor nodes containing the programs code. The trigger data are defined by
interest advertising SOAP messages.
Support to Nodes Heterogeneity. Such a support is a central feature of our proposal.
Since our middleware system is based on the ubiquitous XML technologies, we natu-
rally address the interconnection among different sensor nodes in a WSN, or even
among different WSNs throughout our middleware layer.
Awareness and Application Knowledge. User applications and the middleware layer
exchange execution context information, such as nodes energy and location, in order
to carry out optimization strategies for the efficient use of WSN resources.

6 Related Work

There are some projects addressing the development of middleware for WSN, such as
[1,19,20,21]. The Smart Messages Project [21] is based on agent-like messages con-
taining code and data, which migrate throughout the sensor network. NEST [1] pro-

490 Flávia Coimbra Delicato et al.

vides microcells as a basic abstraction. They are similar to operating system tasks
with support for migration, replication, and grouping. SCADDS [19] is based on a
paradigm called Directed Diffusion, which supports robust, data-centric and energy-
efficient delivery and in-network aggregation of sensor events. Most of these projects
are in an early stage focusing on developing algorithms and components for WSN,
which might later serve as a foundation for future middleware systems.

In [4] a distributed sensor network middleware service is presented whose purpose
is power conservation. Such a service sits on top of the network routing layer and
performs data placement and caching as a strategy to conserve battery power. That
work does not address the representation of user queries and sensor data.

The Intentional Naming System is an attribute-based name system operating in a
overlay network over the Internet [2]. It provides a method based on late binding to
cope with dynamically located devices. Despite of having several features desirable
for a middleware for sensor networks, INS was designed for more generic mobile
networks, offering a sophisticated hierarchical attribute matching procedure. How-
ever, they do not address the specific requirements of WSN, nor provide mechanisms
which deal with interoperability issues.

Our proposal has some similarities with [30], a database approach for WSN sys-
tems. Such a work exploits the sensor computation capabilities to execute part of the
query processing inside the network, using query proxies. In their distributed ap-
proach, relevant data is extracted from the sensor network, when and where it is
needed. The primary difference from our work is that they adopted a relational data
base approach, based on XML an SQL queries optimization. Their system performs
aggregations in the network as specified by a centrally computed query plan. We
propose a totally distributed service approach, based on the ubiquitous standards
WSDL and SOAP.

7 Conclusions and Future Works

In this paper, we have presented a middleware service for sensor networks. We claim
that the future wireless sensor networks should provide a ubiquitous, standardized
access through a common and application independent interface. The contributions of
this work are three-fold. First, we propose an interoperability layer separating the data
dissemination functionality from the application-specific processing. Second, we have
defined an ubiquitous middleware architecture for WSN based on the Web services
technology, where sink nodes are modeled as Web Services that expose services pro-
vided by the network using a standard service interface. Third, we propose the use of
the WSDL language and SOAP protocol, already recognized as Internet standards, as
the mechanisms for describing services and formatting messages used by the underly-
ing communication protocol.

We do not couple our proposal to any particular underlying data dissemination pro-
tocol. Instead, we provide a generic interface between the middleware layer and the
underlying protocol layer.

The proposed approach offers high expressiveness and flexibility when designing
sensor networks, allowing the interoperability of heterogeneous sensor. In our ap-
proach, sensor networks can be used as a system for supplying data for different ap-
plications and users. Our main goal is to provide the underpinning for building more

A Flexible Middleware System for Wireless Sensor Networks 491

general purpose networks, instead of strictly task-specific ones, in order to assist a
large range of users, possibly spread all over the world, sharing a common interest in
a specific application area. Since energy saving is a key element in WSN design, our
proposal makes an effort to keep the amount of spent energy in the same level as
current WSN systems. It is important to note that energy consumption in data process-
ing in WSNs is assumed to be order of magnitude smaller than in data transmission
[12]. Therefore, the additional processing needed for parsing SOAP messages should
be insignificant to the system. For this reason, our approach addresses energy saving
in data transmission by adopting a compact binary XML format in the messages ex-
changes inside the WSN.

Currently, we are working on the implementation of the SOAP module as de-
scribed in this paper. We have already defined the WSDL documents for describing
the WSN services and the SOAP messages format and content. We expect that the
experimental results prove the system feasibility and beside, the total energy spent in
transmission and processing do not overcome the values found in current WSN proto-
cols.

References

1. A Network Virtual Machine for Real-Time Coordination Services. Available in:
www.cs.virginia.edu/nest

2. Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilley, J.: The design and implementa-
tion of an intentional naming System. 17th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’99). Published as Operating Systems Review, 34(5):186–201, Dec. 1999

3. Akyildiz, I. et al.: Wireless sensor networks: a survey. Computer Networks, 38(4):393–422,
March 2002

4. Bhattacharya, S., Abdelzaher, T.: Data Placement for Energy Conservation in Wireless
Sensor Networks. Department of Computer Science, University of Virginia. Submitted to
ICDCS 2002. Available in: http://www.andrew.cmu.edu/~weizhang/wsn/documents/
fin_sagnik_journal.pdf

5. Capra, L., Emmerich, W., Mascolo, C.: Middleware for Mobile Computing (A Survey).
UCL Research Note RN/30/01. Available in:
http://www.cs.ucl.ac.uk/staff/L.Capra/publications.html. July 2001

6. Choksi, A.: Hierarchical Routing in Sensor Network, CS-672: Seminar on Pervasive and
Peer-To-Peer Computing, Storage & Networking. Term-Paper Submission, Rutgers Uni-
versity. Available in:
http://www.cs.rutgers.edu/~achoksi/presentation/CS672_paper_ankur.pdf . 2001

7. Fielding, R. et al.: RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1. Available in:
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt. June, 1999

8. Graham, S. et al.: Building Web Services with Java: Making Sense of XML, SOAP,
WSDL, and UDDI. Sams Publishing, 2002

9. Heidemann, J. et al.: Building Efficient Wireless Sensor Networks with Low-Level Nam-
ing. In Proc. of the ACM Symposium on Operating Systems Principles (146-159). Chateau
Lake Louise, Banff, Alberta, Canada. Oct. 2001. Available in:
http://www.isi.edu/~johnh/PAPERS/Heidemann01c.html

10. Heinzelman, W., Chandrakasan, A., Balakrishnan, H: Energy-Efficient Communication
Protocol for Wireless Microsensor Networks. In Proc. of the 33rd Hawaii International
Conference on System Sciences (HICSS '00), Jan. 2000

11. IBM White Paper, Web Services Toolkit. Available in:
http://www.alphaworks.ibm.com/tech/ Webservicestoolkit. April 2002

492 Flávia Coimbra Delicato et al.

12. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust
communication paradigm for sensor networks. In Proc. of the ACM/IEEE International
Conference on Mobile Computing and Networking - MobiCom 2000 (56-67), Boston, MA,
USA, Aug 2000

13. Krishnamachari, B., Estrin, D., Wicker, S.: Modeling Data-Centric Routing in Wireless
Sensor Networks. Available in: http://www2.parc.com/spl/members/zhao/stanford-
cs428/readings/Networking/ Krishnamachari_infocom02.pdf. 2002

14. Kulik, J., Heinzelman, R. B., Balakrishnan, H.: Negotiation-based protocols for disseminat-
ing information in wireless sensor networks. ACM Wireless Networks 2000. Available in:
http://citeseer.nj.nec.com/ 335631.html, 2000

15. Microsoft Corporation, "The Component Object Model Specification”. Available in:
http://www.opengroup.org/pubs/catalog/ax01.htm, Oct. 1995

16. OMG (Object Management Group). The Common Object Request Broker: Architecture
and Specification. Revision 2.0. July 1995

17. Qi, H., Kuruganti, P. T., Xu, Y.: The Development of Localized Algorithms in Wireless
Sensor Networks, Invited Paper - Sensors 2002, 2, (286-293), 2002

18. Römer, K., Kasten, O., Mattern, F.: Middleware Challenges for Wireless Sensor Networks.
ACM SIGMOBILE Mobile Computing and Communications Review, Vol. 6, Number 2,
2002

19. Scalable Coordination Architectures for Deeply Distributed Systems. Available in:
http://www.isi.edu/div7/scadds

20. Sensorwebs Project. Available in: basics.eecs.berkeley.edu/sensorwebs
21. Smart Messages Project. Available in: http://www.rutgers.edu/sm
22. SUN Microsystems, “Enterprise JavaBeans Specification 2.0. Sun Microsystems”. Avail-

able in: http://java.sun.com/products/ejb/docs.html, August 2001
23. Ulmer, C., Alkalai, L., Yalamanchili, S.: Wireless Distributed Sensor Networks for In-Situ

Exploration of Mars, Work in progress for NASA Technical Report. Available in:
http://users.ece.gatech.edu/ ~grimace/research/reports/nasa_wsn_report.pdf

24. Ulmer, C.: Organization Techniques in Wireless In-situ Sensor Networks. Report. Avail-
able in: http://users.ece.gatech.edu/~grimace/research/.

25. W3C (World Wide Web Consortium) Note, "Web Services Description Language (WSDL)
1.1”. Available in: http://www.w3.org/TR/2001/NOTE-wsdl-20010315

26. W3C (World Wide Web Consortium) Note, “WAP Binary XML Content Format”. Avail-
able in: http://www.w3.org/TR/wbxml/, June 1999

27. W3C (World Wide Web Consortium) Recommendation, "Extensible Markup Language
(XML) 1.0 (Second Edition)”. Available in: http://www.w3.org/TR/REC-xml, Oct. 2000

28. W3C (World Wide Web Consortium) Recommendation, "XML Schema Part 0: Primer”.
Available in: http://www.w3.org/TR/xmlschema-0/, May 2001

29. W3C(World Wide Web Consortium) Note on Simple Object Access Protocol (SOAP) 1.1,
Available in: http://www.w3.org/TR/SOAP/, May 2000

30. Yao, Y., Gehrke, J. E.: The Cougar Approach to In-Network Query Processing in Sensor
Networks. Sigmod Record, Volume 31, Number 3, September 2002. Available in:
http://www.cs.cornell.edu/ johannes/papers/2002/sigmod-record2002.pdf

31. Yu, Y., Govindan, R., Estrin, D.: Geographical and Energy Aware Routing: a recursive
data dissemination protocol for wireless sensor networks. Available in:
http://citeseer.nj.nec.com/461988.html

	1 Introduction
	2 Background
	2.1 Wireless Sensor Networks (WSN)
	2.2 Middleware Technology
	2.3 WSN Middleware Requirements
	2.4 The Web Services Technology

	3 Proposed Middleware Service
	3.1 Sensor Network Physical Components
	3.2 System Components According to the Service-Oriented Architecture Pattern
	3.3 Interoperability Stacks

	4 System Operation
	4.1 Step 1 – Initial Set Up
	4.2 Step 2 – Interest Advertisement
	4.3 Step 3 – Data Advertisement
	4.4 Step 4 – Cluster Formation

	5 Discussion
	6 Related Work
	7 Conclusions and Future Works
	References

