
M. Endler and D. Schmidt (Eds.): Middleware 2003, LNCS 2672, pp. 41–61, 2003.
© IFIP International Federation for Information Processing 2003

NaradaBrokering:
A Distributed Middleware Framework and Architecture

for Enabling Durable Peer-to-Peer Grids

Shrideep Pallickara and Geoffrey Fox

Community Grid Labs, Indiana University, 501 N. Morton St, Suite 224
Bloomington, IN-47404. USA

{spallick,gcf}@indiana.edu

Abstract. A Peer-to-Peer (P2P) Grid would comprise services that include
those of Grids and P2P networks and naturally support environments that have
features of both limiting cases. Such a P2P grid integrates the evolving ideas of
computational grids, distributed objects, web services, P2P networks and mes-
sage oriented middleware. In this paper we investigate the architecture, com-
prising a distributed brokering system that will support such a hybrid environ-
ment. Access to services can then be mediated either by the middleware or
alternatively by direct P2P interactions between machines.

1 Introduction

The Grid [1-4] has made dramatic progress recently with impressive technology and
several large important applications initiated in high-energy physics [5,6], earth sci-
ence [7,8] and other areas [9,10]. At the same time, there have been equally impres-
sive advances in broadly deployed Internet technology. We can cite the dramatic
growth in the use of XML, the “disruptive” impact of peer-to-peer (P2P) approaches
[11] that have resulted in a slew of powerful applications, and the more orderly, but
still widespread adoption, of a universal Web Service approach to Web based applica-
tions [12,13]. There are no crisp definitions of Grids and P2P Networks that allow us
to unambiguously discuss their differences and similarities and what it means to inte-
grate them. However these two concepts conjure up stereotype images that can be
compared. Taking “extreme” cases, Grids are exemplified by the infrastructure used
to allow seamless access to supercomputers and their datasets. P2P technology facili-
tates sophisticated resource sharing environments between “consenting” peers over
the “edges” of the Internet, enabling ad hoc communities of low-end clients to adver-
tise and access resources on communal computers. Each of these examples offers
services but they differ in their functionality and style of implementation. The P2P
example could involve services to set-up and join peer groups, browse and access
files on a peer, or possibly to advertise one’s interest in a particular file. The “classic”
grid could support job submittal and status services and access to sophisticated data
management systems.

Grids typically have structured robust security services while P2P networks can
exhibit more intuitive trust mechanisms reminiscent of the “real world”. Grids typi-
cally offer robust services that scale well in pre-existing hierarchically arranged or-
ganizations. P2P networks are often used when a best effort service is needed in a

42 Shrideep Pallickara and Geoffrey Fox

dynamic poorly structured community. If one needs a particular “hot digital re-
cording”, it is not necessary to locate all sources of this, a P2P network needs to
search enough plausible resources to ensure that success is statistically guaranteed.
On the other hand, a 3D simulation of the universe might need to be carefully sched-
uled and submitted in a guaranteed fashion to one of the handful of available super-
computers that can support it. There are several attractive features in the P2P model,
which motivate the development of hybrid systems. Deployment of P2P systems is
entirely user driven, obviating the need for any dedicated management of these sys-
tems. Resource discovery and management is an integral part of P2P computing with
peers exposing the resources that they are willing to share and the system (sometimes)
replicating these resources based on demand. Grids might host different persistent
services and they must be able to discover these services and the interfaces they sup-
port. Peers can form groups with the fluid group memberships and are thus very rele-
vant for collaboration [14, 15]. This is an area that has been addressed for the Grid in
Ref [16] and also in a seminal paper by Foster and collaborators [17] addressing
broad support for communities.

A P2P Grid would comprise services that include those of Grids and P2P networks
while naturally supporting environments that have features of both limiting cases. We
can discuss two examples where such a model is naturally applied. In the High En-
ergy Physics data analysis (e-Science [18]) problem discussed in [19], the initial steps
are dominated by the systematic analysis of the accelerator data to produce summary
events roughly at the level of sets of particles. This Grid-like step is followed by
“physics analysis”, which can involve many different studies and much debate be-
tween involved physicists regarding the appropriate methods to study the data. Here
we see some Grid and some P2P features. As a second example, consider the way one
uses the Internet to access information – either news items or multimedia entertain-
ment. Perhaps the large sites like Yahoo, CNN and future digital movie distribution
centers have Grid like organization. There are well-defined central repositories and
high performance delivery mechanisms involving caching to support access. Security
is likely to be strict for premium channels. This structured information is augmented
by the P2P mechanisms popularized by Napster with communities sharing MP3 and
other treasures in a less organized and controlled fashion. These simple examples
suggest that whether for science or commodity communities, information systems
should support both Grid and P2P capabilities [20,21].

The proposed P2P grid, which integrates the evolving ideas of computational grids,
distributed objects, web services, P2P networks and message oriented middleware,
comprises resources such as relatively static clients, high-end resources and a dy-
namic collection of multiple P2P subsystems. We investigate the architecture, com-
prising a distributed brokering system that will support such a hybrid environment.
Services can be hosted on such a P2P grid with peer groups managed locally and
arranged into a global system supported by core servers. Access to services can then
be mediated either by the “broker middleware” or alternatively by direct P2P interac-
tions between machines “on the edge”. The relative performance of each approach
(which could reflect computer/network cycles as well as the existence of firewalls)
would be used in deciding on the implementation to use. Such P2P Grids should
seamlessly integrate users to themselves and to resources, which are also linked to
each other. We can abstract such environments as a distributed system of “clients”
which consist either of “users” or “resources” or proxies thereto. These clients must
be linked together in a flexible fault tolerant efficient high performance fashion. The

NaradaBrokering: A Distributed Middleware Framework and Architecture 43

messaging infrastructure linking clients (both users and resources of course) would
provide the backbone for the P2P grid.

The smallest unit of this messaging infrastructure should be able to intelligently
process and route messages while working with multiple underlying communication
protocols. We refer to this unit as a broker, where we avoid the use of the term serv-
ers to distinguish it clearly from the application servers that would be among the
sources/sinks to messages generated within the integrated system. For our purposes
(registering, transporting and discovering information), we use the term
events/messages interchangeably where events are just messages − typically with time
stamps. We may enumerate the following requirements for the messaging infrastruc-
ture −

1. Scaling: This is of paramount importance considering the number of devices, cli-
ents and services that would be aggregated in the P2P grid. The distributed broker
network should scale to support the increase in these aggregated entities. However
the addition of brokers to aid the scaling should not degrade performance by in-
creasing communication pathlengths or ineffective bandwidth utilizations between
broker nodes within the system. This calls for efficient organization of the broker
network to ensure that the aforementioned degradations along with concomitant
problems such as increased communication latencies do not take place.

2. Efficient disseminations: The disseminations pertain to routing content, queries,
invocations etc. to the relevant destinations in an efficient manner. The routing en-
gine at each broker needs to ensure that the paths traversed within the broker net-
work to reach destinations are along efficient paths that eschew failed broker
nodes.

3. Guaranteed delivery mechanisms: This is to ensure persistent delivery and reliable
transactions within P2P grid realms.

4. Location independence: To eliminate bandwidth degradations and bottlenecks
stemming from entities accessing a certain known broker over and over again to
gain access to services, it must be ensured that any broker within the broker net-
work is just as good as the other. Services and functionality would then be accessi-
ble from any point within the broker network.

5. Support for P2P interactions: P2P systems tend to be autonomic, obviating the
need for dedicated management. P2P systems incorporate sophisticated search and
subsequent discovery mechanisms. Support for P2P interactions facilitates access
to information resources and services hosted by peers at the “edge” of the network.

6. Interoperate with other messaging clients: Enterprises have several systems that
are built around messaging. These clients could be based on enterprise vendors
such as IBM’s MQSeries or Microsoft’s MSMQ. Sometimes these would be cli-
ents conforming to mature messaging specifications such as the Java Message Ser-
vice (JMS) [22]. JMS clients, existing in disparate enterprise realms, can utilize the
distributed broker network as a JMS provider to communicate with each other.

7. Communication through proxies and firewalls: It is inevitable that the realms we
try to federate would be protected by firewalls stopping our elegant application
channels dead in their tracks. The messaging infrastructure should thus be able to
communicate across firewall, DHCP and NAT boundaries. Sometimes communi-
cations would also be through authenticating proxies.

8. Extensible transport framework: Here we consider the communication subsystem,
which provides the messaging between the resources and services. Examining the

44 Shrideep Pallickara and Geoffrey Fox

growing power of optical networks we see the increasing universal bandwidth that
in fact motivates the thin client and server based application model. However the
real world also shows slow networks and links(such as dial-ups), leading to a high
fraction of dropped packets. We also see some chaos today in the telecom industry
which is stunting, somewhat, the rapid deployment of modern “wired’ (optical)
and wireless networks. We suggest that key to future federating infrastructures will
be messaging subsystems that manage the communication between external re-
sources, services and clients to achieve the highest possible system performance
and reliability. We suggest this problem is sufficiently hard that we only need
solve this problem “once” i.e. that all communication – whether TCP/IP, UDP,
RTP (A Transport Protocol for Real-Time Applications) [23], RMI, XML/SOAP
[24] or you-name-it be handled by a single messaging or event subsystem.

9. Ability to monitor the performance of P2P grid realms: State of the broker network
fabric provides a very good indicator of the state of the P2P grid realm. Monitoring
the network performance of the connections originating from individual brokers
enables us to identify bottlenecks and performance problems, if any, which exist
within a P2P grid realm.

10.Security Infrastructure: Since it is entirely conceivable that messages (including
queries, invocations and responses) would have to traverse over hops where the
underlying communication mechanisms are not necessarily secure, a security infra-
structure that relies on message level security needs to be in place. Furthermore,
the infrastructure should incorporate an authentication and authorization scheme to
ensure restricted access to certain services. The infrastructure must also ensure a
secure and efficient distribution of keys to ensure access by authorized clients to
content encapsulated in encrypted messages.

In this paper we base our investigations on our messaging infrastructure, NaradaBro-
kering [25-31], which addresses or provides the foundations for the issues discussed
above. The remainder of this paper is organized as follows. In section 2.0 we discuss
broker network organization, routing of events and support for durable interactions in
the NaradaBrokering system. Section 3.0 presents the rationale, and our strategy, to
support P2P interactions. Section 4.0 presents an extensible transport framework that
addresses the transport issues alluded to earlier. A performance aggregation frame-
work for monitoring and responding to changing network conditions is discussed in
Section 5.0. Section 6.0 presents an overview of the message based security frame-
work in the system. Finally, in section 7.0 we present our conclusions and outline
future work.

2 NaradaBrokering

To address the issues [31] of scaling, load balancing and failure resiliency, NaradaB-
rokering is implemented on a network of cooperating brokers. Brokers can run either
on separate machines or on clients, whether these clients are associated with users or
resources. This network of brokers will need to be dynamic for we need to service the
needs of dynamic clients. Communication within NaradaBrokering is asynchronous
and the system can be used to support different interactions by encapsulating them in
specialized events. Clients reconnecting after prolonged disconnects, connect to the
local broker instead of the remote broker that it was last attached to. This eliminates

NaradaBrokering: A Distributed Middleware Framework and Architecture 45

bandwidth degradations caused by heavy concentration of clients from disparate geo-
graphic locations accessing a certain known remote broker over and over again.

NaradaBrokering goes beyond other operational publish/subscribe systems [32-37]
in many (support for JMS, P2P interactions, audio-video conferencing, integrated
performance monitoring, communication through firewalls among others) ways. The
messaging system must scale over a wide variety of devices − from hand held com-
puters at one end to high performance computers and sensors at the other extreme. We
have analyzed the requirements of several Grid services that could be built with this
model, including computing and education. Grid Services (including NaradaBroker-
ing) being deployed in the context of Earthquake Science can be found in [29]. Na-
radaBrokering supports both JMS and JXTA [44] (from juxtaposition), which
are publish/subscribe environments with very different interaction models. NaradaB-
rokering also provides support for legacy RTP clients.

2.1 Broker Organization

Uncontrolled broker and connection additions result in a broker network susceptible
to network-partitions and devoid of any logical structure thus making the creation of
efficient broker network maps (BNM) an arduous if not impossible task. The lack of
this knowledge hampers the development of efficient routing strategies, which exploit
the broker topology. Such systems then resort to “flooding” the entire broker network,
forcing clients to discard events they are not interested in. To circumvent this, Na-
radaBrokering incorporates a broker organization protocol, which manages the addi-
tion of new brokers and also oversees the initiation of connections between these
brokers.

In NaradaBrokering we impose a hierarchical structure on the broker network,
where a broker is part of a cluster that is part of a super-cluster, which in turn is part
of a super-super-cluster and so on. Clusters comprise strongly connected brokers with
multiple links to brokers in other clusters, ensuring alternate communication routes
during failures. This organization scheme results in “small world networks” [38,39]
where the average communication “pathlengths” between brokers increase logarith-
mically with geometric increases in network size, as opposed to exponential increases
in uncontrolled settings. This cluster architecture allows NaradaBrokering to support
large heterogeneous client configurations that scale to arbitrary size.

Creation of BNMs and the detection of network partitions are easily achieved in
this topology. We augment the BNM hosted at individual brokers to reflect the cost
associated with traversal over connections, for e.g. intra-cluster communications are
faster than inter-cluster communications. The BNM can now be used not only to
compute valid paths but also for computing shortest paths. Changes to the network
fabric are propagated only to those brokers that have their broker network view al-
tered. Not all changes alter the BNM at a broker and those that do result in updates to
the routing caches, containing shortest paths, maintained at individual brokers.

2.2 Dissemination of Events

Every event has an implicit or explicit destination list, comprising clients, associated
with it. The brokering system as a whole is responsible for computing broker destina-

46 Shrideep Pallickara and Geoffrey Fox

tions (targets) and ensuring efficient delivery to these targeted brokers en route to the
intended client(s). Events as they pass through the broker network are updated to
snapshot its dissemination within the network. The event dissemination traces elimi-
nate continuous echoing and in tandem with the BNM –computes shortest paths – at
each broker, is used to deploy a near optimal routing solution. The routing is near
optimal since for every event the associated targeted brokers are usually the only ones
involved in disseminations. Furthermore, every broker, either targeted or en route to
one, computes the shortest path to reach target destinations while eschewing links and
brokers that have failed or have been failure-suspected.

In NaradaBrokering topics could be based on tag-value pairs, Integer and String
values. Clients can also specify SQL queries on properties contained in a JMS mes-
sage. Finally, NaradaBrokering currently incorporates a distributed XML matching
engine, which allows clients to specify subscriptions in XPath queries and store ad-
vertisements in XML encapsulated events. Real-time XML events are evaluated
against the stored XPath subscriptions, while stored XML advertisements are evalu-
ated against a real-time XPath query for discovery purposes.

Figures 2 and 3 illustrate
some results [14] from our ini-
tial research where we studied
the message delivery time as a
function of load. The results are
from a system comprising 22
broker processes and 102 clients
in the topology outlined in Fig-
ure 1. Each broker node process
is hosted on 1 physical Sun
SPARC Ultra-5 machine (128
MB RAM, 333 MHz), with no
SPARC Ultra-5 machine host-
ing more than one broker node
process. The publisher and the
measuring subscriber reside on
the same SPARC Ultra-5 ma-
chine. In addition to this there
are 100 subscribing client proc-
esses, with 5 client processes
attached to every other broker
node (broker nodes 22 and 21
do not have any other clients
besides the publisher and measuring subscriber respectively) within the system. The
100 client node processes all reside on a SPARC Ultra-60 (512 MB RAM, 360 MHz)
machine. The run-time environment for all the broker node and client processes is
Solaris JVM (JDK 1.2.1, native threads, JIT). The machines involved in the experi-
ment reside on a 100 Mbps network.

We measure the latencies at the client under varying conditions of publish rates,
event sizes and matching rates. In most systems where events are continually gener-
ated a “typical” client is generally interested in only a small subset of these events.
This behavior is captured in the matching rate for a given client. Varying the match-

Fig. 1. The NaradaBrokering Test Topology

i
4 5

6 l
13 14

15

j7 8
9

h
1 2

3

k
10 11

12

m
16 17

18

n
20

21

19

22

Measuring
Subscriber

Publisher

NaradaBrokering: A Distributed Middleware Framework and Architecture 47

ing rates allows us to perform measurements under conditions of varying selectivity.
The 100% case corresponds to systems that would flood the broker network. In sys-
tems that resort to flooding (routing a message to every router node) the system per-
formance does not vary with changes in the match rate. Furthermore, in most cases a
given message would only be routed to a small set of targeted client nodes.

Fig. 2. NaradaBrokering Performance at match
rates of 100%, 50% and 15%

Fig. 3. NaradaBrokering Performance at match
rates of 50%, 33% and 4%

As the results demonstrate, the system performance improves significantly with in-
creasing selectivity from subscribers. The distributed broker network scaled well,
with adequate latency, unless the system became saturated at very high publish rates.

2.3 Failures and Recovery

In NaradaBrokering, stable storages existing in parts of the system are responsible for
introducing state into the events. The arrival of events at clients advances the state
associated with the corresponding clients. Brokers do not keep track of this state and
are responsible for ensuring the most efficient routing. Since the brokers are stateless,
they can fail and remain failed forever. The guaranteed delivery scheme within Na-
radaBrokering does not require every broker to have access to a stable store or
DBMS. The replication scheme is flexible and easily extensible. Stable storages can
be added/removed and the replication scheme can be updated. Stable stores can fail
but they do need to recover within a finite amount of time. During these failures the
clients that are affected are those that were being serviced by the failed storage.

2.4 JMS Compliance

NaradaBrokering is JMS compliant and provides support not only for JMS clients, but
also for replacing single/limited server JMS systems transparently [28] with a distrib-
uted NaradaBrokering broker network. Since JMS clients are vendor agnostic, this
JMS integration has provided NaradaBrokering with access to a plethora of applica-
tions built around JMS, while the integrated JMS solution provides these applications
with scaling, availability and dynamic real time load balancing. Among the applica-

Transit Delays under different matching rates:
22 Brokers 102 Clients

Match Rate=50%
Match Rate=33%
Match Rate=4%

0 100 200 300 400 500 600 700Publish Rate
 (Events/sec)

0 50100150200250300350400450500

Event Size (Bytes)

0
20
40
60
80

100
120
140
160

Transit Delay
 (MilliSeconds)

Transit Delays under different matching rates:
22 Brokers 102 Clients

Match Rate=100%
Match Rate=50%
Match Rate=15%

0
100

200
300

400
500

600
700

Publish Rate
 (Events/sec) 0 50100150200250300350400450500

Event Size (Bytes)

0
50

100
150
200
250
300
350
400
450

Transit Delay
 (MilliSeconds)

48 Shrideep Pallickara and Geoffrey Fox

tions ported to this solution are the Anabas distance education conferencing system
[40] and the Online Knowledge Center (OKC) portal [41].

2.4.1 JMS Performance Data
To gather performance data, we run an instance of the SonicMQ (version 3.0) [42]
broker and NaradaBrokering broker on the same dual CPU (Pentium-3, 1 GHz,
256MB) machine. We then setup 100 subscribers over 10 different JMS TopicCon-
nections on another dual CPU (Pentium-3, 866MHz, 256MB) machine. There is also
a measuring subscriber and a publisher that are set up on a third dual CPU (Pentium
3, 866MHz, 256MB RAM) machine. The three machines (residing on a 100 Mbps
network) have Linux (version 2.2.16) as their operating system. The runtime envi-
ronment for all the processes is Java 2 JRE (Blackdown-FCS).

Transit Delays for Message Samples in
 NaradaBrokering & SonicMQ NaradaBr

SonicMQ

0 50 100150200250300350400450
Publish Rate

 (Messages/sec)
50100150200250300350400450500550

Payload Size
 (Bytes)

0
5

10
15
20
25
30

Mean
 Transit Delay
 (MilliSeconds)

Fig. 4. Transit Delays for messages

Standard Deviation in the Message Samples
 NaradaBrokering and SonicMQ NaradaBr

SonicMQ

0 50 100150200250300350400450
Publish Rate

 (Messages/sec)
50100150200250300350400450500550

Payload Size
 (Bytes)

0
2
4
6
8

10
12
14

Standard
 Deviation

 (MilliSeconds)

Fig. 5. Standard Deviation for messages

The topic, which the subscribers subscribe to and the publisher publishes to, is the
same. We vary the rates at which the publisher publishes messages while varying the
payload sizes associated with these messages. We compute the transit delays associ-
ated with individual messages and also the standard deviation in the delays (used to
compute the mean transit delay) associated with messages in a given test case. Figure
4 depicts the mean transit delays for the measuring subscriber under NaradaBrokering
and SonicMQ for high publish rates and smaller payload sizes. Figure 5 depicts the
standard deviation associated with message samples under the same conditions.

As can be seen NaradaBrokering compares very well with SonicMQ. Also, the
standard deviation associated with message samples in NaradaBrokering were for the
most part lower than in SonicMQ. Additional results can be found in [28].

3 Support for P2P Interactions in NaradaBrokering

Issues in P2P systems pertaining to the discovery of services and intelligent routing
can be addressed very well in the NaradaBrokering system. The broker network
would be used primarily as a delivery engine, and a pretty efficient one at that, while
locating peers and propagating interactions to relevant peers. The most important
aspect in P2P systems is the satisfaction of peer requests and discovery of peers and
associated resources that could handle these requests. The broker network forwards

NaradaBrokering: A Distributed Middleware Framework and Architecture 49

these requests only to those peers that it believes can handle the requests. Peer interac-
tions in most P2P systems are achieved through XML-based data interchange. XML’s
data description and encapsulation properties provide easy access to specific elements
of data. Individual brokers routing interactions could access relevant elements, cache
this information and use it subsequently to achieve the best possible routing character-
istics. The brokering system, since it is aware of advertisements, can also act as a hub
for search and discovery operations. These advertisements when organized into “que-
ryspaces” allow the integrated system to respond to search operations more effi-
ciently.

Resources in NaradaBrokering are generally within the purview of the broker net-
work. P2P systems replicate resources in an ad hoc fashion, the availability of which
is dependent on the peer’s active digital presence. Some resources, however, are best
managed by the brokering system rather than being left to the discretion of peers who
may or may not be present at any given time. An understanding of the network topol-
ogy and an ability to pin point the existence of peers interested in that resource are
paramount for managing the efficient replications of a resource. The distributed bro-
ker network, possessing this knowledge, best handles this management of resources
while ensuring that these replicated resources are “closer” and “available” at locations
with a high interest in that resource. Furthermore, the broker network is also better
suited, than a collection of peers, to eliminate race conditions and deadlocks that
could exist due to a resource being accessed simultaneously by multiple peers. The
broker network can also be responsive to changes in peer concentrations, volumes of
peer requests, and resource availability.

There are also some issues that need to be addressed while incorporating support
for P2P interactions. P2P interactions are self-attenuating with interactions dying out
after a certain number of hops. These attenuations in tandem with traces of the peers,
which the interactions have passed through, eliminate the continuous echoing problem
that result from loops in peer connectivity. However, attenuation of interactions some-
times prevents peers from discovering certain services that are being offered. This
results in P2P interactions being very “localized”. These attenuations thus mean that
the P2P world is inevitably fragmented into many small subnets that are not con-
nected. Furthermore, sophisticated routing schemes are seldom in place and interac-
tions are primarily through simple forwarding of requests with the propagation range
determined by the attenuation indicated in the message. NaradaBrokering could also
be used to connect islands of peers together. Peers that are not directly connected
through the peer network could be indirectly connected through the broker network.
Peer interactions and resources in the P2P model are traditionally unreliable, with
interactions being lost or discarded due to peer failures or absences, overloading of
peers and queuing thresholds being reached.

Guaranteed delivery properties existing in NaradaBrokering can augment peer be-
havior to provide a notion of reliable peers, interactions and resources. Such an inte-
grated brokering solution would also allow for hybrid interaction schemes to exist
alongside each other. Applications could be built around hybrid-clients that would
exhibit part peer behavior and part traditional client behavior (e.g. JMS). P2P com-
munications could be then used for traffic where loss of information can be sustained.
Similarly, hybrid-clients needing to communicate with each other in a “reliable” fash-
ion could utilize the brokering system’s capabilities to achieve that. Sometimes, hy-
brid-clients satisfy each other’s requests, obviating the need for funneling interactions
through the broker network. Systems tuned towards large-scale P2P systems include

50 Shrideep Pallickara and Geoffrey Fox

Pastry [43] from Microsoft, which provides an efficient location and routing substrate
for wide-area P2P applications. Pastry provides a self-stabilizing infrastructure that
adapts to the arrival, departure and failure of nodes. The JXTA [44] project at Sun
Microsystems is another effort to provide such large-scale P2P infrastructures.

3.1 JXTA

JXTA is a set of open, generalized protocols [45] to support P2P interactions and core
P2P capabilities such as indexing, file sharing, searching, peer grouping and security.
The JXTA peers, and rendezvous peers (specialized routers), rely on a simple for-
warding of interactions for dissemination. Time-to-live (TTL) indicators and peer
traces attenuate interaction propagations. JXTA interactions are unreliable and tend to
be localized. It is expected that existing P2P systems would either support JXTA or
have bridges initiated to it from JXTA. Support for JXTA would thus enable us to
leverage other P2P systems along with applications built around those systems.

3.2 JXTA & NaradaBrokering

In our strategy for providing support for P2P interactions within NaradaBrokering, we
impose two constraints. First, we make no changes to the JXTA core and the associ-
ated protocols. We make additions to the rendezvous layer for integration purposes.
Second, this integration should entail neither any changes to the peers nor a straitjack-
eting of the interactions that these peers could have had prior to the integration.

The integration is based on the proxy model, which essentially acts as the bridge
between the NaradaBrokering system and JXTA. The Narada-JXTA proxy, operating
inside the JXTA rendezvous layer, serves in a dual role as both a rendezvous peer and
as a NaradaBrokering client providing a bridge between NaradaBrokering and JXTA.
NaradaBrokering could be viewed as a service by JXTA. The discovery of this ser-
vice is automatic and instantaneous due to the Narada-JXTA proxy’s integration in-
side the rendezvous layer. Any peer can utilize NaradaBrokering as a service so long
as it is connected to a Narada-JXTA proxy. Nevertheless, peers do not know that the
broker network is routing some of their interactions. Furthermore, these Narada-
JXTA proxies, since they are configured as clients within the NaradaBrokering sys-
tem, inherit all the guarantees that are provided to NaradaBrokering clients.

3.2.1 The Interaction Model
Different JXTA interactions are queued at the queues associated with the relevant
layers comprising the JXTA protocol suite. Each layer performs some operations
including the addition of additional information. The rendezvous layer processes
information arriving at its input queues from the peer-resolving layer and the pipe-
binding layer. Since the payload structure associated with different interactions is
different we can easily identify the interaction types associated with the payloads.
Interactions pertaining to discovery/search or communications within a peer group
would be serviced both by JXTA rendezvous peers and also by Narada-JXTA proxies.

Interactions that peers have with the Narada-JXTA proxies are what are routed
through the NaradaBrokering system. JXTA peers can continue to interact with each

NaradaBrokering: A Distributed Middleware Framework and Architecture 51

other and of course some of these peers can be connected to pure JXTA rendezvous
peers. Peers have multiple routes to reach each other and some of these could include
the NaradaBrokering system and some of them need not. Such peers can interact di-
rectly with each other during the request/response interactions.

3.2.2 Interaction Disseminations
Peers can create a peer group; request to be part of a peer group; perform
search/request/discovery all with respect to a specific targeted peer group. Peers al-
ways issue requests/responses to a specific peer group and sometimes to a specific
peer. Peers and peer groups are identified by UUID [46] (IETF specification guaran-
tees uniqueness until 3040 A.D.) based identifiers. Every peer generates its own peer
id while the peer that created the peer group generates the associated peer group id.
Each rendezvous peer keeps track of multiple peer groups through peer group adver-
tisements that it receives and is responsible for forwarding interactions.

Narada-JXTA proxies are initialized both as rendezvous peers and also as Na-
radaBrokering clients. During its initialization as a NaradaBrokering client every
proxy is assigned a unique connection ID by the NaradaBrokering system, after which
the proxy subscribes to a topic identifying itself as a Narada-JXTA proxy. This en-
ables NaradaBrokering to be aware of all the Narada-JXTA proxies that are present in
the system. The Narada-JXTA proxy in its role as a rendezvous peer to peers re-
ceives –

1) Peer group advertisements
2) Requests from peers to be part of a certain peer group and responses to these

requests
3) Messages sent to a certain peer group or a targeted peer
4) Queries and responses to these queries

To ensure the efficient dissemination of interactions, it is important to ensure that
JXTA interactions that are routed by NaradaBrokering are delivered only to those
Narada-JXTA proxies that should receive them. This entails that the Narada-JXTA
proxy perform a sequence of operations, based on the interactions that it receives, to
ensure selective delivery. The set of operations that the Narada-JXTA proxy performs
comprise gleaning relevant information from JXTA’s XML encapsulated interactions,
constructing an event based on the information gleaned and finally in its role as a
NaradaBrokering client subscribing (if it chooses to do so) to a topic to facilitate se-
lective delivery. By subscribing to relevant topics, and creating events targeted to
specific topics each proxy ensures that the broker network is not flooded with interac-
tions routed by them. The events constructed by the Narada-JXTA proxies include the
entire interaction as the event’s payload. Upon receipt at a proxy, this payload is de-
serialized and the interaction is propagated as outlined in the proxy’s dual role as a
rendezvous peer. Additional details pertaining to this integration can be found in [27].

3.3 Performance Measurements

For comparing JXTA performance in NaradaBrokering we setup the topologies de-
picted in Figure 6. We then compare the performance of the pure JXTA environment,
the integrated Narada-JXTA system and the native NaradaBrokering system. The
rendezvous peers connected to brokers in topology 6.(b) are Narada-JXTA proxies.

52 Shrideep Pallickara and Geoffrey Fox

To compute communication delays
while obviating the need for clock
synchronizations and the need to
account for clock drifts, the re-
ceiver/sender pair is setup on the
same machine (Pentium-3, 1 GHz,
256 MB RAM). In all the test cases,
a message published by the sender is
received at the receiver and the delay
is computed. For a given message
payload this is done for a sample of
messages and we compute the mean
delay and the standard deviation
associated with the samples. This is
repeated for different payload sizes.
For every topology every node (bro-
ker or rendezvous peer) involved in
the experimental setup is hosted on a
different machine (Pentium-3, 1
GHz, 256MB RAM). The run-time
environment for all the processes is
(JDK-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3). The machines involved in the
experimental setup reside on a 100 Mbps LAN. Figures 7 and 8 depict the mean tran-
sit delay and standard deviation for the message samples under the different test to-
pologies. These results indicate the superior performance of the integrated Narada-
JXTA system compared to that of the pure JXTA system. The results [27] follow the
same general pattern for measurements under other test topologies.

Fig. 7. Mean Transit Delay for samples Fig. 8. Standard Deviation for samples

4 NaradaBrokering’s Transport Framework

In the distributed NaradaBrokering setting it is expected that when an event traverses
an end-to-end channel across multiple broker hops or links the underlying transport
protocols deployed for communications would vary. The NaradaBrokering Transport

Fig. 6. The JXTA Test Topologies

(a)

R

RR

R

R R

(b)

R

RR

R

R R

N N

N

NN

N

N N
(c)

R

N NaradaBrokering broker

JXTA Rendezvous

JXTA Peer

NaradaBrokering client

NaradaBrokering: A Distributed Middleware Framework and Architecture 53

framework aims to abstract the operations that need to be supported for enabling effi-
cient communications between nodes. These include support for −

1) Easy addition of transport protocols within the framework.
2) Deployments of specialized links to deal with specific data types.
3) Negotiation of the best available communication protocol between two nodes
4) Adaptability in communications by responding to changing network conditions.
5) Accumulating performance data measured by different underlying protocol im-

plementations.

TCP, UDP, Multicast, SSL, HTTP and RTP based implementations of the transport
framework are currently available in NaradaBrokering. It is also entirely conceivable
that there could be a JXTA link, which will defer communications to the underlying
JXTA pipe mechanism. NaradaBrokering can also tunnel through firewalls such as
Microsoft’s ISA [47] and Checkpoint [48] and proxies such as iPlanet [49]. The user
authentication modes supported include Basic, Digest and NTLM. Operations that
need to be supported between two communication endpoints are encapsulated within
the “link” primitive in the transport framework. The adaptability in communications
is achieved by specifying network constraints and conditions under which to migrate
to another underlying protocol. For e.g. a UDP link may specify that when the loss
rates increase substantially communication should revert to TCP. Though there is
support for this adaptability in the transport framework, this feature is not yet imple-
mented in the current release. Figure 9 provides an overview of the NaradaBrokering
transport framework.

Transport Interfaces
Link

Performance
Data

Transport
Handler Link

Factory

Link
Factory

LinksSpecific to a transport

Link Monitors

Data accumulated by
Monitoring Service

Broker
node Administrative Link (HTTP)

Optimal Transport

Alternate Link

Transport
Interfaces

(Application and
Content Dependent)

Negotiated with info
exchanged over

Administrative Link

Broker
node

Monitoring
Service

Fig. 9. Transport Framework Overview

54 Shrideep Pallickara and Geoffrey Fox

A Link is an abstraction that hides details pertaining to communications. A Link has
features, which allow it to specify a change in the underlying communications and the
conditions under which to do so. An implementation of the Link interface can incorpo-
rate its own handshaking protocols for setting up communications. The Link also con-
tains methods, which allow for checking the status of the underlying communication
mechanism at specified intervals while reporting communication losses to the relevant
error handlers within the transport framework. Each implementation of the Link inter-
face can expose and measure a set of performance factors. Measurement of perform-
ance factors over a link requires cooperation from the other end-point of the commu-
nication link; this particular detail should be handled within the Link implementation
itself. How the Link implementation computes round trip delays, jitter factors, band-
width, loss rates etc. should be within the domain of the implementer. The Link also
has methods which enable/disable the measurement of these performance factors.
Links expose the performance related information in the LinkPerformanceData con-
struct using which it is possible to retrieve information (type, value, description) per-
taining to the performance factors being measured.

In the distributed NaradaBrokering setting it is expected that when an event trav-
erses across multiple broker hops it could be sent over multiple communication links.
In places where links optimized to deal with the specialized communication needs of
the event exist (or can exist) they will be used for communications. While routing
events between two NaradaBrokering brokers (that already have a link established
between them) it should be possible for the event routing protocol to specify the crea-
tion of alternate communication links for disseminations. Support for this feature
arises when routing handlers request the deployment of specific transport protocols
for routing content, for e.g. a NaradaRTP event router could request that RTP links be
used for communication. Sometimes such links will be needed for short durations of
time. In such cases one should be able to specify the time for which the link should be
kept alive. Expiry of this timer should cause the garbage collection of all resources
associated with the link. The keepalive time corresponds to the period of inactivity
after which the associated link resources must be garbage collected.

All broker locations need not have support for all types of communication links.
Information regarding the availability of a specific link type could be encapsulated in
an URI. This information could be exchanged along with the information regarding
supported link types (at a given node) exchanged over the AdministrativeLink, which
is different from that of a link in the methods that can be invoked on it. This URI
could then possibly be used to dynamically load services. The AdministrativeLink
exchanges information regarding the various communication protocols (along with
information pertaining to them such as server, port, multicast group etc) that are
available at a broker/client node. This is then used to determine the best link to use to
communicate with the broker. Communication over the AdministrativeLink will be
HTTP based to ensure the best possibility for communications between two nodes.
All link implementations need to have an implementation of the LinkNegotiator inter-
face. Based on the information returned on the AdministrativeLink, the LinkNegotiators
are initialized for the common subset of communications and then deployed to nego-
tiate the transport protocol for communications. The LinkNegotiator determines
whether communication is possible over a specified link and also returns metrics that
would enable the AdministrativeLink in arriving at a decision regarding the deploy-
ment of the best possible link.

NaradaBrokering: A Distributed Middleware Framework and Architecture 55

All links of a specific communications type are managed by a LinkFactory in-
stance. The LinkFactory for a particular communications protocol enables communica-
tions to and from other nodes over a specific link type. The LinkFactory also controls
the intervals at which all its managed links check their communication status. Links
also allow the specification of constraints (usually on the set of performance factors
that it measures) and the link type that the communication must migrate to when those
conditions are satisfied. This feature allows a link to revert to an alternate underlying
transport protocol when communication degrades or is impossible to achieve. For
example, it is conceivable that while communicating using TCP, bandwidth and la-
tency constraints force a switch to UDP communications. The LinkFactory is also used
to manage the migration of communication protocols from links of different types.
Based on the set of supported communication protocol migrations, which a LinkFac-
tory exposes, adaptive communications between nodes is enabled.

Protocol layers use the TransportHandler interface to invoke methods for commu-
nications with other NaradaBrokering nodes. LinkFactories are loaded at run-time by
the TransportHandler implementation and it is then that TransportHandler interface is
passed to the LinkFactory implementation. The reference to the transport handler is
passed to every link created by the link factory. This is the reference that is used by
individual links to report the availability of data on a link. Individual links use this
interface to report data streams that are received over the link, loss of communications
and requests to migrate transport protocols if the migration constraint is satisfied.
Based on the LinkFactories that are loaded at run-time the transport handler can ex-
pose the set of link types (generally corresponding to transport types) that it supports.
Transport Handler manages all Link factories and Links. LinkFactories are responsible
for the creation of links. Links have methods for sending data (while also indicating
the data type). Data received on a communication link is reported to the Transport-
Handler by invoking the appropriate methods within the interface.

Fig. 10. Transit Delay for message samples Fig. 11. Standard deviation for samples

4.1 Some Performance Measurements

Figures 10 and 11 depict results for the TCP implementation of the framework. The
graphs depict the mean transit delays, and the accompanying standard deviations, for
native NaradaBrokering messages traversing through multiple (2, 3, 5 and 7) hops
with multiple brokers (1, 2, 4 and 6 respectively) in the path from the sender of the
message to the receiver. For each test case the message payload was varied. The tran-

56 Shrideep Pallickara and Geoffrey Fox

sit delay plotted is the average of the 50 messages that were published for each pay-
load. The sender/receiver pair along with every broker involved in the test cases were
hosted on different physical machines (Pentium-3, 1 GHz, 256 MB RAM). The ma-
chines reside on a 100 Mbps LAN. The run-time environment for all the processes is
JRE-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3

The average delay per inter-node (broker-broker, broker-client) hop was around
500-700 microseconds. The standard deviation varies from 0 microseconds for 50
byte messages traversing a hop to 800 microseconds over 7 hops.

5 Performance Monitoring and Aggregation

The performance monitoring scheme within the distributed broker network needs to
have two important characteristics. First, it should be able to work with different
transport protocols
with no straitjacketing
of the performance
factors being measured.
The Link and LinkPer-
formanceData primi-
tives that abstract
transport details and
performance data re-
spectively, as outlined
in the preceding sec-
tion, ensure the ability
to work with unlimited
performance factors

over different transport
protocols. Different
nodes, with different
types of links originating from them, can end up measuring a different set of perform-
ance factors. Second, the scheme should be to federate with other network measure-
ment services such as the network weather service (NWS) [50]. An added feature
would be to allow administrators to monitor specific realms or domains.

Every broker in NaradaBrokering incorporates a monitoring service (as shown in
Figure 12) that monitors the state of the links originating from the broker node. Met-
rics computed and reported over individual links, originating from a broker node,
include bandwidth, jitter, transit delays, loss rates and system throughputs. Factors
are measured in a non-intrusive way so as to ensure that the measurements do not
further degrade the metrics being measured in the first place. Factors such as band-
width measurements, which can pollute other metrics being measured, are measured
at lesser frequencies. Furthermore, once a link is deemed to be at the extreme ends of
the performance spectrum (either very good or very bad) the measurement of certain
factors are turned off while others are measured at a far lower frequency. Each link
can measure different set of parameters. So the set of parameters being measured
would be extensible and flexible. The monitoring service that runs at every node en-
capsulates performance data gathered from each link in an XML structure. The moni-

Broker
Node

Link
Data

Broker
Node

Link
Data

Performance Aggregation
Service

Control Message
Exchange

Aggregates info
from nodes in a
certain domain

Monitoring
Service

Fig. 12. Performance Aggregation Overview

NaradaBrokering: A Distributed Middleware Framework and Architecture 57

toring service then reports this data to a performance aggregator node, which aggre-
gates information from monitoring services running at other nodes.

Performance aggregators monitor the state of the network fabric at certain realms;
the aggregators themselves may exchange information with each other to provide a
state of the integrated network realm. The performance aggregators exchange infor-
mation with the monitoring services pertaining to the measurement and reporting of
performance factors. For example, the aggregator can instruct the monitoring service
running at a broker node to stop (or modify the intervals between) the measurement of
certain factors. Similarly, an aggregator may instruct the monitoring service to report
only certain performance factors and that too, only if the factors have varied by the
amount (absolute value or a percentage) specified in it’s request.

Information accumulated within the aggregators is accessible to administrators via
a portlet residing in a portal such as Apache Jetspeed [51]. Note that, since the infor-
mation returned to the aggregators in encapsulated in an XML structure, it is very
easy to incorporate results gathered from another network monitoring service such as
NWS. All that needs to be done is to have a proxy, residing at a NWS node that en-
capsulates the monitored data into an XML structure. The aggregated XML perform-
ance data (from the monitoring service at each node and other third-party services)
would be mined to generate information, which would then be used to achieve to
certain objectives.
(a) The ability to identify, circumvent, project and prevent system bottlenecks: Differ-
ent transports would reveal this in different ways. As system performance degrades
UDP loss rates may increase, TCP latencies increase. Similarly as available band-
widths decrease the overheads associated with TCP error correction and in order de-
livery may become unacceptable for certain applications.
(b) To aid routing algorithms: Costs associated with link traversals in BNM's would
be updated to reflect the state of the fabric and the traversal times associated with
links in certain realms. Routes computed based on this information would then reveal
"true" faster routes.
(c) To be used for Dynamic topologies to address both (a) and (b): The aggregated
performance information would be used to identify locations to upgrade the network
fabric of the messaging infrastructure. This upgrade would involve bro-
kers/connections be instantiated/purged dynamically to assuage system bottlenecks
and to facilitate better routing characteristics. Although multicasting and bandwidth
reservation protocols such as RSVP [52] and ST-II [53] can help in better utilizing the
network they require support at the router level, more conceited effort is need at
higher levels, and dynamic topologies coupled with efficient routing protocols can
help in the efficient utilization of network resources.
(d) To determine the best available broker to connect to: Based on the aggregated
information it should be possible to determine the best broker that a client can connect
to within a certain realm. Scaling algorithms, such as the one derived from item (c),
would benefit greatly from this strategy by incorporating newly added broker nodes
(which would be the best available ones) into the routing solution.
(e) Threshold notifications: Administrators can specify thresholds, which when
reached by specific monitored factors, results in notifications being sent to them.

58 Shrideep Pallickara and Geoffrey Fox

6 Security Framework

Since it is entirely conceivable that messages (including queries, invocations and
responses) would have to traverse over hops where the underlying communication
mechanisms are not necessarily secure, a security infrastructure that relies on message
level security needs to be in place. The security framework in NaradaBrokering tries
to address the following issues
1. Authentication: Confirm whether a user is really who he says he is.
2. Authorization: Identify if the user is authorized to receive certain events
3. Key distribution: Based on the authentication and authorization, distribute keys,

which ensure that only the valid clients are able to decrypt encrypted data.
4. Digital Signing: Have the ability to verify the source of the event and whether the

source is authorized to publish events conforming to the specified template.
5. Communication Protocol Independence: Have the ability to work over normal

communication channels. Communications need not to be over unencrypted links.
6. End-to-End integrity: Ensure that the only place where the unencrypted event is

seen at the authorized publisher of the event and the authenticated (and authorized)
subscribers to the event.

7. Detection of security compromise: Check whether the publisher’s signature is a
valid one. This approach would be similar to the Certificate Revocation Lists
(CRL) scheme.

8. Qualities of Service detecting compromise: Clients may be asked to answer ques-
tions to verify its authenticity at regular intervals to facilitate detection of compro-
mise.

9. Response to security compromise: This would involve invalidating certain signa-
tures and discarding the use of certain keys for encrypted communications.

In our approach we secure messages independently of any transport level security.
This provides a fine-grained security structure suitable for distributed systems and
multiple security roles. For example, parts of the message may be encrypted differ-
ently, allowing users with different access privileges to access different parts of the
message. Basic security operations such as authentication should be performed in a
mechanism-independent way, with specific mechanisms (Kerberos [54], PKI)
plugged into specific applications. The message level security framework allows us
to deploy communication links where data is not encrypted. Furthermore, this scheme
also ensures that no node/unauthorized-entity ever sees the unencrypted message. In
our strategy we incorporate schemes to detect and respond to security compromises
while also dealing with various attack scenarios.

Security specifications for Web Services [55, 56] are just starting to emerge, but
generally follow the same approach: the message creator adds a signed XML message
containing security statements to the SOAP envelope. The message consumer must
be able to check these statements and the associated signature before deciding if it can
execute the request. Legion (http://www.cs.virginia.edu/ ~legion/) is a long-standing
research project for building a “virtual computer” out of distributed objects running
on various computing resources. Legion objects communicate within a secure mes-
saging framework [57] with an abstract authentication/identity system that may use
either PKI or Kerberos. Legion also defines an access control policy on objects. Ad-
ditional details pertaining to the NaradaBrokering security infrastructure can be found
in [58].

NaradaBrokering: A Distributed Middleware Framework and Architecture 59

7 Conclusions and Future Work

This paper outlined an extensible messaging framework that, we propose, would be
appropriate to host P2P grids. Our results demonstrate that the framework can indeed
be deployed for both synchronous and asynchronous applications while incorporating
performance-functionality trade-offs for different scenarios (centralized, distributed
and peer-to-peer mode). We believe we are now well positioned to incorporate sup-
port, within the messaging infrastructure, for Web/Grid Services.

We have recently incorporated an XML matching engine within the distributed
brokering framework. This allows us to facilitate richer discovery mechanisms.
Trade-offs in performance versus functionality inherent in such matching engines is a
critical area that needs to be researched further. Another area that we intend to inves-
tigate is the model of dynamic resource management. A good example of a dynamic
peer group is the set of Grid/Web Services [59, 60] generated dynamically when a
complex task runs – here existing registration/discovery mechanisms are unsuitable.
A P2P like discovery strategy within such a dynamic group combined with NaradaB-
rokering’s JMS mode between groups seems attractive. We have also begun investi-
gations into the management of distributed lightweight XML databases using P2P
search and discovery mechanisms. Another area amenable to immediate investigation
and research is the federation of services in multiple grid realms.

Bibliography

1. The Grid Forum http://www.gridforum.org
2. GridForum Grid Computing Environment working

group(http://www.computingportals.org) and survey of existing grid portal projects.
http://www.computingportals.org/

3. “The Grid: Blueprint for a New Computing Infrastructure”, Ian Foster and Carl Kesselman
(Eds.), Morgan-Kaufman, 1998. See especially D. Gannon, and A. Grimshaw, “Object-
Based Approaches”, pp. 205-236, of this book.

4. Globus Grid Project http://www.globus.org
5. GriPhyN Particle Physics Grid Project Site, http://www.griphyn.org/
6. International Virtual Data Grid Laboratory at http://www.ivdgl.org/
7. NEES Earthquake Engineering Grid, http://www.neesgrid.org/
8. SCEC Earthquake Science Grid, http://www.scec.org
9. W. Johnston, D. Gannon, B. Nitzberg, A. Woo, B. Thigpen, L. Tanner, “Computing and

Data Grids for Science and Engineering,” Proceedings of Super Computing 2000.
10. DoE Fusion Grid at http://www.fusiongrid.org
11. Oram, A. (eds) 2001. Peer-To-Peer: Harnessing the Power of Disruptive Technologies.

O’Reilly, CA 95472.
12. Web Services Description Language (WSDL) 1.1 http://www.w3c.org/TR/wsdl
13. Definition of Web Services and Components

http://www.stencilgroup.com/ideas_scope_200106wsdefined.html#whatare
14. Geoffrey Fox and Shrideep Pallickara, An Event Service to Support Grid Computational

Environments. Concurrency and Computation: Practice and Experience. Volume 14(13-15)
pp 1097-1129.

15. Fox, G. Report on Architecture and Implementation of a Collaborative Computing and
Education Portal. http://aspen.csit.fsu.edu/collabtools/updatejuly01/erdcgarnet.pdf. 2001.

16. V. Mann and M. Parashar, Middleware Support for Global Access to Integrated Computa-
tional Collaboratories, Proc. of the 10th IEEE symposium on High Performance Distributed
Computing (HPDC-10), CA, August 2001.

60 Shrideep Pallickara and Geoffrey Fox

17. Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations http://www.globus.org/research/papers/anatomy.pdf

18. Kingdom e-Science Activity http://www.escience-grid.org.uk/
19. Julian Bunn and Harvey Newman. Chapter on Data Intensive Grids for High Energy Phys-

ics in Grid Computing: Making the Global Infrastructure a Reality. Editors Berman, Fox
and Hey. John Wiley. April 2003.

20. Hasan Bulut et al. An Architecture for e-Science and its Implications. Proceedings of the
International Symposium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS 2002) July 17 2002.

21. Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara, Ahmet Uyar, Dennis Gannon, and Alek-
sander Slominski, "Community Grids" invited talk at International Conference on Compu-
tational Science, April, 2002, Netherlands.

22. Java Message Service Specification”. Mark Happner, Rich Burridge and Rahul Sharma.
Sun Microsystems. 2000. http://java.sun.com/products/jms.

23. RTP: A Transport Protocol for Real-Time Applications (IETF RFC 1889)
http://www.ietf.org/rfc/rfc1889.txt.

24. XML based messaging and protocol specifications SOAP. http://www.w3.org/2000/xp/.
25. The NaradaBrokering System http://www.naradabrokering.org
26. Geoffrey Fox and Shrideep Pallickara. “The Narada Event Brokering System: Overview

and Extensions”. Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, June 2002. pp 353-359.

27. Geoffrey Fox, Shrideep Pallickara and Xi Rao. “A Scaleable Event Infrastructure for Peer
to Peer Grids”. Proceedings of ACM Java Grande ISCOPE Conference 2002. Seattle,
Washington. November 2002.

28. Geoffrey Fox and Shrideep Pallickara. “JMS Compliance in the Narada Event Brokering
System”. Proceedings of the International Conference on Internet Computing. June 2002.
pp 391-402.

29. “Grid Services For Earthquake Science”. Geoffrey Fox et al. Concurrency & Computation:
Practice and Experience. 14(6-7): 371-393 (2002).

30. Hasan Bulut, Geoffrey Fox, Shrideep Pallickara, Ahmet Uyar and Wenjun Wu. “Integration
of NaradaBrokering and Audio/Video Conferencing as a Web Service”. Proceedings of the
IASTED International Conference on Communications, Internet, and Information Technol-
ogy, November, 2002, in St.Thomas, US Virgin Islands.

31. Geoffrey Fox and Shrideep Pallickara “An Approach to High Performance Distributed Web
Brokering”, ACM Ubiquity Volume2 Issue 38. November 2001.

32. Gurudutt Banavar, et al. An Efficient Multicast Protocol for Content-Based Publish-
Subscribe Systems.In Proceedings of the IEEE International Conference on Distributed
Computing Systems, Austin, Texas, May 1999.

33. Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe notification
service with quenching. In Proceedings AUUG97, pages 243–255, Australia, 1997.

34. Fiorano Corporation. A Guide to Understanding the Pluggable, Scalable Connection Man-
agement (SCM) Architecture - White Paper. Technical report,
http://www.fiorano.com/products/fmq5 scm wp.htm, 2000.

35. Talarian Corporation. Smartsockets: Everything you need to know about middleware: Mis-
sion critical interprocess communication. Technical report, URL:
http://www.talarian.com/products/smartsockets, 2000.

36. TIBCO Corporation. TIB/Rendezvous White Paper. Technical report, URL:
http://www.rv.tibco.com/whitepaper.html, 1999.

37. The Object Management Group (OMG). OMG’s CORBA Event Service. URL:
http://www.omg.org/.

38. D.J. Watts and S.H. Strogatz. “Collective Dynamics of Small-World Networks”. Nature.
393:440. 1998.

NaradaBrokering: A Distributed Middleware Framework and Architecture 61

39. R. Albert, H. Jeong and A. Barabasi. “Diameter of the World Wide Web”. Nature 401:130.
1999.

40. The Anabas Conferencing System. http://www.anabas.com
41. The Online Knowledge Center (OKC) Web Portal http://ptlportal.ucs.indiana.edu
42. SonicMQ JMS Server http://www.sonicsoftware.com/
43. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and

routing for large-scale peer-to-peer systems. Proceedings of Middleware 2001.
44. Sun Microsystems. The JXTA Project and Peer-to-Peer Technology http://www.jxta.org
45. The JXTA Protocol Specifications. http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
46. Paul J. Leach and Rich Salz. Network Working Group. UUIDs and GUIDs. February, 1998.
47. Microsoft Internet Security and Acceleration (ISA) Server.

http://www.microsoft.com/isaserver/
48. Checkpoint Technologies. http://www.checkpoint.com/
49. iPlanet. http://www.iplanet.com/
50. The Network Weather Service: A Distributed Resource Performance Forecasting Service

for Metacomputing Rich Wolski, Neil Spring, and Jim Hayes, Journal of Future Generation
Computing Systems,Volume 15, Numbers 5-6, pp. 757-768, October, 1999

51. Apache Jetspeed. http://jakarta.apache.org/jetspeed/site/index.html
52. Zhang, L. et al. “ReSource ReserVation Protocol (RSVP) – Functional Specification”,

Internet Draft, March 1994.
53. Topolcic, C., “Experimental Internet Stream Protocol: Version 2 (ST-II)”, Internet RFC

1190, October 1990.
54. J. Steiner, C. Neuman, and J. Schiller. “Kerberos: An Authentication Service For Open Net-

worked Systems”. In Proceedings of the Winter 1988 USENIX Conference.
55. B.Atkinson, et al. “Web Services Security (WS-Security) Version 1.0 05 April 2002,”

Available from http://www-106.ibm.com/developerworks/webservices/library/ws-secure/.
56. “Assertions and Protocol for the OASIS Security Assertion Markup Language,” P. Hallam-

Baker and E. Maler, eds. Available from
http://www.oasis-open.org/committees/security/docs/ cs-sstc-core-01.pdf.

57. Adam Ferrari et al. "A Flexible Security System for Metacomputing Environments".
(HPCN Europe 99), pp 370-380. April 1999

58. Pallickara et. al. A Security Framework for Distributed Brokering Systems available at
http://www.naradabrokering.org

59. Semantic Web from W3C to describe self organizing Intelligence from enhanced web re-
sources. http://www. w3c.org/2001/sw/

60. Berners-Lee, T., Hendler, J., and Lassila, O., "The Semantic Web," Scientific American,
May2001.

	1 Introduction
	2 NaradaBrokering
	2.1 Broker Organization
	2.2 Dissemination of Events
	2.3 Failures and Recovery
	2.4 JMS Compliance
	2.4.1 JMS Performance Data

	3 Support for P2P Interactions in NaradaBrokering
	3.1 JXTA
	3.2 JXTA & NaradaBrokering
	3.2.1 The Interaction Model
	3.2.2 Interaction Disseminations

	3.3 Performance Measurements

	4 NaradaBrokering’s Transport Framework
	4.1 Some Performance Measurements

	5 Performance Monitoring and Aggregation
	6 Security Framework
	7 Conclusions and Future Work
	Bibliography

