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Abstract. A Peer-to-Peer (P2P) Grid would comprise services that include 
those of Grids and P2P networks and naturally support environments that have 
features of both limiting cases. Such a P2P grid integrates the evolving ideas of 
computational grids, distributed objects, web services, P2P networks and mes-
sage oriented middleware. In this paper we investigate the architecture, com-
prising a distributed brokering system that will support such a hybrid environ-
ment. Access to services can then be mediated either by the middleware or 
alternatively by direct P2P interactions between machines. 

1 Introduction 

The Grid [1-4] has made dramatic progress recently with impressive technology and 
several large important applications initiated in high-energy physics [5,6], earth sci-
ence [7,8] and other areas [9,10]. At the same time, there have been equally impres-
sive advances in broadly deployed Internet technology. We can cite the dramatic 
growth in the use of XML, the “disruptive” impact of peer-to-peer (P2P) approaches 
[11] that have resulted in a slew of powerful applications, and the more orderly, but 
still widespread adoption, of a universal Web Service approach to Web based applica-
tions [12,13]. There are no crisp definitions of Grids and P2P Networks that allow us 
to unambiguously discuss their differences and similarities and what it means to inte-
grate them. However these two concepts conjure up stereotype images that can be 
compared. Taking “extreme” cases, Grids are exemplified by the infrastructure used 
to allow seamless access to supercomputers and their datasets. P2P technology facili-
tates sophisticated resource sharing environments between “consenting” peers over 
the “edges” of the Internet, enabling ad hoc communities of low-end clients to adver-
tise and access resources on communal computers. Each of these examples offers 
services but they differ in their functionality and style of implementation. The P2P 
example could involve services to set-up and join peer groups, browse and access 
files on a peer, or possibly to advertise one’s interest in a particular file. The “classic” 
grid could support job submittal and status services and access to sophisticated data 
management systems.  

Grids typically have structured robust security services while P2P networks can 
exhibit more intuitive trust mechanisms reminiscent of the “real world”. Grids typi-
cally offer robust services that scale well in pre-existing hierarchically arranged or-
ganizations. P2P networks are often used when a best effort service is needed in a 
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dynamic poorly structured community. If one needs a particular “hot digital re-
cording”, it is not necessary to locate all sources of this, a P2P network needs to 
search enough plausible resources to ensure that success is statistically guaranteed. 
On the other hand, a 3D simulation of the universe might need to be carefully sched-
uled and submitted in a guaranteed fashion to one of the handful of available super-
computers that can support it. There are several attractive features in the P2P model, 
which motivate the development of hybrid systems.  Deployment of P2P systems is 
entirely user driven, obviating the need for any dedicated management of these sys-
tems. Resource discovery and management is an integral part of P2P computing with 
peers exposing the resources that they are willing to share and the system (sometimes) 
replicating these resources based on demand. Grids might host different persistent 
services and they must be able to discover these services and the interfaces they sup-
port. Peers can form groups with the fluid group memberships and are thus very rele-
vant for collaboration [14, 15]. This is an area that has been addressed for the Grid in 
Ref [16] and also in a seminal paper by Foster and collaborators [17] addressing 
broad support for communities.  

A P2P Grid would comprise services that include those of Grids and P2P networks 
while naturally supporting environments that have features of both limiting cases. We 
can discuss two examples where such a model is naturally applied. In the High En-
ergy Physics data analysis (e-Science [18]) problem discussed in [19], the initial steps 
are dominated by the systematic analysis of the accelerator data to produce summary 
events roughly at the level of sets of particles. This Grid-like step is followed by 
“physics analysis”, which can involve many different studies and much debate be-
tween involved physicists regarding the appropriate methods to study the data. Here 
we see some Grid and some P2P features. As a second example, consider the way one 
uses the Internet to access information – either news items or multimedia entertain-
ment. Perhaps the large sites like Yahoo, CNN and future digital movie distribution 
centers have Grid like organization. There are well-defined central repositories and 
high performance delivery mechanisms involving caching to support access. Security 
is likely to be strict for premium channels. This structured information is augmented 
by the P2P mechanisms popularized by Napster with communities sharing MP3 and 
other treasures in a less organized and controlled fashion. These simple examples 
suggest that whether for science or commodity communities, information systems 
should support both Grid and P2P capabilities [20,21].  

The proposed P2P grid, which integrates the evolving ideas of computational grids, 
distributed objects, web services, P2P networks and message oriented middleware, 
comprises resources such as relatively static clients, high-end resources and a dy-
namic collection of multiple P2P subsystems. We investigate the architecture, com-
prising a distributed brokering system that will support such a hybrid environment. 
Services can be hosted on such a P2P grid with peer groups managed locally and 
arranged into a global system supported by core servers. Access to services can then 
be mediated either by the “broker middleware” or alternatively by direct P2P interac-
tions between machines “on the edge”. The relative performance of each approach 
(which could reflect computer/network cycles as well as the existence of firewalls) 
would be used in deciding on the implementation to use. Such P2P Grids should 
seamlessly integrate users to themselves and to resources, which are also linked to 
each other. We can abstract such environments as a distributed system of “clients” 
which consist either of “users” or “resources” or proxies thereto. These clients must 
be linked together in a flexible fault tolerant efficient high performance fashion. The 
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messaging infrastructure linking clients (both users and resources of course) would 
provide the backbone for the P2P grid. 

The smallest unit of this messaging infrastructure should be able to intelligently 
process and route messages while working with multiple underlying communication 
protocols. We refer to this unit as a broker, where we avoid the use of the term serv-
ers to distinguish it clearly from the application servers that would be among the 
sources/sinks to messages generated within the integrated system. For our purposes 
(registering, transporting and discovering information), we use the term 
events/messages interchangeably where events are just messages − typically with time 
stamps. We may enumerate the following requirements for the messaging infrastruc-
ture −  

1. Scaling: This is of paramount importance considering the number of devices, cli-
ents and services that would be aggregated in the P2P grid. The distributed broker 
network should scale to support the increase in these aggregated entities. However 
the addition of brokers to aid the scaling should not degrade performance by in-
creasing communication pathlengths or ineffective bandwidth utilizations between 
broker nodes within the system. This calls for efficient organization of the broker 
network to ensure that the aforementioned degradations along with concomitant 
problems such as increased communication latencies do not take place. 

2. Efficient disseminations: The disseminations pertain to routing content, queries, 
invocations etc. to the relevant destinations in an efficient manner. The routing en-
gine at each broker needs to ensure that the paths traversed within the broker net-
work to reach destinations are along efficient paths that eschew failed broker 
nodes.  

3. Guaranteed delivery mechanisms: This is to ensure persistent delivery and reliable 
transactions within P2P grid realms. 

4. Location independence: To eliminate bandwidth degradations and bottlenecks 
stemming from entities accessing a certain known broker over and over again to 
gain access to services, it must be ensured that any broker within the broker net-
work is just as good as the other. Services and functionality would then be accessi-
ble from any point within the broker network. 

5. Support for P2P interactions:  P2P systems tend to be autonomic, obviating the 
need for dedicated management.  P2P systems incorporate sophisticated search and 
subsequent discovery mechanisms. Support for P2P interactions facilitates access 
to information resources and services hosted by peers at the “edge” of the network.  

6. Interoperate with other messaging clients:  Enterprises have several systems that 
are built around messaging. These clients could be based on enterprise vendors 
such as IBM’s MQSeries or Microsoft’s MSMQ. Sometimes these would be cli-
ents conforming to mature messaging specifications such as the Java Message Ser-
vice (JMS) [22]. JMS clients, existing in disparate enterprise realms, can utilize the 
distributed broker network as a JMS provider to communicate with each other. 

7. Communication through proxies and firewalls: It is inevitable that the realms we 
try to federate would be protected by firewalls stopping our elegant application 
channels dead in their tracks. The messaging infrastructure should thus be able to 
communicate across firewall, DHCP and NAT boundaries. Sometimes communi-
cations would also be through authenticating proxies.  

8. Extensible transport framework:  Here we consider the communication subsystem, 
which provides the messaging between the resources and services. Examining the 
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growing power of optical networks we see the increasing universal bandwidth that 
in fact motivates the thin client and server based application model. However the 
real world also shows slow networks and links(such as dial-ups), leading to a high 
fraction of dropped packets. We also see some chaos today in the telecom industry 
which is stunting, somewhat, the rapid deployment of modern “wired’ (optical) 
and wireless networks. We suggest that key to future federating infrastructures will 
be messaging subsystems that manage the communication between external re-
sources, services and clients to achieve the highest possible system performance 
and reliability. We suggest this problem is sufficiently hard that we only need 
solve this problem “once” i.e. that all communication – whether TCP/IP, UDP, 
RTP (A Transport Protocol for Real-Time Applications) [23], RMI, XML/SOAP 
[24] or you-name-it be handled by a single messaging or event subsystem.  

9. Ability to monitor the performance of P2P grid realms: State of the broker network 
fabric provides a very good indicator of the state of the P2P grid realm. Monitoring 
the network performance of the connections originating from individual brokers 
enables us to identify bottlenecks and performance problems, if any, which exist 
within a P2P grid realm.   

10.Security Infrastructure: Since it is entirely conceivable that messages (including 
queries, invocations and responses) would have to traverse over hops where the 
underlying communication mechanisms are not necessarily secure, a security infra-
structure that relies on message level security needs to be in place. Furthermore, 
the infrastructure should incorporate an authentication and authorization scheme to 
ensure restricted access to certain services.  The infrastructure must also ensure a 
secure and efficient distribution of keys to ensure access by authorized clients to 
content encapsulated in encrypted messages.  

In this paper we base our investigations on our messaging infrastructure, NaradaBro-
kering [25-31], which addresses or provides the foundations for the issues discussed 
above. The remainder of this paper is organized as follows. In section 2.0 we discuss 
broker network organization, routing of events and support for durable interactions in 
the NaradaBrokering system. Section 3.0 presents the rationale, and our strategy, to 
support P2P interactions. Section 4.0 presents an extensible transport framework that 
addresses the transport issues alluded to earlier. A performance aggregation frame-
work for monitoring and responding to changing network conditions is discussed in 
Section 5.0. Section 6.0 presents an overview of the message based security frame-
work in the system. Finally, in section 7.0 we present our conclusions and outline 
future work. 

2 NaradaBrokering 

To address the issues [31] of scaling, load balancing and failure resiliency, NaradaB-
rokering is implemented on a network of cooperating brokers. Brokers can run either 
on separate machines or on clients, whether these clients are associated with users or 
resources. This network of brokers will need to be dynamic for we need to service the 
needs of dynamic clients. Communication within NaradaBrokering is asynchronous 
and the system can be used to support different interactions by encapsulating them in 
specialized events. Clients reconnecting after prolonged disconnects, connect to the 
local broker instead of the remote broker that it was last attached to. This eliminates 
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bandwidth degradations caused by heavy concentration of clients from disparate geo-
graphic locations accessing a certain known remote broker over and over again.  

NaradaBrokering goes beyond other operational publish/subscribe systems [32-37] 
in many (support for JMS, P2P interactions, audio-video conferencing, integrated 
performance monitoring, communication through firewalls among others) ways. The 
messaging system must scale over a wide variety of devices − from hand held com-
puters at one end to high performance computers and sensors at the other extreme. We 
have analyzed the requirements of several Grid services that could be built with this 
model, including computing and education. Grid Services (including NaradaBroker-
ing) being deployed in the context of Earthquake Science can be found in [29]. Na-
radaBrokering supports both JMS and JXTA [44] (from juxtaposition), which 
are publish/subscribe environments with very different interaction models. NaradaB-
rokering also provides support for legacy RTP clients.  

2.1 Broker Organization 

Uncontrolled broker and connection additions result in a broker network susceptible 
to network-partitions and devoid of any logical structure thus making the creation of 
efficient broker network maps (BNM) an arduous if not impossible task. The lack of 
this knowledge hampers the development of efficient routing strategies, which exploit 
the broker topology. Such systems then resort to “flooding” the entire broker network, 
forcing clients to discard events they are not interested in. To circumvent this, Na-
radaBrokering incorporates a broker organization protocol, which manages the addi-
tion of new brokers and also oversees the initiation of connections between these 
brokers.  

In NaradaBrokering we impose a hierarchical structure on the broker network, 
where a broker is part of a cluster that is part of a super-cluster, which in turn is part 
of a super-super-cluster and so on. Clusters comprise strongly connected brokers with 
multiple links to brokers in other clusters, ensuring alternate communication routes 
during failures. This organization scheme results in “small world networks” [38,39] 
where the average communication “pathlengths” between brokers increase logarith-
mically with geometric increases in network size, as opposed to exponential increases 
in uncontrolled settings. This cluster architecture allows NaradaBrokering to support 
large heterogeneous client configurations that scale to arbitrary size. 

Creation of BNMs and the detection of network partitions are easily achieved in 
this topology. We augment the BNM hosted at individual brokers to reflect the cost 
associated with traversal over connections, for e.g. intra-cluster communications are 
faster than inter-cluster communications. The BNM can now be used not only to 
compute valid paths but also for computing shortest paths. Changes to the network 
fabric are propagated only to those brokers that have their broker network view al-
tered. Not all changes alter the BNM at a broker and those that do result in updates to 
the routing caches, containing shortest paths, maintained at individual brokers. 

2.2 Dissemination of Events 

Every event has an implicit or explicit destination list, comprising clients, associated 
with it. The brokering system as a whole is responsible for computing broker destina-
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tions (targets) and ensuring efficient delivery to these targeted brokers en route to the 
intended client(s). Events as they pass through the broker network are updated to 
snapshot its dissemination within the network. The event dissemination traces elimi-
nate continuous echoing and in tandem with the BNM –computes shortest paths – at 
each broker, is used to deploy a near optimal routing solution. The routing is near 
optimal since for every event the associated targeted brokers are usually the only ones 
involved in disseminations. Furthermore, every broker, either targeted or en route to 
one, computes the shortest path to reach target destinations while eschewing links and 
brokers that have failed or have been failure-suspected.  

In NaradaBrokering topics could be based on tag-value pairs, Integer and String 
values. Clients can also specify SQL queries on properties contained in a JMS mes-
sage. Finally, NaradaBrokering currently incorporates a distributed XML matching 
engine, which allows clients to specify subscriptions in XPath queries and store ad-
vertisements in XML encapsulated events. Real-time XML events are evaluated 
against the stored XPath subscriptions, while stored XML advertisements are evalu-
ated against a real-time XPath query for discovery purposes. 

Figures 2 and 3 illustrate 
some results [14] from our ini-
tial research where we studied 
the message delivery time as a 
function of load. The results are 
from a system comprising 22 
broker processes and 102 clients 
in the topology outlined in Fig-
ure 1. Each broker node process 
is hosted on 1 physical Sun 
SPARC Ultra-5 machine (128 
MB RAM, 333 MHz), with no 
SPARC Ultra-5 machine host-
ing more than one broker node 
process. The publisher and the 
measuring subscriber reside on 
the same SPARC Ultra-5 ma-
chine. In addition to this there 
are 100 subscribing client proc-
esses, with 5 client processes 
attached to every other broker 
node (broker nodes 22 and 21 
do not have any other clients 
besides the publisher and measuring subscriber respectively) within the system. The 
100 client node processes all reside on a SPARC Ultra-60 (512 MB RAM, 360 MHz) 
machine. The run-time environment for all the broker node and client processes is 
Solaris JVM (JDK 1.2.1, native threads, JIT). The machines involved in the experi-
ment reside on a 100 Mbps network. 

We measure the latencies at the client under varying conditions of publish rates, 
event sizes and matching rates. In most systems where events are continually gener-
ated a “typical” client is generally interested in only a small subset of these events. 
This behavior is captured in the matching rate for a given client. Varying the match-

Fig. 1. The NaradaBrokering Test Topology 
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ing rates allows us to perform measurements under conditions of varying selectivity. 
The 100% case corresponds to systems that would flood the broker network. In sys-
tems that resort to flooding (routing a message to every router node) the system per-
formance does not vary with changes in the match rate. Furthermore, in most cases a 
given message would only be routed to a small set of targeted client nodes.  

 

Fig. 2. NaradaBrokering Performance at match 
rates of 100%, 50% and 15% 

Fig. 3. NaradaBrokering Performance at match 
rates of 50%, 33% and 4% 

As the results demonstrate, the system performance improves significantly with in-
creasing selectivity from subscribers. The distributed broker network scaled well, 
with adequate latency, unless the system became saturated at very high publish rates.  

2.3 Failures and Recovery 

In NaradaBrokering, stable storages existing in parts of the system are responsible for 
introducing state into the events. The arrival of events at clients advances the state 
associated with the corresponding clients. Brokers do not keep track of this state and 
are responsible for ensuring the most efficient routing. Since the brokers are stateless, 
they can fail and remain failed forever. The guaranteed delivery scheme within Na-
radaBrokering does not require every broker to have access to a stable store or 
DBMS. The replication scheme is flexible and easily extensible. Stable storages can 
be added/removed and the replication scheme can be updated. Stable stores can fail 
but they do need to recover within a finite amount of time. During these failures the 
clients that are affected are those that were being serviced by the failed storage. 

2.4 JMS Compliance 

NaradaBrokering is JMS compliant and provides support not only for JMS clients, but 
also for replacing single/limited server JMS systems transparently [28] with a distrib-
uted NaradaBrokering broker network. Since JMS clients are vendor agnostic, this 
JMS integration has provided NaradaBrokering with access to a plethora of applica-
tions built around JMS, while the integrated JMS solution provides these applications 
with scaling, availability and dynamic real time load balancing. Among the applica-
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tions ported to this solution are the Anabas distance education conferencing system 
[40] and the Online Knowledge Center (OKC) portal [41]. 

2.4.1 JMS Performance Data 
To gather performance data, we run an instance of the SonicMQ (version 3.0) [42] 
broker and NaradaBrokering broker on the same dual CPU (Pentium-3, 1 GHz, 
256MB) machine. We then setup 100 subscribers over 10 different JMS TopicCon-
nections on another dual CPU (Pentium-3, 866MHz, 256MB) machine. There is also 
a measuring subscriber and a publisher that are set up on a third dual CPU (Pentium 
3, 866MHz, 256MB RAM) machine. The three machines (residing on a 100 Mbps 
network) have Linux (version 2.2.16) as their operating system. The runtime envi-
ronment for all the processes is Java 2 JRE ( Blackdown-FCS).  

Transit Delays for Message Samples in 
 NaradaBrokering & SonicMQ NaradaBr

SonicMQ

0 50 100150200250300350400450
Publish Rate 

 (Messages/sec)
50100150200250300350400450500550

Payload Size 
 (Bytes)

0
5

10
15
20
25
30

Mean 
 Transit Delay  
 (MilliSeconds)

 

Fig. 4. Transit Delays for messages 
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Fig. 5. Standard Deviation for messages 

The topic, which the subscribers subscribe to and the publisher publishes to, is the 
same. We vary the rates at which the publisher publishes messages while varying the 
payload sizes associated with these messages. We compute the transit delays associ-
ated with individual messages and also the standard deviation in the delays (used to 
compute the mean transit delay) associated with messages in a given test case. Figure 
4 depicts the mean transit delays for the measuring subscriber under NaradaBrokering 
and SonicMQ for high publish rates and smaller payload sizes. Figure 5 depicts the 
standard deviation associated with message samples under the same conditions.  

As can be seen NaradaBrokering compares very well with SonicMQ. Also, the 
standard deviation associated with message samples in NaradaBrokering were for the 
most part lower than in SonicMQ. Additional results can be found in [28]. 

3 Support for P2P Interactions in NaradaBrokering 

Issues in P2P systems pertaining to the discovery of services and intelligent routing 
can be addressed very well in the NaradaBrokering system. The broker network 
would be used primarily as a delivery engine, and a pretty efficient one at that, while 
locating peers and propagating interactions to relevant peers. The most important 
aspect in P2P systems is the satisfaction of peer requests and discovery of peers and 
associated resources that could handle these requests. The broker network forwards 
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these requests only to those peers that it believes can handle the requests. Peer interac-
tions in most P2P systems are achieved through XML-based data interchange. XML’s 
data description and encapsulation properties provide easy access to specific elements 
of data. Individual brokers routing interactions could access relevant elements, cache 
this information and use it subsequently to achieve the best possible routing character-
istics. The brokering system, since it is aware of advertisements, can also act as a hub 
for search and discovery operations. These advertisements when organized into “que-
ryspaces” allow the integrated system to respond to search operations more effi-
ciently.  

Resources in NaradaBrokering are generally within the purview of the broker net-
work. P2P systems replicate resources in an ad hoc fashion, the availability of which 
is dependent on the peer’s active digital presence. Some resources, however, are best 
managed by the brokering system rather than being left to the discretion of peers who 
may or may not be present at any given time. An understanding of the network topol-
ogy and an ability to pin point the existence of peers interested in that resource are 
paramount for managing the efficient replications of a resource.  The distributed bro-
ker network, possessing this knowledge, best handles this management of resources 
while ensuring that these replicated resources are “closer” and “available” at locations 
with a high interest in that resource. Furthermore, the broker network is also better 
suited, than a collection of peers, to eliminate race conditions and deadlocks that 
could exist due to a resource being accessed simultaneously by multiple peers. The 
broker network can also be responsive to changes in peer concentrations, volumes of 
peer requests, and resource availability.  

There are also some issues that need to be addressed while incorporating support 
for P2P interactions. P2P interactions are self-attenuating with interactions dying out 
after a certain number of hops. These attenuations in tandem with traces of the peers, 
which the interactions have passed through, eliminate the continuous echoing problem 
that result from loops in peer connectivity. However, attenuation of interactions some-
times prevents peers from discovering certain services that are being offered. This 
results in P2P interactions being very “localized”. These attenuations thus mean that 
the P2P world is inevitably fragmented into many small subnets that are not con-
nected. Furthermore, sophisticated routing schemes are seldom in place and interac-
tions are primarily through simple forwarding of requests with the propagation range 
determined by the attenuation indicated in the message. NaradaBrokering could also 
be used to connect islands of peers together. Peers that are not directly connected 
through the peer network could be indirectly connected through the broker network. 
Peer interactions and resources in the P2P model are traditionally unreliable, with 
interactions being lost or discarded due to peer failures or absences, overloading of 
peers and queuing thresholds being reached.  

Guaranteed delivery properties existing in NaradaBrokering can augment peer be-
havior to provide a notion of reliable peers, interactions and resources. Such an inte-
grated brokering solution would also allow for hybrid interaction schemes to exist 
alongside each other. Applications could be built around hybrid-clients that would 
exhibit part peer behavior and part traditional client behavior (e.g. JMS). P2P com-
munications could be then used for traffic where loss of information can be sustained. 
Similarly, hybrid-clients needing to communicate with each other in a “reliable” fash-
ion could utilize the brokering system’s capabilities to achieve that. Sometimes, hy-
brid-clients satisfy each other’s requests, obviating the need for funneling interactions 
through the broker network. Systems tuned towards large-scale P2P systems include 



50      Shrideep Pallickara and Geoffrey Fox 

Pastry [43] from Microsoft, which provides an efficient location and routing substrate 
for wide-area P2P applications. Pastry provides a self-stabilizing infrastructure that 
adapts to the arrival, departure and failure of nodes. The JXTA [44] project at Sun 
Microsystems is another effort to provide such large-scale P2P infrastructures. 

3.1 JXTA 

JXTA is a set of open, generalized protocols [45] to support P2P interactions and core 
P2P capabilities such as indexing, file sharing, searching, peer grouping and security.  
The JXTA peers, and rendezvous peers (specialized routers), rely on a simple for-
warding of interactions for dissemination. Time-to-live (TTL) indicators and peer 
traces attenuate interaction propagations. JXTA interactions are unreliable and tend to 
be localized. It is expected that existing P2P systems would either support JXTA or 
have bridges initiated to it from JXTA. Support for JXTA would thus enable us to 
leverage other P2P systems along with applications built around those systems.  

3.2 JXTA & NaradaBrokering  

In our strategy for providing support for P2P interactions within NaradaBrokering, we 
impose two constraints. First, we make no changes to the JXTA core and the associ-
ated protocols. We make additions to the rendezvous layer for integration purposes. 
Second, this integration should entail neither any changes to the peers nor a straitjack-
eting of the interactions that these peers could have had prior to the integration. 

The integration is based on the proxy model, which essentially acts as the bridge 
between the NaradaBrokering system and JXTA. The Narada-JXTA proxy, operating 
inside the JXTA rendezvous layer, serves in a dual role as both a rendezvous peer and 
as a NaradaBrokering client providing a bridge between NaradaBrokering and JXTA. 
NaradaBrokering could be viewed as a service by JXTA. The discovery of this ser-
vice is automatic and instantaneous due to the Narada-JXTA proxy’s integration in-
side the rendezvous layer. Any peer can utilize NaradaBrokering as a service so long 
as it is connected to a Narada-JXTA proxy. Nevertheless, peers do not know that the 
broker network is routing some of their interactions. Furthermore, these Narada-
JXTA proxies, since they are configured as clients within the NaradaBrokering sys-
tem, inherit all the guarantees that are provided to NaradaBrokering clients.  

3.2.1 The Interaction Model 
Different JXTA interactions are queued at the queues associated with the relevant 
layers comprising the JXTA protocol suite. Each layer performs some operations 
including the addition of additional information. The rendezvous layer processes 
information arriving at its input queues from the peer-resolving layer and the pipe-
binding layer. Since the payload structure associated with different interactions is 
different we can easily identify the interaction types associated with the payloads. 
Interactions pertaining to discovery/search or communications within a peer group 
would be serviced both by JXTA rendezvous peers and also by Narada-JXTA proxies.  

Interactions that peers have with the Narada-JXTA proxies are what are routed 
through the NaradaBrokering system. JXTA peers can continue to interact with each 
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other and of course some of these peers can be connected to pure JXTA rendezvous 
peers. Peers have multiple routes to reach each other and some of these could include 
the NaradaBrokering system and some of them need not. Such peers can interact di-
rectly with each other during the request/response interactions.  

3.2.2 Interaction Disseminations 
Peers can create a peer group; request to be part of a peer group; perform 
search/request/discovery all with respect to a specific targeted peer group. Peers al-
ways issue requests/responses to a specific peer group and sometimes to a specific 
peer. Peers and peer groups are identified by UUID [46] (IETF specification guaran-
tees uniqueness until 3040 A.D.) based identifiers. Every peer generates its own peer 
id while the peer that created the peer group generates the associated peer group id.  
Each rendezvous peer keeps track of multiple peer groups through peer group adver-
tisements that it receives and is responsible for forwarding interactions.  

Narada-JXTA proxies are initialized both as rendezvous peers and also as Na-
radaBrokering clients. During its initialization as a NaradaBrokering client every 
proxy is assigned a unique connection ID by the NaradaBrokering system, after which 
the proxy subscribes to a topic identifying itself as a Narada-JXTA proxy. This en-
ables NaradaBrokering to be aware of all the Narada-JXTA proxies that are present in 
the system. The Narada-JXTA proxy in its role as a rendezvous peer to peers re-
ceives –  

1) Peer group advertisements 
2) Requests from peers to be part of a certain peer group and responses to these 

requests 
3) Messages sent to a certain peer group or a targeted peer 
4) Queries and responses to these queries 

To ensure the efficient dissemination of interactions, it is important to ensure that 
JXTA interactions that are routed by NaradaBrokering are delivered only to those 
Narada-JXTA proxies that should receive them. This entails that the Narada-JXTA 
proxy perform a sequence of operations, based on the interactions that it receives, to 
ensure selective delivery. The set of operations that the Narada-JXTA proxy performs 
comprise gleaning relevant information from JXTA’s XML encapsulated interactions, 
constructing an event based on the information gleaned and finally in its role as a 
NaradaBrokering client subscribing (if it chooses to do so) to a topic to facilitate se-
lective delivery. By subscribing to relevant topics, and creating events targeted to 
specific topics each proxy ensures that the broker network is not flooded with interac-
tions routed by them. The events constructed by the Narada-JXTA proxies include the 
entire interaction as the event’s payload. Upon receipt at a proxy, this payload is de-
serialized and the interaction is propagated as outlined in the proxy’s dual role as a 
rendezvous peer. Additional details pertaining to this integration can be found in [27]. 

3.3 Performance Measurements  

For comparing JXTA performance in NaradaBrokering we setup the topologies de-
picted in Figure 6. We then compare the performance of the pure JXTA environment, 
the integrated Narada-JXTA system and the native NaradaBrokering system. The 
rendezvous peers connected to brokers in topology 6.(b) are Narada-JXTA proxies. 
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To compute communication delays 
while obviating the need for clock 
synchronizations and the need to 
account for clock drifts, the re-
ceiver/sender pair is setup on the 
same machine (Pentium-3, 1 GHz, 
256 MB RAM). In all the test cases, 
a message published by the sender is 
received at the receiver and the delay 
is computed. For a given message 
payload this is done for a sample of 
messages and we compute the mean 
delay and the standard deviation 
associated with the samples. This is 
repeated for different payload sizes. 
For every topology every node (bro-
ker or rendezvous peer) involved in 
the experimental setup is hosted on a 
different machine (Pentium-3, 1 
GHz, 256MB RAM). The run-time 
environment for all the processes is 
(JDK-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3).  The machines involved in the 
experimental setup reside on a 100 Mbps LAN. Figures 7 and 8 depict the mean tran-
sit delay and standard deviation for the message samples under the different test to-
pologies. These results indicate the superior performance of the integrated Narada-
JXTA system compared to that of the pure JXTA system. The results [27] follow the 
same general pattern for measurements under other test topologies.  

 

 

Fig. 7. Mean Transit Delay for samples Fig. 8. Standard Deviation for samples 

4 NaradaBrokering’s Transport Framework 

In the distributed NaradaBrokering setting it is expected that when an event traverses 
an end-to-end channel across multiple broker hops or links the underlying transport 
protocols deployed for communications would vary. The NaradaBrokering Transport 

Fig. 6. The JXTA Test Topologies 
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framework aims to abstract the operations that need to be supported for enabling effi-
cient communications between nodes. These include support for − 

1) Easy addition of transport protocols within the framework. 
2) Deployments of specialized links to deal with specific data types. 
3) Negotiation of the best available communication protocol between two nodes 
4) Adaptability in communications by responding to changing network conditions. 
5) Accumulating performance data measured by different underlying protocol im-

plementations. 

TCP, UDP, Multicast, SSL, HTTP and RTP based implementations of the transport 
framework are currently available in NaradaBrokering. It is also entirely conceivable 
that there could be a JXTA link, which will defer communications to the underlying 
JXTA pipe mechanism. NaradaBrokering can also tunnel through firewalls such as 
Microsoft’s ISA [47] and Checkpoint [48] and proxies such as iPlanet [49]. The user 
authentication modes supported include Basic, Digest and NTLM. Operations that 
need to be supported between two communication endpoints are encapsulated within 
the “link” primitive in the transport framework. The adaptability in communications 
is achieved by specifying network constraints and conditions under which to migrate 
to another underlying protocol. For e.g. a UDP link may specify that when the loss 
rates increase substantially communication should revert to TCP. Though there is 
support for this adaptability in the transport framework, this feature is not yet imple-
mented in the current release. Figure 9 provides an overview of the NaradaBrokering 
transport framework. 
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Fig. 9. Transport Framework Overview 
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A Link is an abstraction that hides details pertaining to communications. A Link has 
features, which allow it to specify a change in the underlying communications and the 
conditions under which to do so. An implementation of the Link interface can incorpo-
rate its own handshaking protocols for setting up communications. The Link also con-
tains methods, which allow for checking the status of the underlying communication 
mechanism at specified intervals while reporting communication losses to the relevant 
error handlers within the transport framework. Each implementation of the Link inter-
face can expose and measure a set of performance factors. Measurement of perform-
ance factors over a link requires cooperation from the other end-point of the commu-
nication link; this particular detail should be handled within the Link implementation 
itself. How the Link implementation computes round trip delays, jitter factors, band-
width, loss rates etc. should be within the domain of the implementer. The Link also 
has methods which enable/disable the measurement of these performance factors. 
Links expose the performance related information in the LinkPerformanceData con-
struct using which it is possible to retrieve information (type, value, description) per-
taining to the performance factors being measured. 

In the distributed NaradaBrokering setting it is expected that when an event trav-
erses across multiple broker hops it could be sent over multiple communication links. 
In places where links optimized to deal with the specialized communication needs of 
the event exist (or can exist) they will be used for communications. While routing 
events between two NaradaBrokering brokers (that already have a link established 
between them) it should be possible for the event routing protocol to specify the crea-
tion of alternate communication links for disseminations. Support for this feature 
arises when routing handlers request the deployment of specific transport protocols 
for routing content, for e.g. a NaradaRTP event router could request that RTP links be 
used for communication. Sometimes such links will be needed for short durations of 
time. In such cases one should be able to specify the time for which the link should be 
kept alive. Expiry of this timer should cause the garbage collection of all resources 
associated with the link. The keepalive time corresponds to the period of inactivity 
after which the associated link resources must be garbage collected. 

All broker locations need not have support for all types of communication links. 
Information regarding the availability of a specific link type could be encapsulated in 
an URI. This information could be exchanged along with the information regarding 
supported link types (at a given node) exchanged over the AdministrativeLink, which 
is different from that of a link in the methods that can be invoked on it. This URI 
could then possibly be used to dynamically load services. The AdministrativeLink 
exchanges information regarding the various communication protocols (along with 
information pertaining to them such as server, port, multicast group etc) that are 
available at a broker/client node. This is then used to determine the best link to use to 
communicate with the broker. Communication over the AdministrativeLink will be 
HTTP based to ensure the best possibility for communications between two nodes. 
All link implementations need to have an implementation of the LinkNegotiator inter-
face. Based on the information returned on the AdministrativeLink, the LinkNegotiators 
are initialized for the common subset of communications and then deployed to nego-
tiate the transport protocol for communications. The LinkNegotiator determines 
whether communication is possible over a specified link and also returns metrics that 
would enable the AdministrativeLink in arriving at a decision regarding the deploy-
ment of the best possible link.  
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All links of a specific communications type are managed by a LinkFactory in-
stance. The LinkFactory for a particular communications protocol enables communica-
tions to and from other nodes over a specific link type. The LinkFactory also controls 
the intervals at which all its managed links check their communication status.  Links 
also allow the specification of constraints (usually on the set of performance factors 
that it measures) and the link type that the communication must migrate to when those 
conditions are satisfied. This feature allows a link to revert to an alternate underlying 
transport protocol when communication degrades or is impossible to achieve. For 
example, it is conceivable that while communicating using TCP, bandwidth and la-
tency constraints force a switch to UDP communications. The LinkFactory is also used 
to manage the migration of communication protocols from links of different types. 
Based on the set of supported communication protocol migrations, which a LinkFac-
tory exposes, adaptive communications between nodes is enabled.  

Protocol layers use the TransportHandler interface to invoke methods for commu-
nications with other NaradaBrokering nodes. LinkFactories are loaded at run-time by 
the TransportHandler implementation and it is then that TransportHandler interface is 
passed to the LinkFactory implementation. The reference to the transport handler is 
passed to every link created by the link factory. This is the reference that is used by 
individual links to report the availability of data on a link. Individual links use this 
interface to report data streams that are received over the link, loss of communications 
and requests to migrate transport protocols if the migration constraint is satisfied. 
Based on the LinkFactories that are loaded at run-time the transport handler can ex-
pose the set of link types (generally corresponding to transport types) that it supports. 
Transport Handler manages all Link factories and Links. LinkFactories are responsible 
for the creation of links. Links have methods for sending data (while also indicating 
the data type). Data received on a communication link is reported to the Transport-
Handler by invoking the appropriate methods within the interface. 

 

 

Fig. 10. Transit Delay for message samples Fig. 11. Standard deviation for samples 

4.1 Some Performance Measurements 

Figures 10 and 11 depict results for the TCP implementation of the framework. The 
graphs depict the mean transit delays, and the accompanying standard deviations, for 
native NaradaBrokering messages traversing through multiple (2, 3, 5 and 7) hops 
with multiple brokers (1, 2, 4 and 6 respectively) in the path from the sender of the 
message to the receiver. For each test case the message payload was varied. The tran-
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sit delay plotted is the average of the 50 messages that were published for each pay-
load. The sender/receiver pair along with every broker involved in the test cases were 
hosted on different physical machines (Pentium-3, 1 GHz, 256 MB RAM). The ma-
chines reside on a 100 Mbps LAN. The run-time environment for all the processes is 
JRE-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3  

The average delay per inter-node (broker-broker, broker-client) hop was around 
500-700 microseconds. The standard deviation varies from 0 microseconds for 50 
byte messages traversing a hop to 800 microseconds over 7 hops. 

5 Performance Monitoring and Aggregation 

The performance monitoring scheme within the distributed broker network needs to 
have two important characteristics. First, it should be able to work with different 
transport protocols 
with no straitjacketing 
of the performance 
factors being measured. 
The Link and LinkPer-
formanceData primi-
tives that abstract 
transport details and 
performance data re-
spectively, as outlined 
in the preceding sec-
tion, ensure the ability 
to work with unlimited 
performance factors 

over different transport 
protocols. Different 
nodes, with different 
types of links originating from them, can end up measuring a different set of perform-
ance factors. Second, the scheme should be to federate with other network measure-
ment services such as the network weather service (NWS) [50]. An added feature 
would be to allow administrators to monitor specific realms or domains. 

Every broker in NaradaBrokering incorporates a monitoring service (as shown in 
Figure 12) that monitors the state of the links originating from the broker node. Met-
rics computed and reported over individual links, originating from a broker node, 
include bandwidth, jitter, transit delays, loss rates and system throughputs. Factors 
are measured in a non-intrusive way so as to ensure that the measurements do not 
further degrade the metrics being measured in the first place.  Factors such as band-
width measurements, which can pollute other metrics being measured, are measured 
at lesser frequencies. Furthermore, once a link is deemed to be at the extreme ends of 
the performance spectrum (either very good or very bad) the measurement of certain 
factors are turned off while others are measured at a far lower frequency.  Each link 
can measure different set of parameters. So the set of parameters being measured 
would be extensible and flexible. The monitoring service that runs at every node en-
capsulates performance data gathered from each link in an XML structure. The moni-
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Fig. 12. Performance Aggregation Overview 
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toring service then reports this data to a performance aggregator node, which aggre-
gates information from monitoring services running at other nodes.  

Performance aggregators monitor the state of the network fabric at certain realms; 
the aggregators themselves may exchange information with each other to provide a 
state of the integrated network realm. The performance aggregators exchange infor-
mation with the monitoring services pertaining to the measurement and reporting of 
performance factors. For example, the aggregator can instruct the monitoring service 
running at a broker node to stop (or modify the intervals between) the measurement of 
certain factors. Similarly, an aggregator may instruct the monitoring service to report 
only certain performance factors and that too, only if the factors have varied by the 
amount (absolute value or a percentage) specified in it’s request. 

Information accumulated within the aggregators is accessible to administrators via 
a portlet residing in a portal such as Apache Jetspeed [51]. Note that, since the infor-
mation returned to the aggregators in encapsulated in an XML structure, it is very 
easy to incorporate results gathered from another network monitoring service such as 
NWS. All that needs to be done is to have a proxy, residing at a NWS node that en-
capsulates the monitored data into an XML structure.  The aggregated XML perform-
ance data (from the monitoring service at each node and other third-party services) 
would be mined to generate information, which would then be used to achieve to 
certain objectives.  
(a) The ability to identify, circumvent, project and prevent system bottlenecks: Differ-
ent transports would reveal this in different ways. As system performance degrades 
UDP loss rates may increase, TCP latencies increase. Similarly as available band-
widths decrease the overheads associated with TCP error correction and in order de-
livery may become unacceptable for certain applications. 
(b) To aid routing algorithms: Costs associated with link traversals in BNM's would 
be updated to reflect the state of the fabric and the traversal times associated with 
links in certain realms. Routes computed based on this information would then reveal 
"true" faster routes. 
(c) To be used for Dynamic topologies to address both (a) and (b):  The aggregated 
performance information would be used to identify locations to upgrade the network 
fabric of the messaging infrastructure. This upgrade would involve bro-
kers/connections be instantiated/purged dynamically to assuage system bottlenecks 
and to facilitate better routing characteristics. Although multicasting and bandwidth 
reservation protocols such as RSVP [52] and ST-II [53] can help in better utilizing the 
network they require support at the router level, more conceited effort is need at 
higher levels, and dynamic topologies coupled with efficient routing protocols can 
help in the efficient utilization of network resources. 
(d) To determine the best available broker to connect to: Based on the aggregated 
information it should be possible to determine the best broker that a client can connect 
to within a certain realm. Scaling algorithms, such as the one derived from item (c), 
would benefit greatly from this strategy by incorporating newly added broker nodes 
(which would be the best available ones) into the routing solution. 
(e) Threshold notifications: Administrators can specify thresholds, which when 
reached by specific monitored factors, results in notifications being sent to them. 
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6 Security Framework 

Since it is entirely conceivable that messages (including queries, invocations and 
responses) would have to traverse over hops where the underlying communication 
mechanisms are not necessarily secure, a security infrastructure that relies on message 
level security needs to be in place. The security framework in NaradaBrokering tries 
to address the following issues 
1. Authentication: Confirm whether a user is really who he says he is. 
2. Authorization: Identify if the user is authorized to receive certain events 
3. Key distribution: Based on the authentication and authorization, distribute keys, 

which ensure that only the valid clients are able to decrypt encrypted data. 
4. Digital Signing:  Have the ability to verify the source of the event and whether the 

source is authorized to publish events conforming to the specified template.  
5. Communication Protocol Independence: Have the ability to work over normal 

communication channels. Communications need not to be over unencrypted links. 
6. End-to-End integrity: Ensure that the only place where the unencrypted event is 

seen at the authorized publisher of the event and the authenticated (and authorized) 
subscribers to the event. 

7. Detection of security compromise: Check whether the publisher’s signature is a 
valid one. This approach would be similar to the Certificate Revocation Lists 
(CRL) scheme. 

8. Qualities of Service detecting compromise: Clients may be asked to answer ques-
tions to verify its authenticity at regular intervals to facilitate detection of compro-
mise. 

9. Response to security compromise: This would involve invalidating certain signa-
tures and discarding the use of certain keys for encrypted communications. 

In our approach we secure messages independently of any transport level security. 
This provides a fine-grained security structure suitable for distributed systems and 
multiple security roles. For example, parts of the message may be encrypted differ-
ently, allowing users with different access privileges to access different parts of the 
message. Basic security operations such as authentication should be performed in a 
mechanism-independent way, with specific mechanisms (Kerberos [54], PKI) 
plugged into specific applications.  The message level security framework allows us 
to deploy communication links where data is not encrypted. Furthermore, this scheme 
also ensures that no node/unauthorized-entity ever sees the unencrypted message. In 
our strategy we incorporate schemes to detect and respond to security compromises 
while also dealing with various attack scenarios. 

Security specifications for Web Services [55, 56] are just starting to emerge, but 
generally follow the same approach: the message creator adds a signed XML message 
containing security statements to the SOAP envelope.  The message consumer must 
be able to check these statements and the associated signature before deciding if it can 
execute the request. Legion (http://www.cs.virginia.edu/ ~legion/) is a long-standing 
research project for building a “virtual computer” out of distributed objects running 
on various computing resources.  Legion objects communicate within a secure mes-
saging framework [57] with an abstract authentication/identity system that may use 
either PKI or Kerberos.  Legion also defines an access control policy on objects. Ad-
ditional details pertaining to the NaradaBrokering security infrastructure can be found 
in [58]. 
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7 Conclusions and Future Work  

This paper outlined an extensible messaging framework that, we propose, would be 
appropriate to host P2P grids. Our results demonstrate that the framework can indeed 
be deployed for both synchronous and asynchronous applications while incorporating 
performance-functionality trade-offs for different scenarios (centralized, distributed 
and peer-to-peer mode). We believe we are now well positioned to incorporate sup-
port, within the messaging infrastructure, for Web/Grid Services. 

We have recently incorporated an XML matching engine within the distributed 
brokering framework. This allows us to facilitate richer discovery mechanisms. 
Trade-offs in performance versus functionality inherent in such matching engines is a 
critical area that needs to be researched further. Another area that we intend to inves-
tigate is the model of dynamic resource management. A good example of a dynamic 
peer group is the set of Grid/Web Services [59, 60] generated dynamically when a 
complex task runs – here existing registration/discovery mechanisms are unsuitable. 
A P2P like discovery strategy within such a dynamic group combined with NaradaB-
rokering’s JMS mode between groups seems attractive. We have also begun investi-
gations into the management of distributed lightweight XML databases using P2P 
search and discovery mechanisms. Another area amenable to immediate investigation 
and research is the federation of services in multiple grid realms. 
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