
M. Endler and D. Schmidt (Eds.): Middleware 2003, LNCS 2672, pp. 83–102, 2003.
© IFIP International Federation for Information Processing 2003

Content Distribution for Publish/Subscribe Services

Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08544, USA

{maoch,aslp,jps}@cs.princeton.edu

Abstract. Caching and content delivery are important for content-intensive
publish/subscribe applications. This paper proposes several content distribution
approaches that combine match-based pushing and access-based caching, based
on users’ subscription information and access patterns. To study the perform-
ance of the proposed approaches, we built a simulator and developed a work-
load to mimic the content and access dynamics of a busy news site. Using a
purely access-based caching approach as the baseline, our best approaches yield
over 50% and 130% relative gains for two request traces in terms of the hit ratio
in local caches, while keeping the traffic overhead comparable. Even when the
subscription information is assumed not to reflect users’ accesses perfectly, our
best approaches still have about 40% and 90% relative improvement for the two
traces. To our knowledge, this work is the first effort to investigate content dis-
tribution under the publish/subscribe paradigm.

1 Introduction

The information needs of content consumers form a key to driving content delivery
over the Internet. Typically, these information needs are determined based on access
patterns and pre-determinations of popular resources.

Many web-based notification services are based on users’ subscriptions, which are
statements of interest. The stated interest can therefore also be used as a basis for
caching and content distribution. Little exploration of this use has been done.

An example is the notification services at news sites. A user indicates the catego-
ries or keywords of the news of interest; the news site notifies the user with a list of
titles when it publishes news that matches the user’s subscription. If the user wants to
read an article in the list, the user requests the actual content from the origin site.
These types of services are usually known as publish/subscribe applications.

In the literature, most work on publish/subscribe systems examines event routing
and efficient matching. However, content distribution in publish/subscribe services is
an important module that has not been adequately studied. Content delivery is usually
ignored because the existing publish/subscribe applications assume subscribers are
only interested in short messages rather than large-size contents. However, this as-
sumption does not hold for many applications, such as news delivery, in which the
object of interest (to which the notification might only carry a link) may embed long

84 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

texts, images and video/audio streams. In addition to this need, the time decoupling in
publish/subscribe services, which means information producing and consuming occur
asynchronously, creates an opportunity for early content distribution. Of course, be-
cause of the constraints on the storage at subscriber-side machines and on the Internet
bandwidth, it is neither realistic to store all the matched contents at the subscriber side
until users read them nor efficient to leave all the contents at the publisher side until
users request them, so dynamic content distribution strategies must be developed.

This paper presents a set of content distribution strategies for publish/subscribe
systems. The different approaches can be classified along two axes, which also ex-
pose the key design issues: (i) when is the opportunity for placing a page into a cache;
(ii) how (on what basis) the placement and replacement decisions are made at evalua-
tion time. The two major possibilities for when are (a) at match time, i.e. when a page
is determined to match certain subscriptions and (b) at access time, as in traditional
caching systems. The two major possibilities for how are (a) based on access patterns
only, as in traditional caching systems, and (b) based on subscription information and
matching.

A major challenge in such a study is that of developing workloads. No real-world
publish/subscribe workloads are available for such studies. We therefore have devel-
oped workloads based on studies of observed access patterns at busy sites, extrapolat-
ing from there to publish/subscribe workloads. In particular, to study the performance
of our approaches, we simulate the news delivery to subscribers who are geographi-
cally distributed. The publishing pattern and the access dynamics are simulated ac-
cording to a study on one of the busiest media sites, MSNBC [24].

In our experiments, the performance metrics are: (i) the hit ratio in the local proxy
servers, since the major goal of this work is to reduce the response time perceived by
end-users, and (ii) the traffic overhead, which is measured using the network traffic
for transferring contents from the publisher site to the proxies of subscribers. Using a
purely access-based caching approach as the baseline, our approaches improve the hit
ratio dramatically while keeping the traffic overhead comparable.

The major contributions of this paper are as follows:

1. Presenting the first study of content delivery and caching that uses publish-
subscribe information;

2. Proposing and comparing a set of solutions for content delivery in publish-
subscribe services, based on subscription information as well as access patterns;

3. Experimentally demonstrating the benefit of our approaches in reducing the re-
sponse time to end users without extra overhead in network traffic;

4. Developing realistic workloads for evaluation, a major challenge given that pub-
lish/subscribe workloads are not generally available;

5. Building a simulator to study content delivery in globally distributed servers.

The rest of this paper is organized as follows. Section 2 outlines the architecture of
a content delivery system that this paper addresses. Section 3 presents several infor-
mation delivery mechanisms in the system. Section 4 discusses a news delivery
workload and a simulator that are used to evaluate the approaches. The simulation
results are demonstrated and analyzed in section 5. Section 6 discusses related work.
Section 7 draws conclusions and indicates future directions for this research.

Content Distribution for Publish/Subscribe Services 85

2 A Publish/Subscribe System
with Content Distribution Engine

Publish/subscribe is an asynchronous communication paradigm for information pro-
ducers and information consumers. The producers and consumers are globally dis-
tributed and do not have to know each other. Information consumers declare their
information needs to a publish/subscribe system that notifies the subscribers when
published information matches the users’ subscriptions.

3

Publishers Subscribers
1 2

Matching

Routing

Content
delivery

Publish/subscribe brokering system

Fig. 1. Architecture of a publish/subscribe system

Figure 1 outlines a conceptual architecture of a publish/subscribe system. Publish-
ers and subscribers (end-users) are connected via the publish/subscribe system. Noti-
fication services are usually implemented through three basic communication streams
as labeled in the figure:

1. Users subscribe, announcing their interests to the system;
2. Producers publish contents to the system;
3. The system notifies the users whose subscriptions match the contents.

A typical system consists of a matching engine and a routing engine. After a piece
of content is published into the system (flow 2), the matching engine finds the users
who are interested in the events according to their interest profiles, and the routing
engine delivers events to those users. These engines may be centralized or distributed.

This paper adds a content distribution and caching (or content delivery) engine,
which is not discussed in the literature. After step 3, the notified users may choose to
read the actual content of the event; the content distribution module in figure 1 is in
charge of deciding when to deliver which content to the subscribers.

In this study, the caching/content-delivery servers are deployed as proxy servers
close to the end-users. Each proxy server connects to a group of clients/subscribers. A
proxy server aggregates its users’ subscriptions and processes notifications for its
users. It also serves as the cache that is consulted when one of its users accesses con-
tent. In this paper, the terms proxy, proxy server and server are used synonymously
for content distribution server.

86 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

3 Content Delivery Strategies

As discussed earlier, content delivery strategies can be classified along two axes,
namely when and how pages are evaluated for placement in caches.

Regarding when, the content distribution engine has two obvious opportunities to
deliver content from a publisher to a proxy server. In the first case, the publisher
proactively forwards a page to a proxy for potential placement when the matching
engine determines that the content of the page matches the subscriptions of some
users at the proxy. This approach, which we call the push-time strategy, assumes that
the subscribers are likely to request the page later after receiving the notifications.
The second scenario, which we call the access-time strategy, is like traditional cach-
ing and is based on the fact of rather than the prediction of users’ accesses to a page.

Since a server is limited in physical storage capacity, when a page is delivered to a
server in either the push-time or the access-time approaches, the server may need to
replace some content at the server if the server’s cache is already full. Replacement is
based on values given to pages. Regarding how the value is determined, it can be
done based on subscription and matching information or on actual access informa-
tion.

This paper focuses on the following interesting combinations of when and how
evaluations are made for page placement in caches:

1. Access-time strategy based on usage pattern only
2. Push-time strategy based on subscription and matching information only
3. Push-time and access-time strategy based on subscription and access pattern

The first combination is the traditional caching approach and is the baseline used
in this study. The second case is a simple pushing mechanism driven by matching.
This paper puts the emphasis on the third class of schemes that exploit both place-
ment opportunities and both types of information about the value of pages.

3.1 Access-Time Strategy Based on Access Pattern

This paper uses a new caching replacement algorithm called Greedy-Dual* (GD*)
[17] as the baseline algorithm, since it yields higher hit ratio than LRU, Greedy-Dual-
Size (GDS) [7] and LFU-DA in an experimental study [17]. GD* determines the
value of a page V(p) based on the access frequency, the access recency, the cost to
fetch a page, and the size of the page, as represented in equation 1:

()

()
()
()

ncorrelatio temporaland popularity offactor balance :
size page :

publisher thefrom page afetch cost to :
page on the accesses ofnumber :

recency access thecapture tovalueinflation :
Where

(1) .
)(

)()(
1

β

β

ps
pc
pf

L

ps

pcpf
LpV 




 ⋅+=

Content Distribution for Publish/Subscribe Services 87

In our implementation, the reference count of a page is discarded when the page is
evicted, as in the In-Cache LFU algorithm [17]. As suggested by [7], our implementa-
tion uses the network distance to the origin publisher to measure the cost to fetch a
page for a given proxy, where the network topology of proxy servers and the publish-
ers is a random graph built using BRITE [6]. The constant parameter β is set manu-
ally as discussed in the experiment section (section 5).

On an access hit of page p, the replacement algorithm GD* increases the reference
count f(p) and re-evaluates the page based on the current inflation value L. On a cache
miss, all the pages in the cache are sorted by values and are evicted from the least
valuable one, until there is room for the requested page; the inflation value L is set to
be the value of the page that is evicted last. The following is the pseudo-code of GD*:

Replacement algorithm in GD*
 L←0.0
 For each request in turn:
 The current request is for page p:
 If p is already in memory
 Increase f(p);
 Else
 While there is not enough room
 L ← min {V(k) ∈ pages in the cache}
 Evict q s.t. V(q) = L
 Bring p into cache;

 V(p) ← L+
β

1

)(

)()(





 •
ps

pcpf ;

end.

3.2 Push-Time Strategy Based on Subscription Information and Matching

For a page that matches some subscriptions aggregated on a proxy, the number of the
subscriptions indicates the number of requests of the page in future. The value of a
page in a push-time replacement is based on the number of end-users’ subscriptions
that match the page, the cost and the size of the page as described in equation 2.

()

()
() () 1equation in as meaning same thehave and

 page ofcontent thematching onssubscripti ofnumber the:
Where

(2) .
)(

)()(

pspc
ppf

ps

pcpf
pV

S

S ⋅=

If the cache of a destination proxy is full in a push-time placement, the new page is
evaluated and compared to the existing pages in the proxy. The pages whose values
are less than that of the new page are candidates for replacement. The candidate pages
are sorted by value and are evicted one by one until the available storage on the proxy
is large enough for the new page. This placement algorithm using the subscription-
based push-time strategy is denoted as SUB in this paper.

88 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

When an event is generated and routed to a destination proxy, SUB may decide not
to store the new page if the total size of all the candidate pages (the pages whose
values are smaller than that of the new page) is less than that of the new page. As a
push-time only strategy, on a cache miss, SUB fetches the requested page from the
publisher and forwards the page to the user without caching it in the local server.

3.3 Push-Time and Access-Time Schemes Based on Subscription Information
and Access Pattern

We developed several approaches within the category that performs both push-time
and access-time placement. The approaches run two independent placement modules
at push-time and access-time, and are distinct in whether the same replacement algo-
rithm is used in the two modules and in how a server’s cache is configured.

Single Cache and Single Replacement Method. Using this type of approach, the
push-time and the access-time placement modules share a server’s cache and use the
same replacement algorithm. Like SUB, whether to store a page on a server is purely
based on the value of the page. As a consequence, the push-time placement does not
store a new page in the local server if the page’s size is larger than the total size of the
candidate pages for eviction; on a cache miss, the replacement module discards the
requested page immediately after forwarding it to the user if the page’s value is not
high enough to reside in the server’s cache.

Within this framework, the evaluation function used in the replacement algorithm
can analyze and combine the subscription and the usage information in several ways.

GD*-based Approaches. Since GD* provides a general framework to combine sev-
eral factors related to a page’s value, it is used as the basis to incorporate the
subscription information. Two evaluation functions are developed based on GD*.

For a given page, the number of end-user subscriptions that match the page indi-
cates the amount of references of the page in the future, while the number of accesses
in the past exhibits the usage pattern of users. A direct way to combine the prediction
and the history information is adding the two numbers together. The evaluation func-
tion based on this idea is as in equation 1 after replacing the frequency factor f(p) by
the sum of the number of subscriptions and of the accesses as in equation 3. This
approach is referred to as Subscription-GD*-1 or SG1 in this paper.

()

pa
ps

aspf

 page of accesses ofnumber the:
 page matching onssubscripti ofnumber the:

Where
(3) .+=

SG1 ignores the relationship between the references and the subscriptions of a
page. Ideally, if every subscriber reads any page that matches his/her subscription
exactly once, the difference between the number of subscriptions and that of past

Content Distribution for Publish/Subscribe Services 89

requests is equal to the number of future references of a page. Based on this idea, an
alternative uses the following equation to calculate f(p), while keeping the other fac-
tors the same as in equation 1. The alternative is called Subscription-GD*-2 or SG2.

()

pa
ps

aspf

 page of accesses ofnumber the:
 page matching onssubscripti ofnumber the:

Where
(4) .−=

Frequency-based Approach. Using GD* as the framework, SG2 integrates the esti-
mation of a page’s reference frequency in the future with the access recency in the
past. However, there is lack of proof about the correlation between the two factors.
Therefore a new evaluation function that relies only on the frequency prediction is
developed. This evaluation function is defined in equation 5. The approach using this
evaluation method is referred to as subscription-request or SR in this paper.

()

asf

ps

pcpf
pV

−=

⋅=

Where

(5) .
)(

)()(

Single Cache and Dual Replacement Methods. The approaches that combine the
subscription and the usage pattern into a single evaluation function are based on some
assumptions on the relationship between the two patterns. For example, SG2 and SR
assume every user requests all the pages that match his/her subscription exactly once.

An alternative is to use independent replacement algorithms as well as evaluation
functions at push-time and access-time. Namely, GD* is applied in an access-time
replacement, while SUB is used in a push-time placement. Since the two replacement
algorithms use either access analysis or subscription information, the two types of
information are used separately in different placement modules. This approach is
referred to as Dual-Methods or DM in this paper.

Dual Caches and Dual Replacement Methods. A potential problem within DM is
that a page that is in hot use will be replaced in a push-time placement if the number
of subscriptions matching the page is not large enough. Or, on the other hand, a new
page with a high future use indicated by subscription matching will be replaced on a
cache miss just because of the few references up to the replacing time. This problem
is due to the overlapping operations of the push-time and access-time placement
modules in the same cache space.

To deal with the problem associated with DM, the cache on a proxy can be divided
into two portions that are used by the push-time and the access-time modules inde-
pendently. Under this scheme, the cache portion used by the push-time module is
called Push-Cache or PC in this paper, while the portion used by the access-time
module is called Access-Cache or AC. The new mechanism is denoted as Dual-

90 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

Caches or DC in the following discussions. Like DM, Dual-Caches runs GD* in the
access-time module and SUB in the push-time module. But different from DM, each
replacement algorithm runs only on the corresponding portion of a proxy cache.

Dual Caches with Fixed Partition (DC-FP). A simple way to handle a dual-cache is
keeping a fixed partition on the storage. This approach is denoted as Dual-Caches
with Fixed Partition or DC-FP in this paper.

When a page is pushed into a server, the push-time module tries to store the page
into PC using SUB. When serving a request, DC-FP first checks PC. If the requested
page is in PC, the page is moved from PC to AC; meaning that the page should be
henceforth evaluated based on the access pattern and be compared with other refer-
enced pages in AC in the cache replacement algorithm. Otherwise, GD* is called to
handle the replacement on AC as a standard caching algorithm.

Dual Caches with Adaptive Partition (DC-AP). A fixed partition in a dual-cache lacks
flexibility in adjusting the effectiveness of pushing and caching according to the con-
tent publishing dynamics and the access dynamics. For example, when a page in the
push cache PC is requested, the page is moved to the access cache AC, which may
trigger a replacement in AC if AC is full. However, the storage in PC that was cleared
by moving out the requested page is unused at least until the next new page is pub-
lished. In such a case, a better strategy is to reassign the storage of the requested page
to the access cache. On the other hand, some storage in the access cache can be “de-
voted” to the push cache if there is no room to store a new page in PC and several
old pages in AC have not been referenced for a while.

The approach that labels the storage of each page according to the publishing and
request patterns is called Dual-Caches with Adaptive Partition or DC-AP in our dis-
cussion. Using DC-AP, when a page cannot be stored into PC based on SUB at push
time, the push-time placement module checks the pages in AC. If some pages in AC
have not been referenced since the last replacement in AC, these pages are assumed to
be less important than the new page and thus become candidates for eviction. The
storage of those pages is labeled as belonging to PC and is used to store the new
page. The placing algorithm of DC-AP is as follows:

Placing in DC-AP
 Page P is pushed to the server:
 Run SUB on the push cache PC;
 If SUB fails to store P
 S ← pages in AC that have not been accessed since
the last replacement in AC;
 If Size(S) ≥ Size(P)
 While the available storage in PC < Size(P)
 mP s.t.

mPV = Min{ iV : i ∈ S};
 Label the storage of mP as PC Label;
 Store P in PC;
end.

Content Distribution for Publish/Subscribe Services 91

Recall that DC-FP moves a page from PC to AC when the page in PC is accessed
for the first time. This “Moving” operation may trigger the replacement in AC. To
avoid the unnecessary replacements in AC, in the same scenario, the locating algo-
rithm in DC-AP labels the storage of the page as AC, assuming that the pushing fre-
quency in PC is relatively low as compared to the replacement frequency in AC.

Recall that the Dual-Methods (DM) strategy labels each page with two values and
considers each value only in the corresponding module. In contrast, DC-AP labels
each page with a 2-tuple (o, v) at any time, where o indicates the module that should
process the page and v refers to the page’s value under the corresponding operation.
Both elements o and v are updated with time.

In DC-AP, the fraction of the storage assigned to each portion can be any value be-
tween 0 and 1. If either PC or AC dominates the storage on a server, pushing or cach-
ing consequently dominates the content distribution at that server. To avoid the possi-
ble imbalance in the effects of the two modules, a boundary should be set on the
fraction of storage that can be assigned to each portion. A variant of DC-AP sets the
upper boundary and the lower boundary on the fraction that can be PC at any given
time. We call this variant Dual-Caches with Limited Adaptive Partition (DC-LAP). In
DC-LAP, the re-partition in the placing and locating algorithms is performed only
when the new partition does not violate the boundary setting.

3.4 Summary of Strategies

The above caching and content delivery approaches can be classified based on when
and how content is delivered from the publisher to a proxy server. Table 1 categorizes
all the approaches discussed in this paper.

Table 1. Categorization of content distribution schemes

When
How

Access Subscription Access + Subscription

Access-time GD*
Push-time SUB

Access-time + Push-time
 SG1, SG2, SR,

DM,
DC-FP, DC-AP, DC-LAP

As discussed in the literature [27], the performance of the cache replacement algo-

rithms depends highly on the traffic characteristics of accesses. It is worth pointing
out that although we use GD* as the framework in forming our push-time and access-
time combined schemes based on subscription as well as usage patterns, our ap-
proaches can be also incorporated with other cache replacement algorithms.

92 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

4 Workload and Simulator

Because of the difficulty of obtaining meaningful commercial data, the approaches
discussed in this paper are validated using a simulator. The simulator is built based on
analysis and observations about the real-world data in the literature.

We chose news delivery to be the application scenario for our simulation because
of its challenges. News publishing and reading have high temporal dynamics. In addi-
tion, news pages are of significant size, especially for multimedia news (e.g., video,
audio, and images). Gadde et al. indicate that content distribution is more beneficial
when a large number of popular objects have large sizes and high update frequencies
[15]. Therefore, news delivery can demonstrate the power of the content distribution
strategies that this paper focuses on.

The simulator in figure 2 assumes a single publisher as a news site and a group of
proxy servers, each of which connects to a set of users who are close to the server.
The input of the simulator includes a publishing stream, a request sequence at each
proxy-server, and the subscriptions collected from the end-users at each proxy-server.
The publishing and request streams are temporal sequences, while the subscription
information is assumed to be static. Our workload is for a 7-day simulation.

Fetching

Subscriptions

Matching engine
Publishing stream

Placing module

Caching module

Storage

User

Publisher

A server

Subscription
aggregator

Request / Reply

Fig. 2. Architecture of the simulator

As in the models presented in [5, 29], our workload parameterizes the request rate,
the document rate of change, the total number of the information objects, and the
popularity distribution for objects. As an extension, we model the sizes of pages and
simulate a more realistic scenario in which every server has a limited storage capac-
ity. Furthermore, we incorporate subscription distribution that has not been addressed
in the literature. Finally, the formulae and the parameters used to build our workload
are based mainly on a set of observations and analyses of the content generation and
access patterns at the publishing server MSNBC ([23]), rather than on observations at
a proxy as in most trace analyses.

Content Distribution for Publish/Subscribe Services 93

4.1 Publishing Stream Generation

As observed in [24], the total number of pages published in 7 days is about 30,000,
and about 24,000 pages are modified versions of 2,400 out of 6,000 distinct pages.
Our publishing sequence consists of 30,147 pages in total.

In [24], 5% of the modification intervals are less than 1 hour and 5% are greater
than 1 day, while others are between 1 hour and 1 day. Based on that, we generate the
modification intervals of the 2400 pages using a step-wise random number distribu-
tion, assuming a fixed modification interval for any updated page. The first publish-
ing time of the 6000 original pages are randomly chosen from the period (0, 7 days).
The generation times of the 24,000 modified versions are then decided based on the
modification intervals and the generation times of the first versions.

The sizes of the pages are generated using a log-normal distribution [3]1. All the
pages are assumed to be cacheable in our simulation.

4.2 Request Stream Generation

Scaling Down the Number of Requests. The MSNBC site receives about 25 million
requests every day [24], so a 7-day trace should contain about 175 million requests.
To scale down the simulation, we consider only 100 proxy-servers as representatives
of all the servers sending requests to the publisher from all over the world. In [24], a
5-day trace includes the requests from several hundreds of thousands of institutional
domains, hence we assume the 100 servers issue about 1/1000 of all the requests to
the site. In this way, the request rate in our trace is scaled down to around 195,000.

The request generator uses Zipf’s Law2 with a homogeneity parameter α of 1.5 to
model the popularity distribution of the pages, as observed in [24]. The popularity
ranks are randomly assigned to the pages with the assumption that popularity is inde-
pendent of the publishing time and the size of the page.

Deciding Request Times. The reference times are generated based on the correlation
between a page’s age and the probability that the page is requested. According to the
observations in [24], most news pages are requested when they are fresh, but popular
pages are still referenced even if they have been generated for a long time.

The request generator groups the pages into four classes according to their popu-
larity so that the request rate drops about one order of magnitude from one class to
the next. For a page in any given class, the probability for the page to be requested at
a given time is inversely correlated to the page’s age. The more popular a page is, the
stronger the negative correlation between the access probability and the page’s age is.

1 () 318.1 ;357.9,

2

1 22 2/)(ln === −− σµ
πσ

σµxe
x

xp .

2 i
i

Ri rank with page on the raterequest the,1
α= .

94 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

Splitting Requests by Server. As observed in the literature [24, 28], the frequently
referenced pages are usually accessed by more organizations. As the first step, the
server assignment procedure decides the maximum number of servers requesting a
given page in a day as a function of the page’s popularity using equation 6.

pages theall of popularity maximum the:
 page of popularity the:

Where

(6) .100

max

5.0

max

P
iP

P
PS

i

i
i 


⋅=

For the first day that a page is requested, iS servers are randomly chosen from the

100 servers to make up a pool of potential servers. After that, every request to that
page in that day is randomly assigned to one of the iS servers.

As observed in [24], the server group requesting a page in one day and that in the
next day overlap. Assuming the overlapping ratio is 60%, 40% of the candidate serv-
ers for a page in one day are replaced by the servers that are not in the current pool
when generating the candidate servers for the page in the second day.

Generating Request Traces with αα = 1.0. While news delivery is the focus of our
validation study, the performances of our content delivery strategies for more general
scenarios are also of interest. As a comparison, another request trace is built using a
more popular α value of 1.0 in the Zipf’s Law popularity distribution. The trace built
using 1.5 as α is called NEWS, and that using 1.0 is called ALTERNATIVE.

4.3 Subscription Generation

Since the subscriptions are static, the only subscription information of interest is the
number of subscriptions matching every page at every server.

This paper assumes that the users only request pages based on notification. For a
page i, the ratio of the requests to the number of subscriptions matching i at a server j
is called subscription quality, denoted as jiSQ , . When any user reads a page at most

once, jiSQ , is the probability for a subscriber of a page to actually request the page.

The number of subscriptions matching a page at a server can be inferred using equa-
tion 7, given an estimate subscription quality (SQ). SQ being 1 is the special case that
every user will in fact access any page matching the user’s interest. More generally,
users may only access a subset of pages that match their stated interest (SQ < 1).

0.5 if]2 [0,in or 0.5 if 1] ,1[2in number random a:
server from page of requests ofnumber :

Where

(7) .

,

,

,

,
,

≤⋅>−⋅

=

SQSQSQSQSQ
jiP

SQ
P

SF

ji

ji

ji

ji
ji

Content Distribution for Publish/Subscribe Services 95

5 Experiments

5.1 Metrics and Experiment Setup

The motivation of this study is to reduce the response time perceived by the end us-
ers. A high hit ratio in a local server generally means a smaller response time hence
the global hit ratio (H) on the 100 servers is the major performance metric as follows:

iR
iH

R

H
H

i

i

i
i

i
i

server on request ofnumber the:
server on hits ofnumber the:

Where

(8) .
100

1

100

1

∑

∑
=

=

=

An elegant content delivery strategy should improve H without introducing a big
overhead into the network traffic between the publishing site and proxy servers. The
networking cost is measured using the amount of contents transferred between the
publishers and the servers in terms of the number of pages or the number of bytes.

Our simulation experiments model a quite realistic scenario in which the storage
capacity of each cache is limited. The storage capacity of a server’s cache is set based
on the unique bytes requested at the server in the whole simulation. In the experi-
ments, the performances of the methods are tested under three settings for cache ca-
pacity: 1% of the total number of unique bytes requested by a server, 5%, and 10%.

According to experimental results [17], the parameter β (see equation 1) that bal-
ances the long-term popularity and the short-term temporal correlation in GD* may
be different from trace to trace. On the other hand, when β is learned on-line from the
past accesses seen at different times, β is quite stable for a given trace. To decide the
suitable value of β, GD* and the two GD*-based approaches SG1 and SG2 are evalu-
ated by varying β from 0.0625 to 4, under three capacity settings for both traces.

In the following experiments, the value of β is set in such a way that the hit ratio of
the given algorithm achieves the highest hit ratio. Namely, β is 2 in the three methods
for the trace NEWS; for ALTERNATIVE, β is 2 in GD* and SG1 when the capacity
setting is 5% or 10% and 1 for 1%, while the value of β is always 0.5 in SG2.

5.2 Comparing Dual-Methods and Dual-Caches

Figure 3 compares Dual-Methods (DM), Dual-Caches with Fixed Partition (DC-FP),
Dual-Caches with Adaptive Partition (DC-AP), and Dual-Caches with Limited Adap-
tive Partition (DC-LAP) for trace NEWS. DC-FP uses a 50%-50% partition. DC-AP
starts from a 50%-50% partition but adjusts the partition dynamically. DC-LAP is
like DC-AP but bounds the fraction of the pushing cache between 25% and 75%.

96 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

0
20
40
60
80

100

1% 5% 10%
Storage capacity

H
it

ra
tio

 (
%

)

GD* DM DC-FP DC-AP DC-LAP

Fig. 3. Hit ratios of Dual-Methods and Dual-Caches algorithms (NEWS)

All the Dual* approaches have better hit ratio than GD*, but DC-LAP outperforms
DM and other Dual-Caches approaches in all the cases. The observations hold for the
trace ALTERNATIVE and for SQ < 1. Therefore, DC-LAP is chosen as the represen-
tative of the Dual* family in the following comparison experiments.

More adaptive approaches DC-AP and DC-LAP only yield marginal improvement
over DC-FP. Recall that DC-AP assumes a difference between the publishing rate in
the push-cache and the reference rate in the access-cache. Therefore, we conjecture
that the little improvement using DC-AP and DC-LAP is due to the high publishing
frequency and high re-access frequency in our traces.

5.3 Overall Hit Ratio with Perfect Subscriptions

Figure 4 compares the hit ratios of the major algorithms in this paper in the ideal case
that the subscription information perfectly reflects users’ request patterns (SQ = 1).

0
20
40
60
80

100

1% 5% 10%
Storage capacity

H
it

ra
tio

 (
%

)

GD* SUB SG1 SG2 SR DC-LAP

0
20
40
60
80

100

1% 5% 10%
Storage capacity

H
it

ra
tio

 (
%

)

GD* SUB SG1 SG2 SR DC-LAP

 (a) For NEWS trace (b) For ALTERNATIVE trace

Fig. 4. Hit ratios of all the methods (SQ = 1)

The only case in which any of our new approaches that incorporate subscription-
based pushing are worse than the access-based caching-only scheme GD* is when the
cache capacity is low (1%). Then GD* outperforms the simple subscription-based
pushing-only scheme SUB for the trace NEWS. NEWS has a set of very popular
pages and thus exaggerates the performance of the caching-only algorithm.

Content Distribution for Publish/Subscribe Services 97

While the hit ratio increases with the capacity setting for any method, the relative
performance ranks of the approaches are quite stable under different capacity settings.
All the other new approaches shown in the figure outperform SUB under any setting.

SG2 and SR, which use the estimation of the number of requests of a page in the
future, provide the highest hit ratios. The temporal analysis in SG2 does not provide
extra benefit to SR, which exhibits the difficulty of combining the analyses of history
information and of future usage. SG1 has a lower hit ratio than SG2 and SR, which
implies the importance to take into account the relation between the subscriptions and
the accesses of a page. DC-LAP has a hit ratio similar to SG1, and yields around 4%
higher hit ratio than SG1 only when the storage capacity is high (5% or 10%).

When α becomes smaller (ALTERNATIVE trace), the hit ratio of the caching ap-
proach GD* is much lower than that when α is high (NEWS trace). The degradation
in hit ratio results from a more uniform popularity distribution implying fewer re-
peated references to the same page. However, the relative improvements using sub-
scription-based pushing-enhanced methods are much higher when α is 1.0 than when
α is 1.5, as summarized in table 2. The much higher gains for ALTERNATIVE mean
that the push-time placement module benefits the non-homogeneous request streams
(characterized by low α) more.

Table 2. Relative improvement over GD* (%) (capacity = 5%)

α SUB SG1 SG2 SR DM DC-FP DC-LAP

1.5 6 34 50 54 17 37 40
1.0 47 84 133 133 34 93 96

5.4 Influence of Subscription Quality

At the 5% capacity level, figure 5 reveals the effect of subscription quality (SQ) that
is defined in equation 7 in section 4.3. All the approaches are affected by SQ, except
for GD* which does not use the subscription information at all.

SR, which is one of the best approaches in the ideal case, is most affected by SQ
and its superiority disappears quickly as SQ decreases. Both SG1 and DC-LAP are
not sensitive to SQ, and they are similarly good approaches as SQ decreases. DC-
LAP has about 3% higher hit ratio than SG1 when SQ is as low as 0.25.

One major distinction between the results for the two traces is the behavior of
SG2. By incorporating the analysis of access patterns, SG2 outperforms SR by re-
maining highly effective when SQ varies. For NEWS trace, when SQ ≤ 0.5, whether
one is using the sum (SG1) or the difference (SG2) of the number of subscriptions
and that of accesses becomes less important because the number of subscriptions
dominates the frequency factor in equation 1. For ALTERNATIVE trace, however,
the hit ratio of SG2 drops more quickly and it is even worse than SG1 when SQ is
0.25 or 0.5.

One possible reason for the above distinction is that since the request frequencies
of pages are getting more similar with smaller α, the subscription frequency domi-

98 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

nates the frequency factor in the evaluation method in SG2. Therefore, the accuracy
of subscription information becomes more important for SG2.

0

20

40

60

80

100

0.25 0.5 0.75 1
SQ

H
it

ra
tio

 (
%

)

GD* SUB SG1 SG2 SR DC-LAP

0

20

40

60

80

100

0.25 0.5 0.75 1
SQ

H
it

ra
tio

 (
%

)

GD* SUB SG1 SG2 SR DC-LAP

 (a) For NEWS trace (b) For ALTERNATIVE trace

Fig. 5. Hit ratios of the algorithms with different subscription qualities (capacity = 5%)

0

20

40

60

80

100

0 24 48 72 96 120 144 168
Hour

H
it

ra
tio

 (
%

)

SG2
SUB
GD*

0

20

40

60

80

100

0 24 48 72 96 120 144 168
Hour

H
it

ra
tio

 (
%

)

SG2
SUB
GD*

 (a) For NEWS trace (b) For ALTERNATIVE trace

Fig. 6. Average H hourly (SQ = 1, capacity = 5%)

5.5 Hit Ratio versus Time

Figure 6 demonstrates the average H of three algorithms in every hour, given that the
subscription quality is 1 and the cache capacity setting is 5%. SG2, the best push-time
and access-time placement approach in general, is compared against the subscription-
based pushing-only method SUB and the access-based caching-only method GD*.

After the first couple of hours, GD* behaves stably. At the beginning, SUB has a
high hit ratio by proactively pushing contents before users request them. However,
the hit ratio of SUB drops with time because SUB only uses static subscription in-
formation but does not adjust the pushing policy according to the usage pattern. SG2
keeps a high hit ratio by combining the subscription and access pattern in placement.

Content Distribution for Publish/Subscribe Services 99

5.6 Traffic Overhead

The push-time module can use either of the following two schemes to push contents:
1. Always Pushing: the push-time module always transfers a page to a server when

the page is generated and matched to the subscriptions from the server; the server
then decides whether to store the page in its local cache based on the replacement
algorithm. The bandwidth is wasted if the server decides not to store the page.

2. Pushing When Necessary: the push-time module notifies the server of the meta-
information such as page size when a page matches the subscriptions from the
server; then the server performs its evaluation to decide whether to store the page
and sends the result to the push-time module; if the reply is “will store it in cache”,
the push-time module notifies the publisher to forward the page to the server. This
scheme is designed to reduce unnecessary pushing from the publisher to the server.

Figures 7 shows the traffic for pushing pages and fetching pages on cache misses
versus time, considering each of the above two pushing schemes. The amount of
traffic in terms of the number of pages is measured when using GD*, SUB and SG2.

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

0 24 48 72 96 120 144 168
Hour

pa

ge
s

SUB
SG2
GD*

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

0 24 48 72 96 120 144 168
Hour

pa

ge
s

SUB
SG2
GD*

 (a) Always-Pushing scheme (b) Pushing-When-Necessary scheme

Fig. 7. Traffic in number of pages for two traces (SQ = 1, capacity = 5%, NEWS trace)

The traffic overhead of GD* does not change with pushing scheme hence it can be
used as the baseline to compare the two pushing schemes. Interestingly, SG2 is not
sensitive to pushing scheme, which implies that SG2 is biased toward new pages. In
any case, the traffic overhead of SG2 is comparable to GD*. SUB always introduces
the highest traffic overhead, because it suffers from fetching-on-miss due to its low
hit ratio. The difference between the curves of SUB and GD* is smaller when using
Pushing-When-Necessary than when using Always-Pushing, which means the former
benefits SUB a lot in reducing the traffic overhead. The above observations hold for
both traces when considering number of pages or number of bytes.

100 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

6 Related Work

Siena [8] is a distributed publish/subscribe system that makes use of the coverage
relation of messages and subscriptions to achieve scalability. Efficient matching is
important to publish/subscribe systems, either in a centralized or a distributed match-
ing scheme [2, 13]. As a complement to topic-based and content-based systems, type-
based publish/subscribe enables the integration of middleware and language [11]. The
publish/subscribe paradigm can support event notification [14], communication in
sensor networks [21], etc. To our knowledge, the storage management problem in
content-intensive publish-subscribe services has not been investigated sufficiently.

Web caching passively keeps the most useful information in a capacity-limited
proxy server. Many caching replacement algorithms have been presented in the litera-
ture. The GreedyDual-Size algorithm combines factors such as temporal locality and
popularity as well as fetching cost and page size in caching replacement [7]. Greedy-
Dual* is a generalization of GDS and balances the effects of long-term popularity and
short-term reference correlation in a reference stream [17].

Prefetching is used to proactively pull information from an original site to a proxy
server [10], or from a proxy to a browser cache [17]. Fan et. al. [17] propose a pre-
fetching mechanism by mining the reference dependency between pages. Browsing
agents can pull the pages that link to the current page and/or are similar in contents
[9, 22]. Combining access pattern and link structure together, Duchamp proposes a
mechanism to prefetch the popular embedded components [10].

Besravros [4] proposes a server-initiated pushing algorithm that places the most
popular pages at the layer closer to the end users in a hierarchical caching system.
Based on geographical information, Gwertzman and Seltzer [16] present a system
that pushes the popular pages to the proxy servers that request the pages frequently.

Caching, prefetching and pushing are mainly based on inferred user interest. In a
publish/subscribe application, user preference is stated in their subscriptions and pre-
known by the publish/subscribe system. Our work addresses how to exploit the stated
user interest as well as the inferred interest in content distribution.

The push-time placement algorithms in this paper belong to replication technique
according to the definition in [26]. More importantly, our content delivery is on be-
half of the content producers as for content delivery networks (CDN).

Most commercial products and research in CDN focus on hashing-based request
redirection to achieve load balance among servers and thus reduce the response time
[1, 19]. Gadde et al. [15] indicate a natural limit to the benefits of redirection-based
hierarchical CDNs, since the hit ratio in proxy caches increases dramatically as ISPs
serve larger user communities. This paper addresses server-based populating that
helps to improve the hit ratio even when passive caching achieves its upper limit.

Regarding the placement problem in CDN, the previous work has mainly concen-
trated on optimum solutions for space-constrained problems. The optimum solution
in an overlay network with a graph topology has been proved to be NP-hard, while
there exist polynomial solutions for other topologies like trees [20]. The optimum
solutions usually assume precise global and stable information known in advance,
and thus are infeasible for many web-applications.

Content Distribution for Publish/Subscribe Services 101

Kangasharju et al. [18] propose four heuristics, but the best one needs global
knowledge about the network topology, the reference distribution and the content
distribution at different times. Qiu et al. [25] propose several heuristics to choose M
replica sites from N candidates for a given site, assuming a relatively stable reference
pattern at the candidate sites. For bandwidth-constraint placement, Venkataramani et
al. [30] present a solution whose expected response time is within a constant factor of
the optimal placement if the information objects have uniform size. However, the
algorithm is not designed for a highly dynamic environment in which the object up-
date rate is high and demand-readings proceed in parallel with publishing.

This paper focuses on the coordination between a publisher and a proxy server;
hence the placement decision at each proxy server is based on local knowledge only.
Therefore, our solutions are suitable for a highly dynamic scenario, which is distinc-
tive from the placement algorithms based on global and static information.

7 Conclusion

We have proposed several content distribution mechanisms for content-intensive
publish/subscribe systems. Our approaches combine push-time and access-time con-
tent delivery based on subscriptions as well as access patterns. The simulation study
demonstrates great improvement in hit ratio by applying our best approaches as com-
pared to the access-based caching method, even if the subscription information does
not match requests perfectly. The improvement in hit ratio translates into a reduction
in user perceived response time. The traffic introduced by adding the pushing module
is not significantly more than that needed to fetch pages on cache misses when using
caching only. Our approaches benefit request streams with both regular-popularity
and news-based distributions, even benefiting the former more.

Future work is on extending the content delivery schemes to more general scenar-
ios in which not all requests to pages are driven through notification services.

References

1. Akamai. http://www.akamai.com.
2. Altinel, M. and Franklin, M. J. Efficient Filtering of XML Documents for Selective Dis-

semination of Information. In Proceedings of VLDB 2000, 2000.
3. Barford, P. and Crovella, M. Generating Representative Workloads for Network and Server

Performance Evaluation. In Proceedings of ACM Sigmetrics’98, 1998.
4. Besravros, A. Demand-based Document Dissemination to Reduce Traffic and Balance

Load. In Proceedings of SPDP’95, 1995.
5. Breslau, L., Cao, P., Li, F., Phillips, G., and Shenker, S. Web Caching and Zipf-like Distri-

butions: Evidence and Implications. In Proceedings of IEEE Infocom ’99, 1999.
6. BRITE. http://www.cs.bu.edu/brite/
7. Cao, P. and Irani, S. Cost-Aware WWW Proxy Caching Algorithms. In Proceedings of

USENIX Symposium on Internet Technology and Systems, 1997.

102 Mao Chen, Andrea LaPaugh, and Jaswinder Pal Singh

8. Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. Design of a Scalable Event Notification
Service: Interface and Architecture. Tech. Rep. CU-CS-863-98, Department of Computer
Science, Univ. of Colorado at Boulder, Sept. 1998.

9. Chi, E. H., Pirolli, P., Chen, K., and Pitkow, J. Using Information Scent to Model User In-
formation Needs and Actions on the Web. CHI 2001, Vol. 3(1), 490-497.

10. Duchamp, D. Prefetching Hyperlinks. In Proc. of USENIX Symp. on Internet Technologies
and Systems, 1999.

11. Eugster, P.T., Guerraoui, R., and Sventek, J. Type-based publish/subscribe. Technical Re-
port, Swiss Federal Institute of Technology, June 2000.

12. Fan, L., Cao, P., Lin, W., and Jacobson, Q. Web Prefetching Between Low-Bandwidth Cli-
ents and Proxies: Potential and Performance. SIGMETRICS, 1999.

13. Fabret, F., Jacobsen, H. A., Llirbat, F., Pereira, J., Ross, K. A., and Shasha, D. Filtering Al-
gorithms and Implementation for Very Fast Publish/Subscribe Systems. In proceedings of
SIGMOD, 2001.

14. Fitzpatrick, G., Kaplan, S, Mansfield, T., Arnold, D., and Segall, B. Supporting public
availability and accessibility with Elvin: Experiences and Reflections. ACM TOC 11(3):
447 – 474, 2002.

15. Gadde, S., Chase, J., and Rabinovich, M. Web Caching and Content Distribution: A View
From the Interior. In Proceedings of WCW ’00, 2000.

16. Gwertzman, J. and Seltzer, M. An Analysis of Geographical Push-Caching. 1997.
17. Jin, Shudong and Bestavrous, A. GreedyDual* Web Caching Algorithm: Exploiting the

Two Sources of Temporal Locality in Web Request Streams. Computer Comm., vol. 24(2),
pp. 174-183, Feb. 2001.

18. Kangasharju, J., Roberts, J., and Ross, K. W. Object Replication Strategies in Content Dis-
tribution Networks. In Proceedings of WCW'01, 2001.

19. Karger, D., Lehman, E., Leighton, F. T., Levine, M., Lewin, D., and Panigrahy, R. Consis-
tent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web. In Proceedings of the ACM STOC, 1997.

20. Krishnan, P., Raz, D., and Shavitt, Y. The cache location problem. IEEE/ACM Transac-
tions on Networking, 8(5): pages 568-582, October 2000.

21. Huang, Y.-Q. and Garcia-Molina, H. Publish/Subscribe in a Mobile Environment. MobiDE
01.

22. Lieberman, H. Letizia: An Agent That Assists Web Browsing. Proceedings of the 1995 In-
ternational Joint Conference on Artificial Intelligent, 1995.

23. MSNBC. http://www.msnbc.com/news
24. Padmanabhan, V. N. and Qiu, L.-L. The Content and Access Dynamics of a Busy Web

Site: Findings and Implications. In Proceedings of ACM SIGCOMM 2000.
25. Qiu, L., Padmanabham, V. N., and Voelker, G. M. On the placement of web server replicas.

In Proceedings of 20th IEEE INFOCOM, 2001.
26. Rabinovich, M. Issues in Web Content Replication.
27. Wang, J. A Survey of Web Caching Schemes for the Internet. ACM Computer Communi-

cation Review, 29(5):36-46, October 1999.
28. Wolman, A., Voelker, G., Sharma, N., Cardwell, N., Brown, M., Landray, T., Pinnel, D.,

Karlin, A., and Levy, H. Organization-Based Analysis of Web-Object Sharing and Cach-
ing. In Proceedings of USITS’99, 1999.

29. Wolman, A., Voelker, G., Sharma, N., Cardwell, N., Karlin, A., and Levy, H. On the Scale
and Performance of Cooperative Web Proxy Caching. In Proc. of SOSP, 1999.

30. Venkataramani, A., Weidmann, P., and Dahlin, M. Bandwidth Constrained Placement in a
WAN. In Proceedings of ACM PODC 2001.

	1 Introduction
	2 A Publish/Subscribe System with Content Distribution Engine
	3 Content Delivery Strategies
	3.1 Access-Time Strategy Based on Access Pattern
	3.2 Push-Time Strategy Based on Subscription Information and Matching
	3.3 Push-Time and Access-Time Schemes Based on Subscription Information and Access Pattern
	3.4 Summary of Strategies

	4 Workload and Simulator
	4.1 Publishing Stream Generation
	4.2 Request Stream Generation
	4.3 Subscription Generation

	5 Experiments
	5.1 Metrics and Experiment Setup
	5.2 Comparing Dual-Methods and Dual-Caches
	5.3 Overall Hit Ratio with Perfect Subscriptions
	5.4 Influence of Subscription Quality
	5.5 Hit Ratio versus Time
	5.6 Traffic Overhead

	6 Related Work
	7 Conclusion
	References

