
Cartesian Factoring of Polyhedra
in Linear Relation Analysis

N. Halbwachs and D. Merchat and C. Parent-Vigouroux

Vérimag?, Grenoble - France
{Nicolas.Halbwachs,David.Merchat,Catherine.Parent}@imag.fr

Abstract. Linear Relation Analysis [CH78] suffers from the cost of op-
erations on convex polyhedra, which can be exponential with the number
of involved variables. In order to reduce this cost, we propose to detect
when a polyhedron is a Cartesian product of polyhedra of lower dimen-
sions, i.e., when groups of variables are unrelated with each other. Clas-
sical operations are adapted to work on such factored polyhedra. Our
implementation shows encouraging experimental results.

1 Introduction

Linear Relation Analysis [CH78,Hal79] is one of the very first applications of
abstract interpretation [CC77], and remains one of the most powerful and ef-
fective techniques for analyzing properties of numerical programs. It was ap-
plied in various domains like compile-time error detection [DRS01], program
parallelization [IJT91], automatic verification [HPR97,HHWT97] and formal
proof [BBC+00,BBM97].

In its original setting, Linear Relation Analysis was designed to discover lin-
ear inequalities (or convex polyhedra) invariantly holding at each control point
of a sequential program. These polyhedra are built by forward and/or backward
propagation of predicates along the paths of the control graph of the program.
These propagations involve the computation of classical operations over convex
polyhedra: intersection, least upper bound (convex hull), affine transformation,
projection, check for inclusion and emptiness, and widening to enforce termi-
nation. Moreover, it is very important that the representation of polyhedra be
kept minimal. All these operations are easy, provided the double-description of
polyhedra [MRTT53] is available: it consists in characterizing a polyhedron both
as the set of solutions of a system of linear inequalities and as the convex hull
of a finite system of generators (vertices and rays). Knowing both these repre-
sentations also allows each of them to be minimized, i.e., discarding irrelevant
(redundant) inequalities and generators. Several libraries for polyhedra manip-
ulation are available [Wil93]1 [CL98]2 [HPR97][BRZH02]3 .
? Vérimag is a joint laboratory of Université Joseph Fourier, CNRS and INPG associ-

ated with IMAG.
1 see also http://www.ee.byu.edu:8080/~wilde/polyhedra.html
2 see also http://icps.u-strasbg.fr/polylib/ and http://www.irisa.fr/polylib
3 see also http://www.cs.unipr.it/ppl/

The problem with the double-description is that the size of each description
can grow exponentially with the dimension of the space (number of variables):
an n-dimensional hypercube is defined by 2n inequalities, but has 2n vertices;
the converse can happen, since the descriptions are completely dual.

As a consequence, the dimension of the space is an important limitation to
the application of Linear Relation Analysis to real-life examples. In program
verification, a classical way of decreasing the number of variables, consists of
applying first a program slicing [Tip95]: it consists in analyzing variables depen-
dencies to discard variables which cannot influence the property to be verified.
However, precise slicing is not always easy, and the approach works only when
the goal of the analysis is precisely known (e.g., a given property to verify) to
be used as the source of the slicing.

In this paper, we propose a complementary approach to reduce the number
of variables. It consists in detecting that a polyhedron can be factored as a
Cartesian product of polyhedra in smaller dimensions. This situation, which
occurs very often in real-life examples, means that the set of variables can be
partitioned into subsets, such that variables belonging to different subsets are
independent, i.e., not related by any inequality in the polyhedron. In order to
take advantage of such factorings, they must be detected, and operations should
be, as far as possible, performed on factored arguments.

Compared with slicing, our approach will detect variables independence, not
in an absolute way, but with respect to the analysis which is performed: some
variables may be related by the concrete semantics of the program, but these rela-
tions may be ignored by the Linear Relation Analysis, because of approximation.
However, notice that in this paper, we consider factoring without additional loss
of information. Of course, one could also decide to abstract away some relations
in order to obtain a finer factoring and better performances.

2 Convex Polyhedra

2.1 The double description

Let N be either R or Q. A closed convex polyhedron — or simply, a polyhedron
— P in Nn can be characterized by a m× n matrix A and a m-vector B, such
that

P = {X ∈ N n | AX ≤ B}
(A,B) is the constraint description of P . A polyhedron P can be also character-
ized by two finite sets V = {vi}, R = {rj} of n-vectors, such that

P =

|V |∑
i=1

λivi +
|R|∑
j=1

µjrj | λi ≥ 0, µj ≥ 0,

|V |∑
i=1

λi = 1

(V,R) is the system of generators of P 4; V is the set of vertices, R is the set
of rays. This description expresses that any point in P is the sum of a convex
4 The system of generators of the empty polyhedron is (∅, ∅).

combination of vertices and a positive combination of rays. Fig. 1 illustrates this
double description.

1 2

1

2

x

y

3

3

−1 −1
−1 1

−1

 (
x
y

)
≤

−3
1

−1

V0 =

(
1
2

)
, V1 =

(
2
1

)
, R0 =

(
1
0

)
, R1 =

(
1
1

)

Fig. 1. Double description of a polyhedron.

Chernikova’s algorithm [Che68] improved by Leverge [LeV92,Wil93] performs
the translation from one description to the other. An important feature of this
algorithm is that the resulting description is minimal, in the sense that it does
not contain any redundant element: A constraint, a vertex, or a ray is redundant
if removing it does not change the polyhedron. In the example of Fig. 1, x ≥ 0
would be a redundant constraint, (2, 2) would be a redundant vertex, and (2, 1)
would be a redundant ray.

Notations: In the rest of the paper, we will generally assimilate a polyhedron
with its system of constraints, for instance by noting P ∧P ′ the set of solutions
of the conjunction of the constraints of P and P ′. Notice that we will use this
notation even if the constraints of P and P ′ do not involve the same set of
variables, meaning that the conjunction concerns the union of the variables of
P and P ′.

2.2 Operations on polyhedra

As soon as both descriptions are available, all operations needed for program
analysis are available:

Intersection: Let (A,B), (A′, B′) be the respective systems of constraints of

P1 and P2, then
([

A
A′

]
,

(
B
B′

))
(the concatenation, or conjunction, of the

systems of constraints) is a system of constraints of P ∩ P ′. Of course, this
conjunction can result in redundant constraints.

Convex hull: The convex hull is used as an approximation of union, which is
not an internal operation on polyhedra (it does not preserve convexity). The
convex hull of two polyhedra is the least convex polyhedron which contains

both of them. Let (V,R), (V ′, R′) be the respective systems of generators of
P1 and P2, then (V ∪ V ′, R ∪ R′) is a system of generators of their convex
hull, noted P tP ′. Again, this system of generators is generally not minimal.

Affine transformation: An affine transformation in Nn is given by a pair
(C,D), where C is a n × n matrix and D is a n-vector. The image of a
polyhedron P by an affine transformation (C,D) is

CP + D = {CX + D |X ∈ P}

Then, if (V,R) is a system of generators of P , (CV + D,CR) is a system of
generators of CP + D. When C is invertible, the transformation can also be
done on P ’s system of constraints, and the affine transformation preserves
the minimality of both descriptions.

Existential quantification: We note ∃xj , P the results of eliminating the j-th
variable in P by the Fourier-Motzkin procedure: it consists of replacing each
constraint AiX ≤ B where Aij > 0 by its positive combinations with all
constraints AkX ≤ B where Akj < 0 to get a null coefficient for Xj (i.e.,
(Aij .Ak − Akj .Ai)X ≤ (Aij .Bk − Akj .Bi)). Existential quantification of xj

can be easily done, also, on systems of generators, simply by adding uj and
−uj as new rays, where uj is the jth unit vector of Nn.

Test for inclusion: Let (V,R) be a system of generators of P , and (A,B) be
a system of constraints of P ′. Then P ⊆ P ′ if and only if Av ≤ B, for all
v ∈ V , and Ar ≤ 0, for all r ∈ R.

Test for emptiness: A polyhedron is empty if and only if its set of vertices is
empty.

Widening: The widening is used to extrapolate the limit of an increasing se-
quence of polyhedra. There is some freedom in defining such an operator, we
use the one proposed in [Hal79]. Intuitively, the system of constraints of the
widening P∇P ′ is the subset of P ’s constraints still satisfied by P ′. Now,
since this definition relies on the system of constraints of P , which is not
canonical in general, the actual definition is more complex: a constraint of
P∇P ′ is a constraint of P ′ which is mutually redundant5 with a constraint of
P (meaning that either it is a constraint of P , or it can replace a constraint
of P without changing it). Here again, both descriptions are used to perform
this operation.

3 Factoring of Polyhedra

Let I be a subset of {1 . . . n}. We note P ↓I the projection of the polyhedron P on
variables with indices in I (i.e., the result, in N |I| of the existential quantification
of all variables with indices outside I).

Let (I1, I2, . . . I`) be a partition of {1 . . . n}. We say that a polyhedron P can
be factored according to (I1, I2, . . . I`) if and only if

5 Two constraints are mutually redundant in a system of constraints if you can replace
each of them by the other without changing the set of solutions.

P = P ↓I1 × P ↓I2 × . . . P ↓I`

A matrix A is block-diagonalizable according to a partition (I1, I2, . . . I`) if for
each of its row Ai there is one ki ∈ {1..`} such that {j | Aj

i 6= 0} ⊆ Iki
.

Some obvious facts:

f1. for any polyhedron P , there is a greatest partition (I1, I2, . . . I`) according
to which P can be factored (possibly the trivial partition, with ` = 1).

f2. for any matrix A, there is a greatest partition (I1, I2, . . . I`) according to
which A is block-diagonalizable (possibly the trivial partition, with ` = 1).

f3. if (A,B) is the constraint description of a polyhedron P , and if A is block-
diagonalizable according to a partition (I1, I2, . . . I`), then P can be factored
according to (I1, I2, . . . I`) (the converse is not true, if (A,B) is not minimal).
This gives an easy way to factor a polyhedron, and to get the constraint
descriptions of its factors: each constraint (Ai, Bi) becomes a constraint of
the factor Pki .

f4. For any pair (P, P ′) of polyhedra (resp., for any pair (A,A′) of matrices)
there is a greatest common partition (possibly the trivial partition) according
to which both polyhedra can be factored (resp., both matrices are block-
diagonalizable).

f5. Conversely, given a description of the factors P1, . . . P`, one can easily obtain
the corresponding description of P = P1 × . . .× P`:
– its system of constraints is just the conjunction of those of the factors;
– its system of generators is obtained by composing together all the `-

tuples of vertices (resp., of rays) of the factors. This composition ex-
plains the explosion of the size of the systems of generators, since
|V | =

∏`
k=1 |Vk| and |R| =

∏`
k=1 |Rk|.

A similar treatment works also to obtain a description of P factored accord-
ing to any partition rougher than (I1, I2, . . . I`).

Example: Fig. 2 shows a factored polyhedron in 2 dimensions. In its minimal
system of constraints: −1 0

0 1
0 −1

(
x
y

)
≤

−1
2
0

the matrix is block-diagonal. Now, if the redundant constraint 2x ≥ y is added,
the matrix is non longer block-diagonalizable, and the factoring of the polyhe-
dron is hidden.

4 Easy Operations

Most of the operations mentioned in Section 2.2 can be easily applied compo-
nentwise to factored polyhedra. The operands need first to be factored in the

1

2

x

y

x ≥ 1

0 ≤ y ≤ 2

2x ≥ y

Fig. 2. A factored polyhedron.

same way (using f4 and f5 above). Moreover, in many cases, the result may be
better factored than the operands, which can be done using f2.

Intersection. If P and P ′ are factored according to the same partition
(I1, I2, . . . I`), then so is P ∩ P ′ = P1 ∩ P ′

1 × P2 ∩ P ′
2 × . . . × P` ∩ P ′

` .
It may be the case that P ∩ P ′ can be further factored (Fig. 3).

(b) better factorization(a) same factorization

Fig. 3. Intersection of factored polyhedra.

Affine transformation. Let X 7→ CX +D be an affine transformation. If C is
block-diagonalizable according to (I1, I2, . . . I`), and P is factored according
to the same partition, then so is CP +D = CI1P1+DI1 × . . . × CI`

P`+DI`
.

If C is not invertible, it can be the case that CP +D can be further factored.
Widening. If P and P ′ are factored according to the same partition

(I1, I2, . . . I`), then so is P∇P ′ = P1∇P ′
1 × P2∇P ′

2 × . . . × P`∇P ′
` . It

may be the case (in fact, it happens very often) that P∇P ′ can be further
factored

Emptiness and inclusion. Let P = P1 × P2 × . . . × P`. Then P is empty
if and only if there exists k ∈ {1..`} such that Pk is empty. If P and P ′ are
factored according to the same partition (I1, I2, . . . I`), then P ⊆ P ′ if and
only if, for all k ∈ {1..`}, Pk ⊆ P ′

k.

5 The Convex Hull

The computation of the convex hull is more difficult. The convex hull of two
factored polyhedra can be either less factored (Fig. 4.a) or as factored (Fig. 4.b),
or even more factored (Fig. 4.c) than the operands.

(c) better factorization(b) same factorization(a) less factorization

Fig. 4. Convex hull of factored polyhedra.

The goal is to get the factored result, when possible, in a decomposed way,
and without penalizing the computation when the result is not factored. This
can be achieved thanks to the following proposition:

Proposition 1. Let P = P1 × P2 and P ′ = P ′
1 × P ′

2 be two polyhedra factored
according to the same partition. Let λ be a fresh variable and let us consider the
polyhedra Q1 and Q2 defined by:

Q1 = (P1 ∧ {λ = 0}) t (P ′
1 ∧ {λ = 1}) Q2 = (P2 ∧ {λ = 0}) t (P ′

2 ∧ {λ = 1})

Then,

– if λ is lower-bounded by a non constant expression in Q1 — i.e., there is
a constraint E(X1) ≤ λ in the system of constraints of Q1, where E(X1)
is a non constant linear expression of X1 — and upper-bounded by a non
constant expression in Q2, or conversely, the convex hull P tP ′ is non longer
factored, and can be computed as ∃λ, Q1 ∧Q2;

– otherwise P t P ′ = (∃λ, Q1)× (∃λ, Q2).

Proof: By definition of the convex hull,

X ∈ P t P ′ ⇔ ∃Y ∈ P, Y ′ ∈ P ′, λ ∈ [0, 1], such that X = λY + (1− λ)Y ′

⇔ X = (X1, X2) ∧ ∃λ ∈ [0, 1] such that
∃Y1 ∈ P1, Y

′
1 ∈ P ′

1, X1 = λY1 + (1− λ)Y ′
1∧

∃Y2 ∈ P2, Y
′
2 ∈ P ′

2, X2 = λY2 + (1− λ)Y ′
2

⇔ X = (X1, X2) ∧ ∃λ ∈ [0, 1] such that
(X1, λ) ∈ Q1 ∧ (X2, λ) ∈ Q2

Now, the existential quantification of λ in the last system of constraints can only
produce dependencies between previously independent variables in two cases:

– if there is some constraint E(X1) ≤ λ in Q1, and some constraint λ ≤ F (X2)
in Q2 — which will produce E(X1) ≤ F (X2);

– or, conversely, if there is some constraint λ ≤ E(X1) in Q1, and some con-
straint F (X2) ≤ λ in Q2 — which will produce F (X2) ≤ E(X1);

where E(X1) and F (X2) are non constant expressions. Otherwise, λ can be
quantified separately in Q1 and Q2.
2

This result generalizes to multiple factorings:

Proposition. Let P = P1 × . . . × P` and P ′ = P ′
1 × . . . × P ′

` be two polyhedra
factored according to the same partition. Let λ be a fresh variable and let us
consider the polyhedra (Qk)k=1..` defined by:

Qk = (Pk ∧ {λ = 0}) t (P ′
k ∧ {λ = 1}

Then, the partition of P t P ′ is obtained from (I1, . . . , I`) by merging Ik and
Ik′ whenever either λ is lower-bounded by a non constant expression in Qk

and upper-bounded by a non constant expression in Qk′ , or conversely. Let
(J1, . . . , Jh) be the resulting partition, each Jm being a union of some Iks. Then

P tQ = R1 ×R2 × . . .×Rh where Rm = ∃λ, ×
Ik ⊆ Jm

Qk

6 Experimental Results

6.1 Operations on factored hypercubes

We first compared the performances of the operations in the best case, where
operands are completely factored hypercubes (i.e., in fact, intervals). For
intersection and widening6, the results are, of course, excellent:

Intersection Classical operations Factored operations
Dimension 10 11 12 13 10 20 30 40 50
Operation time 3” 13” 60” 4’36 0”02 0”03 0”03 0”04 0”07

Widening Classical operations Factored operations
Dimension 8 10 12 14 16 10 20 30 40 50
Operation time 0”05 0”22 1”68 20”63 6’58” 0”01 0”02 0”04 0”06 0”07

Concerning the convex-hull, we made two series of experiments:

– the first one concerns the best case, where the result is still fully factored.
The following table only gives the times of the classical convex hull, since the
factored one gives non measurable times (less than 0.01 sec. in dimension
50): in dimension n, it performs n convex hulls of polyhedra with 2 variables
(the current variable and the variable λ of Prop. 1).

Dimension 10 11 12 13 14 15 16
Classical 0”06 0”28 2”01 12”07 54”99 3’44” 15’27”

– the second series concerns the worst case, where the result is not factored at
all:

6 Operands are such that half of the constraints are kept by the widening.

Dimensions 10 11 12 13 14 15 16
Classical 0”09 0”48 3”81 21”89 1’35” 6’29” 25’54”
Factored 0”17 0”41 2”93 5”76 1’20” 5’50” 22’53

Notice that, even in this case, the factored operation is still better than
the classical one. In addition with the same operations than in the previous
case, it has to perform an existential quantification of λ, which appears to
dominate largely in the overall cost.

6.2 Experiments in program analysis

Real experiments in program analysis are more difficult to conduct, for the fol-
lowing reason: our verification tool, NBac [JHR99] performs much more than
a simple analysis, since it deals with successive forward and backward analy-
ses together with slicing and dynamic partitioning. As a consequence, the cost
of polyhedra operations is not always prominent. Our experiments concerned
parameterized problems, where the number of numeric variables can be easily
increased without increasing the rest of the treatment. Let us show a few results:

Problem car
Dimension 4 5 6 7
Time without factoring 1”63 4”74 7”79 55’31”
Time with factoring 3”84 10”48 16”09 2’55”

Problem Ntoggle
Dimension 4 5 6 7
Time without factoring 1”39 2”01 3”40 44’51”
Time with factoring 3”21 4”60 7”71 16”32

Of course, these results should be taken with care, and further experiments
must be conducted. However, all our experiments show that the factored version
outperforms the classical one from a quite small dimension (less than 10, in
general). We will start experiments in a completely different context, by linking
the analyzer of [DRS03] with our library with factored operations.

7 Conclusion and Future Works

We presented an adaptation of classical operations on polyhedra to work on
Cartesian products of polyhedra. This adaptation is straightforward, except in
the case of the convex hull. The gain in performance is obvious — and spectacular
— when the arguments of the operations are factored in the same way. So the
interest of the approach relies on the fact that, during an analysis, polyhedra are
indeed factored in similar ways. It appears to be often the case, at least in the
end of an analysis, after the application of the widening, which tends to suppress
dependences between variables.

This work can be pursued in several directions. First, the fact that polyhe-
dra are factored depends on the choice of variables. A simple variable change
(e.g., a rotation) can make possible a factoring. The question is whether the
detection of this fact can be done efficiently enough to make it worthwhile. An
other improvement concerns the beginning of the analysis: as mentioned before,
factoring is more likely to occur at the end, after one or several widenings. Now,
at the beginning of an analysis, variables are tightly dependent; in fact, they
are likely to satisfy linear equations. This suggests to look for an other way of
saving variables, by early detection of these equations [Kar76] and elimination of
variables. Of course, since each equation allows only one variable to be removed,
this technique is less likely to produce spectacular improvements than polyhedra
factoring.

References

[BBC+00] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, H. Sipma,
and T. Uribe. Verifying temporal properties of reactive systems: A STeP
tutorial. Formal Methods in System Design, 16:227–270, 2000.

[BBM97] N. Bjorner, I. Anca Browne, and Z. Manna. Automatic generation of invari-
ants and intermediate assertions. Theoretical Computer Science, 173(1):49–
87, February 1997.

[BRZH02] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed
convex polyhedra and the parma polyhedra library. In M. V. Hermenegildo
and G. Puebla, editors, 9th International Symposium on Static Analysis,
SAS’02, Madrid, Spain, September 2002. LNCS 2477.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In 4th ACM Symposium on Principles of Programming Languages,
POPL’77, Los Angeles, January 1977.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5th ACM Symposium on Principles of
Programming Languages, POPL’78, Tucson (Arizona), January 1978.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a
linear programming problem. U.S.S.R. Computational Mathematics and
Mathematical Physics, 8(6):282–293, 1968.

[CL98] Ph. Clauss and V. Loechner. Parametric analysis of polyhedral iteration
spaces. Journal of VLSI Signal Processing, 19(2), July 1998.

[DRS01] N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipu-
lations in C programs via integer analysis. In P. Cousot, editor, SAS’01,
Paris, July 2001. LNCS 2126.

[DRS03] N. Dor, M. Rodeh, and M. Sagiv. CCSV: towards a realistic tool for stati-
cally detecting all buffer overflows in C. to appear in PLDI03, 2003.

[Hal79] N. Halbwachs. Détermination automatique de relations linéaires vérifiées
par les variables d’un programme. Thèse de troisième cycle, University of
Grenoble, March 1979.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1:110–122, 1997.

[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time sys-
tems using linear relation analysis. Formal Methods in System Design,
11(2):157–185, August 1997.

[IJT91] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural paral-
lelization: An overview of the PIPS project. In ACM Int. Conf. on Super-
computing, ICS’91, Köln, 1991.

[JHR99] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in anal-
yses of numerical properties. In A. Cortesi and G. Filé, editors, Static
Analysis Symposium, SAS’99, Venice (Italy), September 1999. LNCS 1694,
Springer Verlag.

[Kar76] M. Karr. Affine relationships among variables of a program. Acta Infor-
matica, 6:133–151, 1976.

[LeV92] H. LeVerge. A note on Chernikova’s algorithm. RR. 635, IRISA, February
1992.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double
description method. In H. W. Kuhn and A. W. Tucker, editors, Contribu-
tion to the Theory of Games – Volume II. Annals of Mathematic Studies,
nr 28, Princeton University Press, 1953.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, September 1995.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. RR. 785, IRISA,
December 1993.

