
Instantaneous Termination in Pure Esterel

Olivier Tardieu and Robert de Simone

INRIA, Sophia Antipolis, France

Abstract. Esterel is a design language for the representation of embed-
ded systems. Based on the synchronous reactive paradigm, its execution
relies on a clear distinction of instants of computation. As a consequence,
deciding whether a piece of a program may or may not run instanta-
neously is central to any compilation scheme, both for correctness and
efficiency. In general, this information can be obtained by an exhaustive
exploration of all possible execution paths, which is expensive. Most com-
pilers approximate it through algorithmic methods amenable to static
analysis. In our contribution, we first formalize the analysis involved in
detecting statements that may run instantaneously. Then, we identify
statements that may terminate and be instantaneously reentered. This
allows us to model precisely these compilers front-end activities with a
clear mathematical specification and led us to uncover inefficiencies in
the Esterel v5 academic compiler from Ecole des Mines and INRIA.

1 Introduction

We shall introduce a number of static analysis techniques specific to the syn-
chronous reactive language Esterel [6,7,8,9]. Interestingly, Esterel both allows
and requires these static analyses. It allows them because of its structural “pro-
cess calculus”-flavored syntax, because of its formal operational semantics, and
because of its finite-state interpretation, all which Cavour easy application of
static analysis methods. It requires them mainly because the synchronous para-
digm promotes a crisp division of reactive behaviors between discrete instants,
and that the definition of instantaneous reactions has to be well-founded. Com-
pilers for Esterel not only benefit from static analysis techniques in optimization
passes, but they heavily rely on them just to achieve correct compilation!

We give two examples of typical phenomena involved with the notion of
discrete reactions, which will be at the heart of our studies:

Instantaneous loops stand for diverging behaviors, which never reach com-
pletion inside a reaction, so that the end of the instant never comes. They
can be branded as non-convergent or non-Zeno behaviors. Example 1 of Fig-
ure 1 is pattern of program that may exhibit such diverging behavior. If the
dots are traversed instantaneously and if the signal I is present then the loop
is restarted infinitely many times within an instant. An extra difficulty in
the case of Esterel comes from the presence of parallel statements as well as
fancy exception raising/trapping mechanisms, so that a proper static notion
of instantaneous termination is not all that obvious;

R. Cousot (Ed.): SAS 2003, LNCS 2694, pp. 91–108, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

92 Olivier Tardieu and Robert de Simone

(1)

loop

trap T in

...;
present I then exit T end;

pause

end

end

(2)

loop

signal S in

present S then ... end;

pause;

emit S

end

end

Fig. 1. Potentially incorrect (1) or schizophrenic (2) loop bodies

Schizophrenic (sub)programs are those compound statements which can be
run and exited or terminated and reentered inside the same reaction [3,5,18].
Such statements can be problematic because the local variables and signals
involved may end up having two distinct occurrences in the same reaction,
with differing values. In Example 2, the signal S is defined inside the loop.
Each iteration refers to a fresh signal S. In a given instant two instances of S
cohabit: the first being emitted at the end of the loop, and the second being
tested as the loop is reentered. As in general (not here) the multiple values
of such a signal have to be computed simultaneously, more than one object
has to be allocated for this signal. Due to the kind of embedded application
code targeted by Esterel this has to be done statically at compile time.

These analyses will serve to formally define and justify front-end parts of
the previously developed compiler, which were implemented without such for-
mal information. In some places we even spotted several minor problems in the
existing code when (and because of) formalizing these issues.

After a brief presentation of the core Esterel language and its semantic fea-
tures relevant to our study (Section 2), we turn to the issue of instantaneous ter-
mination detection by dedicated static analysis computation (Section 3). Then
we face the schizophrenia problem with similar aims (Section 4). In all cases
we provide formal definitions by structural recursion along the syntax for our
techniques, and then we informally discuss their correctness and complexity. We
conclude with comments on how and where our modelization as static analy-
sis techniques of these specific front-end compiling activities helped gain better
insights of them (Section 5).

2 The Pure Esterel Kernel Language

Esterel [6,7,8,9] is an imperative synchronous parallel programming language
dedicated to reactive systems [14,17]. Pure Esterel is the fragment of the full Es-
terel language where data variables and data-handling primitives are discarded.
Thus, the information carried by a signal is limited to a presence/absence sta-
tus. While this paper concentrates on Pure Esterel, extending the results to the
full Esterel language is straightforward. Moreover, without loss of generality, we
focus on the Pure Esterel kernel language as defined by Berry in [5], which re-
tains just enough of the Pure Esterel language syntax to attain its full expressive
power.

Instantaneous Termination in Pure Esterel 93

nothing do nothing (terminate instantaneously)
pause freeze until next instant
signal S in p end declare signal S in p
emit S emit signal S (i.e. S is present)
present S then p else q end if S is present then do p else do q
suspend p when S suspend execution of p if S is present
loop p end repeat p forever
p; q do q in sequence with p
[p || q] do p in parallel with q
trap T in p end declare and catch exception T in p
exit T throw exception T

Fig. 2. Statements of pure Esterel

2.1 Syntax and Intuitive Semantics

The Pure Esterel kernel language defines three kinds of objects: statements,
signals and exceptions. Signals and exceptions are identifiers. Statements are re-
cursively defined as shown by Figure 2. The non-terminals p and q denote state-
ments, S signals and T exceptions. Signals and exceptions are lexically scoped
and respectively declared inside statements by the instructions “signal signal
in statement end” and “trap exception in statement end”.

We say a statement is closed with respect to exceptions iff any exception T
is bounded by a declaration of T, in other words iff any “exit T” occurs inside
a “trap T in ... end” statement. We call these statements programs.

We consider free signals in programs as interface signals. We call input signals
the interface signals that are never emitted inside the program. We call output
signals the rest of them. Moreover, bounded signals are said to be local signals.

The disambiguation of the scopes of nested sequential and parallel compo-
sitions is obtained by enclosing parallel statements into brackets. Then or else
branches of present statements may be omitted. Finally, note that the suspend
statement will not be discussed as it introduces no technical difficulty on its own.

2.2 The Synchronous Reactive Paradigm

An Esterel program runs in steps called reactions. Each reaction takes one in-
stant. When the clock first ticks, the execution starts. It may either terminate
instantaneously or freeze until next instant (next clock cycle), through pause
instructions, from where the execution is resumed when the clock ticks again. If
so, it may then terminate or freeze again. And so on...

“emit A; pause; emit B; emit C; pause; emit D” emits the signal A in
the first instant of its execution, then emits B and C in the second instant, then
emits D and terminates in the third instant. It takes three instants to complete,
or in other words, proceeds by three reactions.

Reactions take no logical time. All statements executed during a reaction
are considered to be simultaneous. In this first example, there is no notion of B
being emitted before C.

94 Olivier Tardieu and Robert de Simone

Parallelism in Esterel is very different from the asynchronous composition
of many concurrent languages or formalisms such as ADA or OCCAM [2,19]:
execution propagates in parallel branches in a deterministic synchronous way.

“[pause; emit A; pause; emit B || emit C; pause; emit D]” emits
the signal C in the first instant of its chain reaction, then emits A and D in
the second instant, then emits B and terminates. By definition, “[p || q]”
terminates when the last of p and q terminates (in the absence of exceptions).

2.3 Loops and Non-Zenoness Condition

“loop emit S; pause end” emits S at each instant and never terminates. This
compound statement is the kernel expansion of the instruction “sustain S”.
Note that using exceptions, it will be possible to escape from loops.

Remark the “pause” inside the loop. In Esterel, the body of a loop is not
allowed to terminate instantaneously when started. It must execute either a
pause or an exit statement. This constraint ensures non-Zenoness of Esterel
programs: as each loop body is traversed at most once at a given instant, the
computation of one reaction of a correct program always ends. This is of course
expected from a reactive language, which claims to proceed by instantaneous
reactions! Section 3 will be devoted to methods that ensure this requirement
holds for a given program.

2.4 Exceptions

Exceptions in sequential code behave as structural gotos to the end of the trap.
“trap T in emit A; pause; emit B; exit T; emit C end; emit D” emits
A first, then B and D and terminates. In this case, the statement “emit C” is
unreachable. Exceptions may also occur in parallel constructions as in:

trap T in
[emit A; pause; emit B; pause; emit C || emit D; pause; exit T]

end;
emit E

A and D are emitted in the first instant, then B and E in the second instant.
As expected, “emit C” is never reached. The second “pause” of the left branch
of the parallel is reached but not executed because it is preempted by the simul-
taneously occurring exception. However, since “exit T” does not prevent B to
be emitted, we say that exceptions implement weak preemption.

Exceptions may also be nested. In such a case, the outermost exception has
priority. In the following program, A is not emitted since T has priority on U:
“trap T in trap U in [exit T || exit U] end; emit A end”.

If we consider not only programs but statements in general, we may encounter
undeclared exceptions, as in “trap T in [exit T || exit U] end; exit T”.
The left “exit T” raises an exception matched within the statement by the
enclosing “trap T in ... end”, while both “exit U” and the second “exit T”
refer to undeclared/unmatched exceptions. We say that by raising such an ex-
ception a statement exits.

Instantaneous Termination in Pure Esterel 95

2.5 Signals

In an instant, a signal S is either present or absent. If S is present all executed
“present S” statements execute their then branch in this instant; if S is absent,
they all execute their else branch. A local or output signal S is present iff it
is explicitly emitted, absent otherwise. The input signals are provided by the
environment. Each execution cycle involves the following steps:

– The environment provides the valuation1 of the input signals. The set of
inputs of a reaction is the set of input signals set present by the environment.

– The reaction occurs.
– The environment observes the resulting valuation of the output signals.

2.6 Logical Correctness and Behavioral Semantics

Since signal emissions can occur inside present statements, it is possible to write
incorrect programs such as:

– “signal S in present S else emit S end end”
If S is present it cannot be emitted. On the other hand, if S is not present it
is emitted. Both cases are contradictory.

– “signal S in present S then emit S end end”
S may either be present or absent. This program is not deterministic.

A program is said to be logically correct iff there exists exactly one possible
valuation of its signals for any set of inputs at any stage of the execution. In
addition, a valuation of the free signals of a given statement is said to be admis-
sible for this statement if it can be extended into a unique valuation of all its
signals coherent with the statement semantics. This is formalized by the logical
behavioral semantics of Esterel, which we briefly sketch in Appendix A.

2.7 Constructive Semantics

There is no efficient algorithm to compute these valuations in general. The pro-
gram “signal S in present S then emit S else emit S end end” is logi-
cally correct since S can only be present. Nevertheless, its execution relies on a
guess. The signal S has first to be guessed present before it can be emitted.

The constructive semantics of Esterel precisely avoid such guesses by re-
stricting the set of correct programs to the so called constructive programs. The
execution of a “present S” statement is blocked until S is known to be present
or absent. The signal S is present as soon as one “emit S” is certainly executed
in the current reaction. It is absent as soon as all “emit S” statements are proved
to be unreachable in the current reaction, due to effective choices taken so far.

We strongly encourage the reader to refer to [4,5] for further information
about these issues and more generally about Esterel formal semantics. In the
sequel, we focus on logically correct programs and behavioral semantics as the
refinement provided by the constructive semantics is orthogonal to our concerns.
1 In Pure Esterel, valuation is just a shortcut for “present/absent statuses”.

96 Olivier Tardieu and Robert de Simone

3 Instantaneous Termination

The first reaction of a program may either terminate its execution or lead to
(at least) one more reaction. Thus, for a given set of inputs, the execution of
a program may either be instantaneous if it completes in a single reaction or
non-instantaneous it if does not, that is to say if it lasts for at least two in-
stants. We say that a program cannot be instantaneous iff its execution is never
instantaneous i.e. is non-instantaneous for any inputs.

We want to extend this definition to statements. For a given admissible val-
uation of its free signals, the behavior of a statement is deterministic. Its first
reaction may either (i) lead to one more reaction or (ii) exit or (iii) terminate
its execution (without exiting). Thus, the execution of a statement either:

lasts by taking at least two reactions to complete
exits instantaneously by raising a free exception
terminates instantaneously otherwise

We says that a statement cannot be instantaneous iff, for any admissible valuation
of its free signals, it does not terminate instantaneously i.e. it either lasts or exits
instantaneously. As a consequence, if a statement cannot be instantaneous, its
execution cannot start and terminate within a unique reaction of the program
it is part of. If a statement p cannot be instantaneous, then q is never reached
in the first instant of the execution of “p; q”. Let’s consider a few examples:

– “exit T” cannot be instantaneous (as it always exits)
– “present I then exit T end” may be instantaneous
– “present I then exit T else pause end” cannot be instantaneous
– “trap T in exit T end” may be instantaneous (is always instantaneous)

The definition of Esterel specifies that the body of a loop cannot be instanta-
neous (cf. Section 2.3). In the rest of this section, we discuss methods to ensure
that a given statement cannot be instantaneous. First we consider exact analysis
in Section 3.1, then we formalize efficient static analyses. Because of exceptions,
this is not straightforward. Thus, we start by restricting ourselves to exception-
free statements in Section 3.2. We further introduce exceptions in two steps in
Sections 3.3 and 3.4. We discuss the current implementation in Section 3.5.

3.1 Exact Analysis

The exact decision procedure is obvious. For a given statement, it consists in com-
puting its first reaction for all possible valuations of its free signals and checking
that the execution does not terminate instantaneously in each admissible case.

The number of valuations is finite but exponential in the number of free
signals, which can be linear in the size of the statement. In fact, as illustrated by
Figure 3, SAT (the problem of boolean satisfiability in propositional logic) can be
expressed in terms of instantaneous termination of Pure Esterel programs (by a
polynomial reduction). A valuation satisfies the boolean formula iff it makes the

Instantaneous Termination in Pure Esterel 97

(A ∨ ¬B ∨ C) ∧ (¬A ∨ C ∨ ¬D) ∧ (¬B ∨ ¬C ∨ D) is satisfiable
�

present A else present B then present C else pause end end end;

present A then present C else present D then pause end end end;

present B then present C then present D else pause end end end

may be instantaneous

Fig. 3. Reducing SAT to instantaneous termination

execution of the corresponding program terminate instantaneously. Reciprocally,
there exists no such valuation iff the program cannot be instantaneous.

To the best of our knowledge, this procedure has never been experimented
with. Whether it is tractable in practice or not remains an open question. Nev-
ertheless, NP complexity is a strong argument in favor of approximate analysis.

3.2 Static Analysis for Exception-Free Statements

Since we are now interested in conservative analysis, a statement labeled with
“may be instantaneous” could well be a statement that “cannot be instanta-
neous”, which we missed because of approximations. On the other hand, a state-
ment labeled with “cannot be instantaneous” truly cannot be.

Figure 4 gives a first set of rules applicable to exception-free statements. For
example, in order for the execution of “p; q” to terminate instantaneously it
has to be true that p is executed instantaneously, instantaneously transferring
control to q, which itself has to terminate instantaneously. By quantifying on
all admissible valuation, we extract the rule: “p; q” cannot be instantaneous as
soon as p or q cannot be instantaneous.

nothing may be instantaneous
pause cannot be instantaneous
signal S in p end cannot be instantaneous if p cannot
emit S may be instantaneous
present S then p else q end cannot be instantaneous if both p and q cannot
suspend p when S cannot be instantaneous if p cannot
loop p end cannot be instantaneous,

p has to be non-instantaneous
p; q cannot be instantaneous if p or q cannot
[p || q] cannot be instantaneous if p or q cannot

Fig. 4. Non-instantaneous exception-free statements

These rules can provably be shown to match formally an abstraction [11] of
Pure Esterel semantics. The proof of the last analysis of this section (the more
complex) is detailed in Appendix B.

Deriving from the rules a compositional algorithm that proceeds by struc-
tural recursion along the syntax of a statement is straightforward: the entries of

98 Olivier Tardieu and Robert de Simone

Figure 4 are the facts and predicates of a logic program, which can be run by a
Prolog like depth-first search algorithm.

This analysis is compositional, in the sense that the denotation of a compound
statement is a function of the denotations of its subterms. More precisely in this
first framework, the denotation of a statement p is the boolean value Dp of
the predicate “(we know that) p cannot be instantaneous” and the composition
functions are boolean conjunctions or disjunctions. In particular, Dp; q is equal
to Dp ∨ Dq.

However, even if p and q may be instantaneous, this does not imply in general
that “p; q” may also be. The analysis fails to prove this program cannot be in-
stantaneous: “present S then pause end; present S else pause end”. As
the rules for “p; q” and “[p || q]” do not take into account synchronization
between p and q, the results may be imprecise (but correct). There is a trade-
off between efficiency and precision. The analysis only requires a linear num-
ber of constant-time computations, so its complexity is linear in the size of the
statement. Dealing with correlated signal statuses and potential synchronization
configurations would very quickly reintroduce the complexity of exact analysis.

3.3 Static Analysis for All Statements

In order to extend this analysis to handle exceptions, the calculus detailed in
Figure 5 has also to decide whether the body p of a “trap T in p end” state-
ment may instantaneously raise T or not, since this would lead the statement to
terminate instantaneously.

p Dp Xp

nothing false ∅
pause true ∅
signal S in p end Dp Xp

emit S false ∅
present S then p else q end Dp ∧ Dq Xp ∪ Xq

suspend p when S Dp Xp

loop p end true Xp

p; q Dp ∨ Dq Xp ∪ [¬Dp → Xq]
[p || q] Dp ∨ Dq Xp ∪ Xq

trap T in p end Dp ∧ (T /∈ Xp) Xp\{T}
exit T true {T}

Fig. 5. Non-instantaneous statements

The denotation of a statement p becomes a pair (Dp, Xp) where:

– Dp remains the predicate “p cannot be instantaneous”;
– Xp is the set of exceptions that p may raise instantaneously.

It is now possible to define Dtrap T in p end as Dp ∧ (T /∈ Xp). In Figure 5
and thereafter, we use the notation [P → S] as a shortcut for “if P then S else

Instantaneous Termination in Pure Esterel 99

∅”. The set of exceptions that “p; q” may raise instantaneously is Xp ∪ Xq if
p may be instantaneous or Xp only if p cannot be instantaneous, that is to say
Xp ∪ [¬Dp → Xq].

This new analysis remains linear in the size of the code, if we suppose that
the number of levels of nested trap statements never exceeds a fixed bound. We
remark that the Esterel v5 compiler has a hard 32 limit.

3.4 Static Analysis Using Completion Codes

In the previous section, we have described a procedure to ensure that a statement
cannot be instantaneous. It is approximate but conservative: it may be unable
to prove that a statement cannot be instantaneous even if it cannot be, but it
never concludes that a statement cannot be instantaneous if it can be.

We achieved linear complexity by (i) providing a compositional algorithm
which proceeds by structural recursion along the syntax of the statement and
(ii) abstracting away signal statuses so that the denotation of a statement re-
mains a simple object (a boolean plus a set of bounded size).

These two constraints leave hardly any room for improvement. But we can
still do better, as we have not yet taken into account trap priorities. Let’s consider
the following statement:

trap T in
trap U in
trap V in [exit U || exit V] end; exit T

end;
pause

end

As we have defined X[p || q] as Xp ∪Xq, the computation proceeds as follows:

X[exit U || exit V] = {U, V}
Dtrap V in [exit U || exit V] end = false
Xtrap V in [exit U || exit V] end; exit T = {T, U}
Xtrap U in trap V in [exit U || exit V] end; exit T end; pause = {T}
Dtrap T in trap U in trap V in [exit U || exit V] end; exit T end; pause end = false

It concludes that the statement may be instantaneous. However, since U has
priority on V, a more precise analysis seems feasible, something like:

X[exit U || exit V] = {U}
Dtrap V in [exit U || exit V] end = true
Xtrap V in [exit U || exit V] end; exit T = {U}
Xtrap U in trap V in [exit U || exit V] end; exit T end; pause = ∅
Dtrap T in trap U in trap V in [exit U || exit V] end; exit T end; pause end = true

In other words, as the analyzer decomposes a compound statement into its
parts, it should keep track of the relative priorities of exceptions. Then, this
order would be taken into account in the rule for “[p || q]”.

100 Olivier Tardieu and Robert de Simone

Such a calculus is possible. It relies on the idea of completion codes2 intro-
duced in Esterel by Gonthier [15]. Let’s consider a statement s such that no
two exceptions of s share the same name (applying alpha-conversion to these
names if necessary). There exists a function that associates with each exception
T occurring in s a completion code kT ∈ IN ∪ {+∞} such that:

– ∀T, kT ≥ 2
– ∀T, kT = +∞ if T is unmatched in s, kT ∈ IN otherwise
– ∀U, ∀V, U �= V ⇒ kU �= kV

– ∀U, ∀V, scope(V) ⊂ scope(U) (i.e. U has priority over V) ⇒ kU > kV

For example, the set {kT = 8, kU = 3, kV = +∞} is admissible for the
statement “trap T in trap U in [exit T || exit U] end end; exit V”.

Using these completion codes, it is now possible to compute potential instan-
taneous behaviors of a subterm p of s with respect to termination as described
by Figure 6. The denotation of a statement p is the set Kp of its potential
completion codes, that is to say a set that contains:

– 0 if p may instantaneously terminate
– 1 if p may instantaneously execute a “pause” statement
– kT if p may instantaneously raise the exception T local to s
– +∞ if p may instantaneously raise an exception not caught in s

p Kp

nothing {0}
pause {1}
signal S in p end Kp

emit S {0}
present S then p else q end Kp ∪ Kq

suspend p when S Kp

loop p end Kp (by hypothesis 0 /∈ Kp)
p; q (Kp\{0}) ∪ [(0 ∈ Kp) → Kq]
[p || q] {max(k, l)|∀k ∈ Kp, ∀l ∈ Kq}
trap T in p end (Kp\{kT }) ∪ [(kT ∈ Kp) → {0}]
exit T {kT }

Fig. 6. Potential completion codes

This analysis is essentially equivalent to the previous one. As expected, the
rule for “exit T” encodes the level of priority of T. Remark the rule associated
with “[p || q]”. If p may have completion code k and q may have completion
code l then “[p || q]” may admit completion code max(k, l) as illustrated
by Figure 7. With completion codes, we have not only encoded trap priorities

2 For the sake of simplicity, we refrain from introducing here the classical de Bruijn
encoding [12] of completion codes and describe a similar but less efficient encoding.

Instantaneous Termination in Pure Esterel 101

[p || q] k l max(k, l)

[nothing || nothing] 0 0 0
[nothing || pause] 0 1 1
[pause || pause] 1 1 1
[nothing || exit T] 0 kT kT

[pause || exit T] 1 kT kT

[exit T || exit U] kT kU max(kT , kU)

Fig. 7. The Max formula

making the last line of this table possible, but also precedence relations between
nothing, pause and exit statements, so that the “max” formula always works.

The analysis is conservative. Its complexity is linear in the size of the state-
ment under the hypotheses of (i) bounded depth of nested traps and (ii) usage of
de Bruijn [12,15] completion codes. The subset Ks of {0, 1, +∞} computed for
the statement s itself contains the set of completion codes that may be observed
while running s. Going back to the initial problem, we conclude:

– s cannot be instantaneous if 0 /∈ Ks;
– s must be instantaneous if Ks = {0}.

3.5 Comparison with Current Implementation

In the Esterel v5 compiler, the analysis of instantaneous termination occurs
twice, applied first to an internal representation of the kernel language structure,
then to the circuit representation (as part of the cyclicity analysis). While the
initial rejection of potentially instantaneous loop bodies relies on the formalism
of the last section, the second analysis (more precisely the current combination of
the translation into circuits with the cyclicity analysis) is less precise. For exam-
ple, “loop [... || pause]; emit S; pause; present S then ... end end”
passes the first analysis but not the second one!

We characterized the patterns of programs that expose this behavior of the
compiler and identified the changes required in the translation into circuits to
avoid it.

4 Schizophrenia

In Section 3, we have formalized an algorithm to check if a Pure Esterel state-
ment cannot be instantaneous. In this section, we shall consider a second, rather
similar problem. Given a statement q in a program p, is it possible for the
statement q to terminate or exit and be restarted within the same reaction?
For example, if p is “loop q end”, when q terminates (if it eventually does),
then q is instantaneously restarted by the enclosing loop. On the other hand,
if p is “loop pause; q end” then q cannot terminate or exit and be restarted
instantaneously, thanks to the “pause” statement.

102 Olivier Tardieu and Robert de Simone

As usual in the Esterel terminology, we say that q is schizophrenic if the an-
swer is yes [3,5,18]. The point is: we do not like signal and parallel statements to
be schizophrenic! A schizophrenic signal may carry two different values within a
single reaction (cf. Section 1). Similarly, a schizophrenic parallel requires two syn-
chronizations. Obviously, without some kind of unfolding, both are incompatible
with single-static-assignment frameworks such as Digital Sequential Circuits3.

Having introduced the notion of schizophrenic contexts in Section 4.1, we
discuss static analyses again in two steps: first considering exception-free contexts
in Section 4.2, then getting rid of the restriction in Section 4.3. We relate our
formalization to the current implementation in Section 4.4.

4.1 Contexts

From now on, if q is a statement of the program p, we call context of q in p and
note C[] the rest of p, that is to say, p where q has been replaced by a hole [].
In the last example, the context of q in p is C[] ≡ “loop pause; [] end”.

Contexts are recursively defined:

– [] is the empty context;
– if C[] is a context then C[present S then [] else q end] is a context...

As usual [1], C[x] denotes the statement (respectively context) obtained by
substituting the hole [] of C[] by the statement (respectively context) x. We say
that C[] is a valid context for the statement p, if C[p] is not only a statement but
also a correct program. In the sequel, we shall consider only such compositions.

The fact that p is schizophrenic in C[] depends on both p and C[]. If C[]
is “signal S in loop []; present S then pause end end end” and p is
“pause” then p is schizophrenic in this context. On the other hand, if p is
“pause; emit S” then p is not schizophrenic since the then branch of the present
statement is taken. We say that C[] is schizophrenic if and only if there exists
a p such that p is schizophrenic in C[].

4.2 Static Analysis for Exception-Free Contexts

This first case is quite simple. Obviously in order for a statement to be instan-
taneously restarted, it has to appear enclosed in a loop. It may be enclosed in
many nested loops, however since loops are infinite only the innermost loop has
to be taken into account. Then, if in the body of this loop, this statement is
in sequence somehow with a statement which cannot be instantaneous, it is not
schizophrenic. Otherwise, it probably is.

This is exactly the reasoning steps we implement in Figure 8. In a manner
similar to Figure 4, we describe sufficient conditions for a context to be non-
schizophrenic. These conditions provide the rules of a conservative static analysis
of contexts.
3 In fact, unfolding in time (i.e. using a memory cell twice within a reaction) is not
correct in general. Thus, the same result holds even in the absence of the single-
static-assignment constraint, as in C code generation for example.

Instantaneous Termination in Pure Esterel 103

[] is not schizophrenic
C[signal S in [] end] is not schizophrenic if C[] is not
C[present S then [] else q end] is not schizophrenic if C[] is not
C[present S then p else [] end] is not schizophrenic if C[] is not
C[suspend [] when S] is not schizophrenic if C[] is not
C[loop [] end] is schizophrenic
C[[]; q] is not schizo. if C[] is not or q cannot be inst.
C[p; []] is not schizo. if C[] is not or p cannot be inst.
C[[] || q] is not schizophrenic if C[] is not
C[p || []] is not schizophrenic if C[] is not

Fig. 8. Non-schizophrenic exception-free contexts

4.3 Static Analysis for All Contexts

In order to handle all contexts, we associate with a context C[] a set of com-
pletion codes SC[] such that: for all p, if p does not admit any completion code
in SC[] then p is not schizophrenic in C[]. For example, if C[] is the context
“loop trap T in loop trap U in []; pause end end end; pause end”, p
is schizophrenic in C[] iff if it may raise exception U. Thus {kU} is an admissible
value for SC[]. Note that a larger set (less precise), such as {0, kU}, would also be.

Figure 9 describes the computation of SC[] we propose4. In summary:

– C[] is proven to be non-schizophrenic iff SC[] is empty;
– p is proven to be non-schizophrenic in C[] iff p does not admit a completion

code in SC[].

S[] ≡ ∅
SC[signal S in [] end] ≡ SC[]

SC[present S then [] else q end] ≡ SC[]

SC[present S then p else [] end] ≡ SC[]

SC[suspend [] when S] ≡ SC[]

SC[loop [] end] ≡ {0} ∪ SC[]

SC[[]; q] ≡ (SC[]\{0}) ∪ [(Kq ∩ SC[] �= ∅) → {0}]
SC[p; []] ≡ [(0 ∈ Kp) → SC[]]

SC[trap T in [] end] ≡ SC[] ∪ [(0 ∈ SC[]) → {kT }]

Fig. 9. Potentially schizophrenic completion codes

Let’s focus on the last four rules:

– If p terminates in C[loop p end] then it is instantaneously restarted by
the inner loop. Consequently, {0} ∈ SC[loop [] end]. Moreover, if p raises ex-
ception T , it traverses “loop p end” and reaches the context C[]. Thus,
(SC[]\{0}) ⊂ SC[loop [] end]. As a consequence, SC[loop [] end] ≡ {0} ∪ SC[].

4 We omitted the entries corresponding to parallel contexts. In practice, there is no
need for such rules. A correct but weak extension of this formalism to parallel con-
texts may be obtained via the rules: SC[[] || q] ≡ SC[p || []] ≡ [(SC[] �= ∅) → IN].

104 Olivier Tardieu and Robert de Simone

– As in the previous case, if p may raise exception T , it may traverse “[p; q]”
and reach the context C[]. Thus, (SC[]\{0}) ⊂ SC[[]; q]. In addition, if q may
instantaneously produce a completion code in SC[] i.e. if Kq ∩SC[] �= ∅ then,
if p eventually terminates, “[p; q]” may be instantaneously restarted. Thus,
in this case {0} ∈ SC[[]; q].

– If p cannot be instantaneous then q in C[p; q] cannot be instantaneously
restarted. On the other hand, if p may, then SC[p; []] is equal to SC[].

– If p raises exception U (U �= T) or terminates, then “trap T in p end”
does the same, so SC[] ⊂ SC[trap T in [] end]. Note that kT /∈ SC[] since we
have supposed that no two exceptions share the same name. Moreover, if
0 ∈ SC[] then kT ∈ SC[trap T in [] end], since by raising exception T , p makes
“trap T in p end” terminate.

4.4 Comparison with Current Implementation

The Esterel v5 implementation of the detection of schizophrenic contexts cannot
be directly compared with this last analysis. It is in some cases more precise,
less in others. Nevertheless, the analysis implemented and the one we presented
have common weaknesses, that our formalization helped to identify.

For example, in “loop signal S in pause; ... end end”, the declaration
of the signal S occurs in a schizophrenic context, thus it triggers unfolding rou-
tines. However, because of the pause statement, the status of S is not used when
entering the loop. As a consequence, unfolding is not necessary.

We remarked that both analyses could be refined to embody a static liveness
analysis of signals. This has been implemented into the Esterel v5 compiler.

5 Conclusion and Future Work

We have formalized several important property checks on Esterel in the form of
static analysis methods. Namely, analyses are used to establish when:

– a statement cannot terminate instantaneously,
– a statement cannot terminate or exit and be instantaneously reentered.

The correctness of these analyses is induced by the fact that they can be
shown to be abstractions of the “official” Pure Esterel logical behavioral seman-
tics. Their complexity is quasi-linear in practice in the program size.

This work was mostly motivated by a revisitation of the Esterel v5 academic
compiler, from Ecole des Mines and INRIA. Front-end processors are heavily
relying on algorithms implementing those property checks, but so far without
a formal specification. These checks are needed to enforce programs to be free
of instantaneous loops, and to contain no schizophrenic subcomponents (in the
first case faulty programs are discarded as incorrect, in the second case they are
unfolded to secure proper separation).

Static analysis cannot be deactivated: it is required to generate correct code.
Thus, the need for precise formalization and correctness proof is far greater, in

Instantaneous Termination in Pure Esterel 105

loop

[

present S then pause; ... end;

present S else pause; ... end

||

pause

]

end

−→
loop

present S then pause; ... end;

present S else pause; ... end

end

Fig. 10. A simple program transformation

our view, than in the case of “-O3” kind of static analysis. We see our work as
a form of formal compiler specification, which can be referred to as a guideline
for correctness.

As the Esterel v5 algorithmic approach was only informally specified, we were
able to spot several minor mistakes in the actual implementation, as well as to
introduce more aggressive optimization techniques for specific program patterns,
saving unnecessary unfolding.

Since the methods we described and more generally the techniques in use
only provide approximate (but conservative) results, some Esterel programs are
rejected by current compilers [10,13,21] while they are provably correct. This is
rather unusual! Of course, this is well known and comes from other sources as
well, mainly an incomplete causality analysis [21]. But as a consequence these
compilers have a weak support for program transformation. Even the simple
rewriting illustrated by Figure 10 produces a program that is rejected by com-
pilers, as the static analysis of the rewritten loop body fails.

According to the authors of the Esterel v5 compiler, the semantic program
equivalence relation is not sufficient when it comes to compiling programs. Be-
cause of the static analyses involved, the behavior of the compiler (both rejection
and optimization) is sometimes unstable and may change a lot from one program
to an equivalent program. In particular, and in opposition to what suggests the
documentation of the language, the expansion of high-level constructions into
low-level primitives has to be done very carefully to avoid unexpected issues
related to those techniques.

In the future we plan to investigate the feasibility of more powerful analyses,
hopefully having a more intuitive and stable behavior, starting from the exact
analysis of Section 3.1. In addition, we would like to consider the more generic
problem of distance analysis in Esterel. In this paper we considered the question:
“will there be a pause executed between these two points of the program?” Now,
we would like to know how many pause statements there are. Combined with
classical delay analysis (i.e. analysis of counters) [16], we believe this would lead
to powerful verification tools.

106 Olivier Tardieu and Robert de Simone

References

1. H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

2. G. Berry. Real-time programming: General purpose or special-purpose languages.
In G. Ritter, editor, Information Processing 89, pages 11–17. Elsevier Science Pub-
lishers B.V. (North Holland), 1989.

3. G. Berry. Esterel on hardware. Philosophical Transactions of the Royal Society of
London, Series A, 19(2):87–152, 1992.

4. G. Berry. The semantics of pure Esterel. In M. Broy, editor, Program Design
Calculi, volume 118 of Series F: Computer and System Sciences, pages 361–409.
NATO ASI Series, 1993.

5. G. Berry. The constructive semantics of pure Esterel. Draft version 3.
http://www-sop.inria.fr/meije/ , July 1999.

6. G. Berry. The Esterel v5 language primer. http://www-sop.inria.fr/meije/ ,
July 2000.

7. G. Berry. The foundations of Esterel. In Proof, Language and Interaction: Essays
in Honour of Robin Milner. MIT Press, 2000.

8. G. Berry and G. Gonthier. The Esterel synchronous programming language: De-
sign, semantics, implementation. Science of Computer Programming, 19(2):87–152,
1992.

9. F. Boussinot and R. de Simone. The Esterel language. Another Look at Real Time
Programming, Proceedings of the IEEE, 79:1293–1304, 1991.

10. E. Closse, M. Poize, J. Pulou, P. Vernier, and D. Weil. Saxo-rt: Interpreting Es-
terel semantic on a sequential execution structure. Electronic Notes in Theoretical
Computer Science, 65, 2002.

11. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Principles
of Programming Languages, pages 238–252, 1977.

12. N. G. de Bruijn. Lambda calculus notation with nameless dummies. a tool for
automatic formula manipulation with application to the church-rosser theorem.
Indagationes Mathematicae, 34:381–392, 1972.

13. S.A. Edwards. Compiling Esterel into sequential code. In Proceedings CODES’99,
Rome, Italy, May 1999.

14. S.A. Edwards. Languages for Digital Embedded Systems. Kluwer, 2000.
15. G. Gonthier. Sémantique et modèles d’exécution des langages réactifs synchrones:

application à Esterel. Thèse d’informatique, Université d’Orsay, Paris, France,
March 1988.

16. N. Halbwachs. Delay analysis in synchronous programs. In Computer Aided Veri-
fication, pages 333–346, 1993.

17. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1993.
18. F. Mignard. Compilation du langage Esterel en systèmes d’équations booléennes.

Thèse d’informatique, Ecole des Mines de Paris, October 1994.
19. R. Milner. Communication and Concurrency. Series in Computer Science. Prentice

Hall, 1989.
20. G. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,

Aahrus University, 1981.
21. H. Toma. Analyse constructive et optimisation séquentielle des circuits générés à

partir du langage synchrone réactif Esterel. Thèse d’informatique, Ecole des Mines
de Paris, September 1997.

http://www-sop.inria.fr/meije/
http://www-sop.inria.fr/meije/

Instantaneous Termination in Pure Esterel 107

A Logical Behavioral Semantics of Esterel

Reactions are defined in a structural operational style [20] by a statement tran-
sition relation of the form:

p
E′, k−−−→

E
p′

Here, E′ lists the free signals of p emitted by p under the hypothesis that
E is the set of present signals, because of (i) the statement p itself and (ii) its
context/environment. The rules of the semantics enforce E′ to be a subset of E.
k is the completion code of the reaction in the sense of Section 3.4. If k �= 0 then
p′ represents the new state reached by p after the reaction, that is to say the
residual statement that has to be executed in the next reaction.

(1) nothing
∅, 0−−→
E

nothing

S ∈ E p
E′, k−−−→

E
p′

present S then p else q end
E′, k−−−→

E
p′

(7)

(2) pause
∅, 1−−→
E

nothing

S /∈ E q
F ′, l−−−→

E
q′

present S then p else q end
F ′, l−−−→

E
q′

(8)

(3) exit T
∅, kT−−−→

E
nothing

p
E′, k−−−→

E
p′ k = 0 or k = kT

trap T in p end
E′, 0−−−→

E
nothing

(9)

(4)
S ∈ E

emit S
{S}, 0−−−−→

E
nothing

p
E′, k−−−→

E
p′ k > 0 and k �= kT

trap T in p end
E′, k−−−→

E
trap T in p′ end

(10)

(5)
p

E′, k−−−→
E

p′ k �= 0

p; q
E′, k−−−→

E
p′; q

p
E′, k−−−→

E
p′ q

F ′, l−−−→
E

q

[p||q] E′∪F ′, max(k,l)−−−−−−−−−−→
E

[p′||q′]
(11)

(6)
p

E′, 0−−−→
E

p′ q
F ′, l−−−→

E
q

p; q
E′∪F ′, l−−−−−→

E
q′

p
E′, k−−−→

E
p′ k �= 0

loop p end
E′, k−−−→

E
p′; loop p end

(12)

(13)

p
E′, k−−−−→

E∪{S}
p′ S ∈ E′

signal S in p end
E′\{S}, k−−−−−−→

E
signal S in p′ end

(14)

p
E′, k−−−−→

E\{S}
p′ S /∈ E′

signal S in p end
E′, k−−−→

E
signal S in p′ end

Fig. 11. Behavioral semantics

108 Olivier Tardieu and Robert de Simone

Figure 11 sketches the semantics as a set of deduction rules. For simplicity,
we omit the rules defining the suspend statement.

A valuation E is admissible for the statement p iff there exists a unique proof

tree that establishes a fact of the form p
E′,k−−−→

E
p′.

The rules 13 and 14 introduce potential non-determinism in the system. As
announced in Section 2.7, in order to avoid guesses, more powerful semantic
tools are required, that is to say the constructive semantics of Esterel.

Remark the side condition k �= 0 in the rule 12. It corresponds to reject-
ing instantaneous loop bodies. Note the systematic unrolling. It takes care of
schizophrenia.

For detailed explanations of these rules please refer to [5].

B Proof of the Analysis of Section 3.4

The rules of Figure 6 are derived from the rules of Figure 11 via the abstraction:

p
E′, k−−−→

E
p′ is abstracted into p

·, k−−→· · (that we note p ↪→ k in the sequel).

It consists in forgetting E, E′ and p′ in the rules. The set Kp introduced in
Section 3.4 precisely gathers all completion codes that can be derived for the
statement p in the abstract proof domain. Figure 12 lists the abstract deduction
rules corresponding to the concrete rules of Appendix A. The rules of Figure 6 are
obtained by regrouping the abstract rules corresponding to the same statement
(i.e. rules 5 and 6, rules 7 and 8, rules 9 and 10, rules 13 and 14).

(1) nothing ↪→ 0
p ↪→ k

present S then p else q end ↪→ k
(7)

(2) pause ↪→ 1
q ↪→ l

present S then p else q end ↪→ l
(8)

(3) exit T ↪→ kT
p ↪→ k k = 0 or k = kT

trap T in p end ↪→ 0
(9)

(4) emit S ↪→ 0
p ↪→ k k > 0 and k �= kT

trap T in p end ↪→ k
(10)

(5)
p ↪→ k k �= 0

p; q ↪→ k

p ↪→ k q ↪→ l

[p||q] ↪→ max(k, l)
(11)

(6)
p ↪→ 0 q ↪→ l

p; q ↪→ l

p ↪→ k k �= 0

loop p end ↪→ k
(12)

(13)
p ↪→ k

signal S in p end ↪→ k

p ↪→ k

signal S in p end ↪→ k
(14)

Fig. 12. Abstract deduction rules

	Introduction
	The Pure Esterel Kernel Language
	Syntax and Intuitive Semantics
	The Synchronous Reactive Paradigm
	Loops and Non-Zenoness Condition
	Exceptions
	Signals
	Logical Correctness and Behavioral Semantics
	Constructive Semantics

	Instantaneous Termination
	Exact Analysis
	Static Analysis for Exception-Free Statements
	Static Analysis for All Statements
	Static Analysis Using Completion Codes
	Comparison with Current Implementation

	Schizophrenia
	Contexts
	Static Analysis for Exception-Free Contexts
	Static Analysis for All Contexts
	Comparison with Current Implementation

	Conclusion and Future Work
	Logical Behavioral Semantics of Esterel
	Proof of the Analysis of Sectionnobreakspace {}ref {sec:with-codes}

