Skip to main content

Symbolic Analysis in the PROMIS Compiler

  • Conference paper
  • First Online:
Languages and Compilers for Parallel Computing (LCPC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1863))

Abstract

PROMIS is a multilingual, parallelizing, and optimizing compiler which is being developed at the Univ. of Illinois with its optimizing ILP backend developed at Univ. of California at Irvine[4]. In PROMIS, symbolic analysis is performed through an abstract interpretation[2] of the input program. Abstract interpretation is a technique for approximating the execution of the program by mapping symbolic (closed form) values computed at compile time to the actual values computed at runtime. This paper describes the symbolic analysis framework in the PROMIS compiler, and its application to Java program optimizations.

This work is supported in part by DARPA/NSA grant MDA904-96-C-1472, and in part by a grant from Intel Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Carroll. Optimizing java for native execution. Master’s thesis, Uiv. of Illinois, 1999. (in preparation).

    Google Scholar 

  2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), pages 238–252, January 1977.

    Google Scholar 

  3. M. Haghighat. Symbolic Analysis for Parallelizing Compilers. Kluwer Academic Publishers, 1995.

    Google Scholar 

  4. H. Saito, N. Stavrakos, S. Carroll, C. Polychronopoulos, and A. Nicolau. The design of the PROMIS compiler. In Proceedings of the International Conference on Compiler Construction (CC), March 1999.

    Google Scholar 

  5. N. Stavrakos. Symbolic Analysis: A Unified Framework for Analyzing and Optimizing Programs. PhD thesis, Univ. of Illinois, 2000. (in preparation).

    Google Scholar 

  6. N. Stavrakos, S. Carroll, H. Saito, C. Polychronopoulos, and A. Nicolau. Symbolic analysis in the PROMIS compiler. Technical Report 1564, Center for Supercomputing Research and Development, Univ. of Illinois, May 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stavrakos, N., Carroll, S., Saito, H., Polychronopoulos, C., Nicolau, A. (2000). Symbolic Analysis in the PROMIS Compiler. In: Carter, L., Ferrante, J. (eds) Languages and Compilers for Parallel Computing. LCPC 1999. Lecture Notes in Computer Science, vol 1863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44905-1_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44905-1_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67858-8

  • Online ISBN: 978-3-540-44905-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics