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Abstract. In the paper we extend the algebraic description of Petri nets
based on rewriting logic by introducing a partial synchronous operation
in order to distinguish between synchronous and concurrent occurrences
of transitions. In such an extension one first needs to generate steps
of transitions using a partial operation of synchronous composition and
then to use these steps to generate process terms using partial operations
of concurrent and sequential composition. Further, we define which steps
are true synchronous. In terms of causal relationships, such an extension
corresponds to the approach described in [6,7,9], where two kinds of
causalities are defined, first saying (as usual) which transitions cannot
occur earlier than others, while the second indicating which transitions
cannot occur later than others. We illustrate this claim by proving a
one-to-one correspondence between such extended algebraic semantics of
elementary nets with inhibitor arcs and causal semantics of elementary
nets with inhibitor arcs presented in [7].

1 Introduction

There are many extensions of Petri Nets that improve their modelling, suit-
ability and/or their expressive power. These are almost all based on the same
original model, augmented by capacities, context arcs, data structures or even
object-oriented features. Conceptually, structures like capacities impose restric-
tions on the set of legal markings, whereas context arcs introduce new arrow
types, which have to be accounted for in the occurrence rule. The definition of
sequential semantics for these extensions of Petri Nets can be directly obtained
by "iterating” the occurrence rule. However, we are even more interested in ob-
taining the non-sequential semantics'. For the classes of systems mentioned, this
is obtained at the time being in an ad-hoc way. Naturally there arises the ques-
tion if these approaches can be unified by defining some more general framework.
In [5] there was recently presented one such unifying concept for extensions of
Petri Nets based on a restriction of the occurrence rule. The approach extends
and generalizes the idea of Winkowski (see [16]) that non-sequential semantics of
elementary nets can be expressed in terms of concurrent rewriting. The princi-
ples of the approach are briefly described in the following paragraphs. For more
details see [4,5].

! For comparative treatment of sequential and non-sequential semantics see [1].
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A transition is understood to be an elementary rewrite term that allows
replacing the marking pre(t) by post(t). A marking m is also considered to be a
rewrite term that rewrites m by m itself. Assume that a suitable operation 4+ on
the set of markings is given for each class of Petri Nets in interest such that for

each transition m 5 m/ there exist a marking z such that z + pre(t) = m and
x + post(t) = m'. Occurrence of ¢ at m will be expressed by term x || t. It may
be the case that not all markings x 4 pre(t) enable ¢. In that situations, x and ¢
cannot be composed by ||. To describe such restriction, we introduce an abstract
set of information I and the notion of independence of information elements.
Each elementary term has an associated initial marking, final marking and an
information set consisting of all information elements of elementary terms from
which it is generated. A composition is allowed if and only if the associated
information elements are independent. The non-sequential behavior of a net is
described by set of process terms, constructed from the elementary terms using
operators of sequential and concurrent composition ; and ||, respectively.

There are several works relating algebraic characterization and partial-order
based description of non-sequential behavior of place/transitions Petri Nets,
see [3,14]. These papers in common stem from the paper [10], which has in-
spired many to continue in this research direction. Thus, algebraic characteris-
tics of non-sequential behavior based of sequential and concurrent composition
of rewriting terms represents a suitable axiomatic semantics for the classes of
nets which operational causal semantics can be based on partial order.

In a series of papers [6,7,9] authors illustrate that a simple partial-order is
not enough expressive to characterize some kinds of causalities. They define
more fine causal semantics, where two kinds of causalities are used, first saying
(as usual by a partial-order based semantics) which transitions cannot occur
earlier than others, while the second indicating which transitions have to occur
later than others. Mathematically, this finer causal semantics is described using
a relational structure with two relations, a partial order describing the ”earlier
than” causality and a relation representing the "not later than” causality. In [7,9]
the principle is illustrated for a variant of nets with inhibitor arcs, where testing
for absence of tokens precedes the execution of a transition (so called a-priori
semantics). Thus, if a transition f tests a place for zero, which is in a post-set of
another transition e (see Figure 1), this means that f cannot occur later than e
and therefore they cannot occur concurrently or sequentially in order e, f - but
still can occur synchronously or sequentially in order f,e. Moreover, there are
cases where the pair of events e and f is executable neither concurrently nor
sequentially, but still the a-priori semantics of transition firings allows them to
fire synchronously at the same time. Such a situation is shown on figure 2.

Therefore, in this paper we extend our approach [5] to define an algebraic se-
mantics which corresponds to the idea of finer causal semantics described in [6,7,
9]. Namely, we introduce a new partial operation of synchronous composition @&
which enable us to distinguish between synchronous and concurrent occurrences
of transitions. In such an extension of our approach one first needs to gener-
ate synchronous steps from transitions using a partial operation of synchronous
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Fig. 1. A simple net with inhibitor arc (ps3, f) where partial ordered semantics does not
describe veritably the behaviour of the net, a process of the net (where the inhibitor arc
is modelled using an activator arc testing on presence of a token in place pi, which is
complementary to place p3) and the associated relational structure. The ”earlier than”
partial order is empty, the "not later than” relation is represented by the dashed line.
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Fig. 2. A modification of the previous figure that shows a net with inhibitor arcs,
a process of the net and and the associated relational structure. The ”earlier than”
partial order is again empty, the "not later than” relation is represented by the dashed
lines.

composition and then to use these steps to generate process terms using partial
operations of concurrent and sequential composition. Different process terms
can still represent different partial or total sequentializations of the same run
(the same process). Therefore, the process terms are further related modulo a
set of axioms, which determine equivalence classes of process terms representing
the same run. We will illustrate the approach on clementary nets with inhibitor
arcs with a-priori semantics. As the main result, we prove a one-to-one corre-
spondence between the new defined algebraic semantics of elementary nets with
inhibitor arcs based on rewriting logic and causal semantics of elementary nets
with inhibitor arcs presented in [7].

2 Mathematical Notation

We use the symbol id, to denote the identity mapping on the set A. We write
id to denote id4 whenever A is clear from the context.

We use partial algebra to define algebraic semantics of nets. A partial al-
gebra is a set (called carrier) together with a couple of partial operations on
this set (with possibly different arity). Given a partial algebra with carrier X,
an equivalence ~ on X satisfying the following conditions is a congruence: If
op is an n-ary partial operation, a; ~ by,... ,a, ~ by, (a1,....a,) € domg,
and (b1,...,b,) € domyy, then op(ai,...,a,) ~ op(bi,... , b,). If moreover
ap ~ by,...,an ~ b, and (aq,...,a,) € dome, imply (b1,...,b,) € domy,
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for each m-ary partial operation then the congruence ~ is said to be closed.
Thus, a congruence is an equivalence preserved by all operations of a partial
algebra, while a closed congruence moreover preserves the domains of the oper-
ations. For a given partial algebra there always exists a unique greatest closed
congruence. The intersection of two congruences is again a congruence. Given
a binary relation on X, there always exists a unique least congruence contain-
ing this relation. In general, the same does not hold for closed congruences.
Given a partial algebra X with carrier X and a congruence ~ on X, we write
[zl ={y € X |z ~y} and X/ = (U, cx[7]~. A closed congruence ~ de-
fines the partial algebra X'/ with carrier X/, and with n-ary partial oper-
ation op/~ defined for each n-ary partial operation op : dom,, — X of X as
follows: domy,/ . = {([a1]~,... ,[an]~) | (@1,...,an) € dom,,} and, for each
(a1,....an) € domey, op/([ai]~,... .lan]~) = [op(ai,... ,a,)]~. The partial
algebra X/ is called factor algebra of X with respect to the congruence ~.
Let X be a partial algebra with k operations op;*,i € {1,...,k}, and let Y
be a partial algebra with k operations opzy ;i € {1,...,k} such that the arity
n® of op¥ equals the arity n of op? for every i € {1,...,k}. Denote by X

the carrier of X and by Y the carrier of ). Then a function f : X — Y is
called homomorphism if for every i € {1,... ,k} and x1,...2,x € X we have:

if ops¥(zyq,... ,Tpx) is defined then opY (f(z1), ... . f(znx)) is also defined and
flop (1, ... ,2px)) = opY(f(21),..., f(z,x)). A homomorphism f : X —
Y is called closed if for every i € {1,...,k} and z1,...2z,x € X we have: if

opY (f(z1),..., f(x,x)) is defined then opX (x1,... ,z,x) is also defined. If f is
a bijection, then it is called an isomorphism, and the ]g_;artial algebras X and )
are called isomorphic. In the paper we distinguish between partial algebras up
to isomorphism.

There is a strong connection between the concepts of homomorphism and
congruence in partial algebras: If f is a surjective (closed) homomorphism from
X to Y, then the relation ~ C X x X defined by a ~ b <= f(a) = f(b) is a
(closed) congruence and ) is isomorphic to X'/.. Conversely, given a (closed)
congruence ~ of X, the mapping h : X — X/. given by h(z) = [z]. is a
surjective (closed) homomorphism. This homomorphism is called the natural
homomorphism w.r.t. ~. For more details on partial algebras see e.g. [2].

3 General Approach

An algebraic Petri Net according to [10] is a graph with vertices representing
markings and edges labelled by transitions. Moreover, there is an operation + :
M — M, which is the marking addition. Thus M, the set of markings, and
+, together with neutral element e (the empty marking) form a commutative
monoid M = (M, +).

To obtain a process term semantics, in [5] we assign to each marking and tran-
sition an information element, used for determining concurrent composability of
processes. Now we use this information element also for synchronous composabil-
ity of processes. The set of information elements is then equipped with operation
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| (as in [5]) and in addition the operation &, denoting the information of con-
current and synchronous composition, respectively. Since concurrent realization
of events admits their synchronous realization, the domain of concurrent com-
position is a subset of that of synchronous composition and || is the restriction
of @ to this domain. The partial algebra Z of information elements is formally
defined as follows:

Definition 1. Let 7 = (I,d0m|~|7 |'|,dom@,€9), where I is a set (of information
elements), d0m|~| C domg C I x I, and || : dom” — I and & : domg — I

satisfying & ldom,; = | and:

—Va,bel:ifadbis defined then b & a is defined and a Db =bda. Similarly,
if a|| b is defined then bl a is defined.

— Va,b,c € I : if (a®b)Dc is defined then a®(bdc) is defined and
(adb)Sc = ad(bdc). Similarly, if (a|b)| c is defined then a|(b]c) is
defined.

In comparison with [5], we first need to generate steps from transitions using
a partial operation of synchronous composition and then to use these steps to
generate process terms using partial operations of concurrent and sequential
composition.

The following explanations are now exactly the same as in [5]: A process
term a: m; — mso represents a process transforming marking m; to marking
my. Process terms a: m; — mo and 3: ms — my4 can be sequentially composed,
provided my = mg, resulting in ;3 : m; — my4. This notation illustrates the
occurrence of 3 after the occurrence of a. The set of information elements of
the sequentially composed process term is the union of the sets of information
elements of the single process terms. The process terms can also be composed
concurrently to « || B : m1 + m3s — mg + my, provided the set of informa-
tion elements of « is independent from (concurrent composable with) the set of
information elements of (3. The set of information elements of a || # contains
the concurrent composition of each element of the set of information elements
of o with each element of the set of information elements of (. Since process
terms have associated sets of information elements, we lift the partial algebra
(1, ], dom”) to the partial algebra (27, {||}, dom{”}), where

— dom i, = {(X,Y)e2! x2 | X xY C dom”}.
— X{}Y ={zlly|lze X nyeY}

For sequential composition of process terms we need information about the start
and the end of a process term, which are both single markings. For concurrent
composition, we require that the associated sets of information elements are
independent. T'wo sets of information elements A and B do not have to be dis-
tinguished, if for each set of information elements C' either both A and B are
independent from C' or both A and B are not independent from C'. Therefore,
we can use any equivalence = € 2/ x 2! that is a congruence with respect to the
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operations {||} (concurrent composition) and union U (sequential composition)
and satisfies (A = B A (A,C) € dom{”}) — (B,C) € dom g, i.e. which is a

closed congruence of the partial algebra X = (21, {[|}, dom e U). The equivalence

classes of the greatest (and hence coarsest) closed congruence represent the mini-
mal information assigned to process terms necessary for concurrent composition.
This congruence is unique ([2]). Now we can define an algebraic (M, Z)-net as
given in [5].

Definition 2. An algebraic (M,I)-net is a quadruple A = (M, T,pre: T —
M, post: T'— M) together with a mapping inf : M UT — I satisfying

(a) Vz,y € M :  (inf(x),inf(y)) € domg = inf(x +y) = inf(z) S inf(y).
(b) {inf(t)} = {inf (t), inf (pre(t)). inf (post(t)) }-

Since | is the restriction of & to this domain, || has the same property as & in
part (a). In the following definition we define steps of transitions, which represent
their synchronous occurrences.

Definition 3. FEvery step s has associaled an initial marking pre(s) € M, a
final marking post(s) € M, and an informalion element for concurrent and
synchronous composition inf(s) € 1.

The elementary step terms are transitions. If s, s are step terms that satisfy
(inf(s),inf(s")) € domg, then their synchronous composition yields the step
term s @ s’ with pre(s@s’) = pre(s) + pre(s’), post(s ® s’") = post(s) + post(s’)
and inf(s®s') = inf(s) ®inf(s'). The set of all step terms of A is denoted by
Step 4.

Finally, we are able to define inductively process terms for an algebraic
(M, Z)-net. In comparison with [5] steps are used to be elementary process
terms instead of single transitions.

Definition 4. Let A be an algebraic (M, I)-net. Every process term o has as-
sociated an initial marking pre(a) € M, a final marking post(o) € M, and an
information for concurrent composition Inf(a) € 2! /~. In the following, for a
process term o we write o : a —> b to denote that a € M s the initial marking
of a and b € M is the final marking of «.

For each a € M, id, : a —> a is a process terms with associated information
Inf(id,) = [{inf(a)}|=~. For each s € Step 4, s : pre(s) — post(s) is a process
term with associated information Inf(s) = [{inf(s)}]~.

If a @ a4 — as and B : by — by are process terms satisfying
(Inf(«), Inf(B)) € dom{”}/g, their concurrent composition yields the process
term

Oé”ﬁi a1 +b; — a9 + by

with associated information Inf(a || 8) = Inf(a) {|} /= Inf(B).
If o : a1 — ag and B : by —> by are process terms satisfying as = by, their
sequential composition (concatenalion) yields the process term

a; B :ar — by

with associated information Inf(a; 8) = Inf(a) U/~ Inf ().
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The partial algebra of all process terms with the partial operations concurrent
composition and concatenation as defined above will be denoted by P(A).

Now, we define a congruence ~; between process terms, saying when two
terms are alternative descriptions of the same process.

Definition 5. Let ~; be defined on process terms as the smallest equivalence
fulfilling the relations:

Lal8~: 8a 6.(a®B) @y~ ad(BDY)

2. (|l B) Iy~ all(Bllv) 7.(a®B) ~ (al pre(B)); (post(a) || B)
3. (a; B);y ~t a3 (B57) 8. (a; post(a)) ~ a ~¢ (pre(a); o)

4.a = (o || 2); (s || aq)) ~¢ 9.id () ~t iy, || idy

B = ((a1;a3) ||[(a2;aq)) 10. (a + idp) ~¢ «
S.a®pf ~ E
whenever the terms are defined (e.g. «|| B is defined iff (A, B) € dom{”}, where

(A, B) = (Inf(a),Inf(B)). Aziom 4 holds whenever Inf(a) = Inf(3).

Henceforth, instead of writing id,,, for any m € M we will usually only write
just m. The only new axioms in comparison with [5] are axioms (5-7). Axioms
(5) and (6) express commutativity and associativity of synchronous composition.
The crucial axiom is the axiom (7), which enable to decompose (to sequentialize)
synchronous steps. This axiom states that synchronous composition of two steps
a and (B and sequential composition of the step « (occurring concurrently with
pre(B)) and the step B (occurring concurrently with post(«)) are alternative
decompositions of the same process whenever they are both defined. Surprisingly,
as we prove later, this axiom is sufficient to identify all processes of nets with
inhibitor arcs based on relational structures as defined in [7].

In the following the notion of a true synchronous step term is defined to be
a set of transitions, which cannot be decomposed (cannot be sequentialized).

Definition 6. Let s be a synchronous step term of an algebraic Petri net, such
that for each pair of step terms s1, so satisfying s1 P so ~¢ s the term

(s1 ([ pre(s2)); (post(s1) || s2)

s not a process term of the algebraic Petri net. Then s is called true synchronous
step.

4 Elementary Nets with Inhibitor Arcs

In this section we will shortly describe the operationally defined a-priori step
sequence and process semantics of elementary nets with inhibitor arcs, as defined
in [7]. Although we restrict ourselves to elementary nets, the analogus results
could be formulated for a-priori semantics of place/transition nets with inhibitor
arcs defined in [9].
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Definition 7. A net is a triple N = (P,1,F), where P and T are disjoint
finite sets (of places and transitions, respectively) and F C (P x 1)U (1" x P).
An elementary net with inhibitor arcs is a quadruple ENI = (P,T,F,Inh),
where (P, T, F) is a net and Inh C P x T is an inhibitor relation satisfying
(FUF~YHNInh=0.

For a transition t € T, *t = {p € P | (p,t) € F} is the pre-set of t and
t* ={pe P|(t,p) € F} is the post-set of t, “t ={p € P | (p,t) € Inh} is the
set of inhibiting places also called negative context of t. Elements of the inhibitor
relation are graphically expressed by arcs ending with a circle (so called inhibitor
arcs). Throughout the paper we assume that each transition has nonempty pre-
and post-sets. A set m C P is called marking. A transition ¢ is enabled to
occur in a marking m if no place from negative context ~t belongs to m, every
place from pre-set ot belongs to m, and no place from post-set te belongs to m.
The occurrence of t leads then to a new marking m’, which is derived from m by
removing the token from every place in et and adding a token to every place in te.
Thus, inhibiting places are tested on absence of tokens for the possible occurrence
of a transition and this testing precedes the execution of the transition (so called
a-priori semantics).

The following definitions introduce the basic notions of process semantics of
elementary nets with inhibitor arcs introduced by [7].

Definition 8. A (labelled) occurrence net is a labelled net ON = (B, E, R,1)
such that (Vb € B)(]*] < 1 > [b*|), the transitive closure F'T of the relation F
is irreflexive (i.e. F'" is a partial order) and 1 is a labelling function for BUE.
Elements of B are called conditions, elements of E events.

Due to the fact that the absence of token in a place cannot be directly
represented in an occurrence net, every inhibitor arc is replaced by an activator
arc to a complement place. An activator arc (also called read arc, test arc,
positive context arc) tests for the presence of a token in the place it is attached
to. Moreover, the complement places remove possible contact situations, i.e.
situations, when enabledness of a transition is violated by tokens in the post-set
of the transition, i.e. by non-empty intersection of the actual marking and the
post-set of the transition.

Definition 9. Let ENI = (P, T, F,Inh) be an elementary net with inhibitor
arcs. Let P’ be a set satisfying |P'| = |P| and P'N(PUT) =0, letc: P — P’ be
a bijection. The complementation ENI = (P, T, F, Act) of ENI is defined by
P=PU{cp) |pe P}, F=FU{(t,c(p)) | (p.t) €L A (t.p) &€ F}U{(c(p),?) |
(t,p) € F N (p,t) ¢ F} and Act = {(c(p),t) | (p,t) € Inh}. If initial marking
mo of ENI is given, its complementation Tyg is given by g = mo U {c(p) | p €
P A p¢mo}.

Observe that this construction of N from N is unique up to isomorphism.
In proofs we will take advantage of the fact that we define sets P and P’ as
disjoint though this is certainly very clumsy in graphical formalism. In most
cases, only few places need to be equipped with complement places (co-places)
for the system to become contact-free.
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Definition 10. A co-set of an occurrence net ON is a subset S C B such that
fornoa,be€ S:(a,b) € RT. A slice is a maximal co-set. Let Min(ON) denote the
set of all minimal conditions of ON according to the partial order RT. Similarly,
let Max(ON) denote the set of all maximal conditions of ON according to the
partial order R .

Definition 11. Let N = (P, T, F) be an elementary net and mg an initial mark-
ing. A process of N w.r.t. mg is a (labelled) occurrence net ON = (B, E, R, 1)
such that these conditions are satisfied:

No isolated place of N is mapped by | to a co-place of N?.

l|p is injective for every slice D of ON.

I(Min(ON))NP =mg A I(Min(ON)) C myg.

Ve € E : (%) = ®l(e) N l(e*) = l(e)®, where ®l(e) and l(e)® refer to

complementation N of N.

™ oo~

We use on(N, mg) to denote the set of all processes of N w.r.t. my and on(N) =

U on(N,mg) to denote the set of all processes of N.
mogP

Having defined the processes of “ordinary” elementary nets we may proceed
to endow them with activator arcs. Let us first introduce the structure that is a
generalization of the notion of partial order, suitable for the purpose of capturing
both ”earlier than” and ”"not later than” causality.

Definition 12. A relational structure is a triple S = (X, <,C). S is called a
stratified order structure (so-structure) if the following conditions are satisfied:

(ChHziLx (C3zCyCzhNx#z=2xC 2
(C2Qlz<y=zCy (ChHzCy<zVez<yCz=x<2

Let § = (X, <,C). The $-closure of S is the labelled relational structure
SV = (X,<g0,Cg0) = (X, (RULC)" 0 <o(=xULD)", (xUD)"\idx).

We say that a labelled relational structure S is {-acyclic if <go s irreflexive.

It is easy to see that (X, <) is a partially ordered set. Notice also that S¢ is
a labelled so-structure if and only if <g¢ is irreflexive. For these results see [7].

Definition 13. A labelled activator occurrence net (ao-net) is a tuple AON =
(B,E,R, Act,l) such that: ON = (B, E, R,l) is an occurrence net, Act C Bx FE
are activator arcs, and the relational structure

Saum(AON) = (E7 <auzs Eaum) = (E7 (ROR)|E><EU (ROACt), (ACt_l OR) \ZdE)

is {-acyclic.

2 Tsolated places of ON represent ”unused” tokens of 9. We use only co-places which
are necessary to get a contact-free system.
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Definition 14. An activator process of an elementary net with inhibitor arcs
ENI = (P,T,F,Inh) is an ao-net AON = (B, E, R, Act,l) such that ON =
(B,E,R,l) € on(N) (where N = (P,T,F)) and Vb € BVe € E : (b,e) €
Act <= (c71((b)),1(t)) € Inh. The set of all activator processes of ENI is
denoted by aon(ENIT).

(a) (b) (c)

Fig. 3. Illustration of orders generation ([9]). Cases (a) and (b) generate e <4 f, case
(c) generates € Cqua f-

In the diagrams, we draw activator arcs as arrows with black dots as heads
and we write Tt = {b| (b,t) € Act}.

Thus, <44 represent the causality ”earlier than”, while C,,, the causality
“not later than”. Because transitive closure of <, is a partial order, there are
no cycles formed by elements of <,,,. On the other hand, the transitive closure
of Caquz 1S not necessary irreflexive, i.e. Cqys 1S not necessary acyclic. Then,
cycles formed by elements of ., represent exactly the true synchronous step
terms. Finally, the irreflexivity of <g¢ expresses that there are no ”combined”
cycles, which obtain both elements of <., and Cgyuz.

5 Algebraic Representation of Elementary Nets with
Inhibitor Arcs

In this section we represent elementary nets with inhibitor arcs with a-priori se-
mantics as algebraic (M, Z)-nets. Let us consider the net ENI = (P, T, F, Inh).
We define M = (2F,U). Further, let us define pre(t) = * and post(t) = t* for
each t € T. To generate steps, we attach to transitions the information which
consists of three disjoint components: the pre-set, the post-set, and the set of
inhibiting places. So, we define (with t € T" and m € 2F)

I =27 x2P x 2P inf(t) = (*t,t*, ~t), nf(m)= (m,m,0).

Synchronous composition of transitions ¢; and to is possible only if places used
by the transitions for token flow are disjoint, pre-set of ¢y is disjoint with the
set of inhibiting places of t5 and vice versa. In a-priori semantics, testing on
absence of tokens precedes consuming/producing tokens. Therefore, we do not
need to check whether the post-set places and the inhibiting places are dis-
joint in the case of the synchronous composition of transitions. Thus, we have
domg, = {((a,b,c),(d,e, f)) € I | (aUb)N(dUe) =anf=dNc=0}and
(a,b,c)d(d,e, f) = (aUd,bUe, (cUf)\ (bUe)).
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For concurrent composition we want transitions to be independent and there-
fore we have to test whether both pre-sets and post-sets are disjoint with inhibit-
ing places. Thus, we have dom; = {((a,b,¢),(d,e, f)) €| (aUb)N(dUe) =
(aub)Nf=cn(dUe) =0}.

Finally, we need to find the greatest closed congruence = of (27,{]},
dom (i U). We define a mapping supp which turns out to be the natural ho-
momorphism of the congruence. The mapping yields the support of the term, i.e.
the set of places that appear in the token flow, and the set of inhibiting places.

Definition 15. Define two mappings s1, s : 21 — 2F by s1(A) = Uap,e)ea(al
b), s2(A) =U(ap,cyca ¢ and supp : 21 — 2P % 2F by supp (A) = (s1(A), s2(A) \
s1(4)).

Lemma 1. Denote J = {(z,y) € 28 x 2P | Ny = 0}. Let o be the binary
operation on J defined by (w,p) o (w',p’) = (wUw', (pUpP)\ (wUw")), domy =

{((a.b),(c,d)) € ITxJ|anc=bNec=and=0} and || = O|d0mﬁ' Then

the mapping supp : (21,{|.|},d0m{”},u) — (J.]], domy, o) is a surjective closed
homomorphism.

Lemma 2. The closed congruence =C 2T x 2! defined by A = B <
supp(A) = supp(B) is the greatest closed congruence on X = (21, {||}, dom{”}, U).

The proofs of the previous two lemmas are similar to those in [5] for a-
posteriori semantics of elementary nets with inhibitor arcs. Easy computation,
using (*tUt* )N ~t = () proves condition (b) of Definition 2, i.e. supp({inf(t)}) =
supp({inf (t), inf (pre(t)), inf (post(t))}). The reader may observe that || and J
correspond to || and I in [5]; thus analogous results hold.

The partial algebra (JJ, ||, domﬁ, o) is isomorphic with the greatest closed con-

gruence on X. Therefore, by construction of process terms (using concurrent and
sequential composition) it is enough to save just the set of flow places and the set
of inhibiting places which are not in the flow of the process as the information for
deciding whether the processes are independent (concurrent composable). Now
we are able to represent an elementary net with inhibitor arcs as an algebraic

(M, T)-net.

Theorem 1. Let ENI = (P,T,F,Inh) be an elementary net with inhibitor
arcs, together with M, L, pre, post,inf defined throughout this section. Then the
quadruple Apnr = (27, T, pre, post) together with the mapping inf is an alge-
braic (M, TI)-net.

Definition 16. The algebraic (M,Z)-net from the previous theorem is called
the corresponding (M, I)-net to the elementary net with inhibitor arcs ENT.

FEzxample 1. In the net from Figure 1 the expressions (f ||{p1}); (e||{psa}), €D f
and f @ e are defined process terms, but f ||{ps} is not defined, because inhibit-
ing place ps of f is also pre and post place of the elementary process term {ps}
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which means that the information elements of terms f and {p3} cannot be com-
posed concurrently. By this the expression (e ||{p2}); (f [[{ps}) is not a defined
process term, i.e. the sequence ef cannot be executed in the net from Figure
1. Similarly, in the net from Figure 2 neither expression (e ||{p2}); (f ||{ps}) nor
expression (f ||{p1}); (e ||[{ps}) are defined process terms, i.e. neither sequence e f
nor sequence fe can occur in the net. The only expressions containing both e and
f, which are defined process terms are e® f and f @e, i.e. the only possibility
to occur both e and f is to do it synchronously.

6 Activator Processes versus Process Terms

In this section we establish the main result on the relationship between the
newly defined process terms and the activator processes of elementary nets with
inhibitor arcs with a-priori semantics as introduced in [7]. We have the following
pattern of the proof: First, we define a mapping 7 that associates an activator
occurrence net with each process term. Second, we prove that 7 is surjective, i.e.
every activator process can be represented by a process term. Then we show that
a ~¢ B = 17(a) = 7(8), i.e. equivalent process terms are mapped by 7 on the
same activator process. Finally, we prove that 7(a) = 7(8) = « ~; 8. Hence, at
the end of this section we have formulated the main theorem of the paper, which
states that activator processes correspond bijectively to ~;-equivalence classes
of process terms.

Because the process terms corresponding to markings are determined in a
process term « by the value pre(a), in the following we will often omit them in
process terms. In the sequel we consider an elementary net with inhibitor arcs
ENI = (P,T,F,Inh), its corresponding (M,T)-net Agyn;, and two actuator
processes K1 = (B, F1, R1, Acty,ly) and Ky = (Bg, Es, Ry, Acta, ) of ENI.
We will often state that K; = K5 even if this is not exactly true and only the
graphical representations of the nets are the same, i.e. there exists a bijective
mapping that preserves labelling, flow and read arcs. If needed, we use ~ to
denote this isomorphism. Every time we use | without indices we mean the
labelling function constructed as “union” of [y and ls. Exactly, l|p,ug, = {1 and
l|,ur, = lo. From the definitions we can verify that it is always possible to
construct such a function. We will commonly use the shorthand “places match”.
We precisely mean: Let by € By,by € By. We say that b; and by match if
[1(b1) = Il2(b2). In definitions of the compositional net operations we usually
remove one of the matching places and attach the arcs adjacent with the removed
place to the other. We then say these places were glued.

Definition 17 (Notation). Let K = (B, E, R, Act,l) be an ao-net. We define
the set of isolated places by YK ={bc B|Vec E: b¢ ®eUe® U te}, the set
of write places (flow places) by °K =], cp(%eUe®) U YK and the set of purcly

read places by TK = (J.cp Te) \ °K.

In the following definition we define the mapping 7 associating activator
processes to process terms representing markings and single transitions.
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Definition 18.

Let m € M and o = m : m — m be the related process term of Agnr. Define
T(a) = Ko = (m,0,0,0,id,,). Let t € T and o« =t : pre(t) — post(t). Define
T(a) = Ko = (U U Yt {t}, (% x {t}) U ({t} x t°), Tt x {t}aid'tut‘U"‘tU{t});
where %, t* and 1t are with respect to ENT.

Observe, that K,, and K, are activator processes. For a (step or process)
term « we say 7(«) to be the corresponding activator process. Beginning with
processes representing markings and single transitions we define inductively the
corresponding activator processes for synchronous composed step terms a; and
a9, and concurrent and sequential composed process terms o and g, using
activator processes K1 and K5 corresponding to the terms aq and ao. In defini-
tions we always assume that B1 N By = E1 N Ey = (). We can always achieve this
by appropriate renaming. We also define Inty = {p € P | (3by € TK;)(3by €
TK3)(11(b1) = l2(b2) = p)} as the set of places that are used in both processes
as purely read places.

To obtain the activator process corresponding to synchronous composed step
terms we define the synchronous interface I ”téa as the set of places that are
used as read places in the process K; and as write places in the other process.
We delete places of I nté9 and Int| from K; (places that are only used as read
in one process remain), put the processes side-by-side, we glue read places of
processes with their write counterparts in the other process. Then we add the
“purely read” places in one copy and restore the Act relation.

Definition 19. Define the synchronous interfaces:
Intéa = {p eP ’ (E|b1 € +K1)(E|bg € OKQ)(ll(b]_) = lg(bg) :p)
Int%e = {p eP ’ (Hbg € +K2)(E|bl € OKl)(ll(bl) =7
B! = (B.\ (17 (Intl) 1K)\ I (Int))
Act), = Act; N (B! x E;)
Define 7(a1 @ az) = Ko, ga, = (B, E, R, Act,l) = (B, E1 U E9, Ry U Ry, Act, 1),
where B = B} U By Ul (Int)) and
Act = Act] U Acthy U
{(bl,eg) | b, € B/ (Hbg S l 1(]717539))((()2,62) € Acty N ll(bl) Q(bg))}
{(b2,€1) | by € B2 (Hbl S l 1(Int%9))((b1,61) € Acty /\ll(b ) Q(bQ))}
{(b,e;) | be l_l(Int”) Ne; € E; A (3b; € B;)(1;(b;) =1(b) A (b, e;) € Acty),
fori=1,2}.

Lemma 3. If a1 G g is a defined step term, then K., ga, as defined in the
previous definition is an activator process.

Proof. (Sketch) Observe that the activator processes corresponding to step terms
consist of three “layers”. The first consists of pre-places, the second of transitions
and the third of post-places. We show the following:

(i) (B, E,R,l) is a labelled occurrence net (that means R* is irreflexive). This
follows immediately from R = R; U Rs.

(i) (B, E,R,1) is a process (see definition 11). Only the injectivity of the la-
belling on all slices is not obvious. It follows from the facts, that every slice
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D of the composed net is of the form D = D; U Dy with slices D; of K4
and Ds of Ko, and that from the precondition (a; @ ae is a defined step
term) the labelling images of the flow places of K; and K5 are disjoint (see
[5] for a detailed proof of a similar statement).

(iii)) Koy @a, 18 an ao-net (that means Squq (Ko, @ oy ) 18 O-acyclic). This follows
from the observation, that activator arcs are only connected with places
from the pre-places layer.

(iv) Ka, @a, is an activator process (that means the labelling respects the in-
hibiting relation of FNT). That is obvious.

To obtain the activator process corresponding to concurrent composed pro-
cess terms, we remove the matching read places from K5, put the two processes
together and restore activator arcs incident with erased places, using same-
labelled places of K;.

Definition 20. Set B, = By \ lz_l(Int”), Actl, = Acto N (B, x E3) and define
T(a/l || ag) = Ka1 | e = (B,E, R, ACt,l) = (BlLJBé,ElUEQ,RlURQ,ACt, llUlg),
where Act = Actq U ACtIQ U {(bl,eg) € B x Ey | (Elbg S +K2)(l1(b1) = lg(bg) AN
(52,62) S ACtQ)}.

Lemma 4. If o || oz is a defined process term, then K, | o, as defined in the
previous definition is an activator process.

Proof. (Sketch) The structure of the proof is the same as in the proof of
the previous lemma. The statements (i), (ii) and (iv) can be proven analo-
gously. Let Squz (Ko, |jas) = (B, <auzs Caue)s Saue (K1) = (£, <L ., Cl..)and
Sauz(K2) = (B, <2,,,C2,.). Because no read place of the one process is matched

and glued with a write place of the other process, we have <g,,=<2L U <2
and Cque=C1,, UC2,,. Statement (iii) follows.

To obtain the activator process corresponding to sequential composed process
terms we remove those minimal places of K5 that match a maximal place in K4
(the sequential interface Int.), and attach the arcs originally attached to the
minimal elements to these maximal elements.

Definition 21. We define the sequential interface of the processes Ky, Ko by
I;l}t;(Kl,Kz) ={p € P | (Iby € Maz(K;))(Fba € Min(K2))(l(by) = I(ba) =
p)}.
Set Bl = By \ {b2 € Min(K3) | l(bg) € Int. (K, K2)}
R, = RoN ((Ee x BY) U (B x Es))
ACt/Q = ACtQ N (Bé X Eg) and
define  T(oq;a2) = Koy = (B, E, R, Act,l) = (B1 U B), E1 U Ey, R, Act. 1),

where R =Ry UR,U{(by,e2) | by € Maz(K;y) A
(Hbg € MZTL(KQ) : ll(bl) = lg(bg) VAN (bg,eg) € Rg)}
Act = Acty U Acth, U{(b1,e2) | by € Max(K1) A
(Hbg € BQ : ll(bl) = lg(bg) AN bg,eg) € Actg)}.

Lemma 5. If aq; 0 @s a defined process term, then Ky, .o, as defined in the
previous definition is an activator process.
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Proof. (Sketch) The structure of the proof is the same as in the proof of the
previous lemma. The statements (i), (ii) and (iv) follow from construction. Let
Souz(Kayias) = (B, <auz, Cauz)- From construction we have Ve; € By, eg € Ey -
€2 Aauzr €1 N €2 Lauz €1 . Therefore (iii) is satisfied.

v = (E,<,C) be
the so-structure associated with 7(ay;as). Let Ey, E5 denote the set of events
of 7(a1),7(ae), respectively. Then Ve, € Fq, eg € Eo: ea A e1 Nea L €.

Remark 1. Let ai;as be a defined process term and let S

Naturally, the relationships between ”earlier than” and ”not later than”
causalities on one side and definition domains of concurrent and synchronous
composition play a crucial role in the proof of correspondence between the pro-
cess term semantics and the activator process semantics.

If (copies of) transitions (in an activator process) are not ordered by ”earlier
than” causality, then they may be executed synchronously.

Lemma 6. Let K = (B, E, R, Act,l) be an activator process and let e1,es € E.
Let SC?W = (E,<,C) be the associated so-structure. If e; 4 ea and ey A e1 then
l(er) ®l(e2) is a defined process term.

Proof. (Sketch) Assume the term [(e;) @ (e2) is not defined (although e; £ e
and ey £ ejp), i.e. the associated information elements of e; and ey are not

composable by @. This means, one of the following cases must be fulfilled:

(i) *l(e1) N ®l(ez) # 0. Observe that ®e; N ®ex = () and e} Ne§ = 0 by the
definition of process nets. So there are places b1,by € B with by € ®eq,
by € ®es, I(by) = l(b2) and by # by. Because the labelling is injective on
slices, b; and by are in different slices, and therefore are ordered by the
transitive closure R* of the flow relation. Since conditions are unbranched,
e1 and by or es and by must be ordered by RT. Since RT C<= (<gue U Cauz
)*0 <auz °(<auzr U Cauz)™, this contradicts e; £ ea A ey 4 e1. The proof for
l(e1)® Nl(ez)® # 0 is analogous.

(i) *l(er) Ni(ez)® # 0. If ®ex Nes # 0, we have directly a contradiction of
e1 A ea Ney £ eq. If not, the proof is similar to (i). *I(e1) N Tl(e2) # 0 and
Ti(e1) Ni(ez)® # 0 are proven in the same way.

Moreover, if (copies of) transitions (in an activator process) are neither or-
dered by "earlier than” causality nor by ”not later than” causality, then they
may be executed concurrently.

Lemma 7. Let K = (B, E, R, Act,l) be an activator process and let e1,eq € E.
Let 83, = (B, <,C) be the associated so-structure. If e; £ ea, ea £ e1, €1 [ e

and es [/ ey, then l(eq) || l(e2) is a defined process term.

Proof. (Sketch) Assuming the term I(eq) || {(e2) is not defined one can prove the
lemma in a same way as the previous one. The only new inequality which has
to be fulfilled is *i(e1) N *l(e2) # 0. Because R C C = (<quz U Cauz)™ \ idg,
this can be proven analogously as (i) in the previous lemma.

Theorem 2 (7 is surjective). For every activator process K of ENI there is
a process term «, such that 7(a) = K.
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Proof. With lemma 6 we can prove the statement analogous to the correspond-
ing theorem in [5] (replacing || by @) using sequential composition of maximal
synchronous step terms. The searched term « is of the form a = aq;...;ay,,
where ay is a maximal synchronous step term.

If two process terms are alternative decompositions of the same process,
then they should naturally have the same corresponding activator process. This
is indeed so. The proof consists of verifying the claim for each of the ten axioms
in definition 5 and we omit it. The interested reader may find the proof of the
corresponding theorem in [5], proving the statement for the axioms (1)-(4) and
(8)-(10). For the axioms (5) and (6) the statement is obvious. For axiom (7) the
statement is proven in a similar way as for axiom (4).

Theorem 3. Let o, be process terms of Ay. Then o ~, 8 = 1(a) = 7(5).

The proof of the converse, the theorem similar to theorem 7 found in [5]
(the crucial theorem of that paper) does not work anymore, since there can be
transitions in a step term, which cannot be sequentialized, because they are true
synchronous. So every process term can only be sequentialized down to true
synchronous step terms. We want to identify subsets of events of an activator
process, which correspond to true synchronous step terms via the mapping 7.
Clearly a set of events, that can be cyclicly ordered by the "not later than”
causality, cannot occur sequentially and therefore is a candidate for such a subset.
We will need exactly such sets which are maximal w.r.t. the C-relation.

Definition 22. We say that a process term e, is maximally sequentialized of
and only if it is of the form (a1 || s1);...; (ag || sk), where s; is a true synchronous
step term and a; € M for all i € {1,...  k}.

Lemma 8. Let o be a process term. Then there exists a term oueq such that
O~ Qgeq and Qseq 15 @ mazimally sequentialized process term.

Proof. (Sketch) Inductively, replace « || 8 with «; 3. Replace a® 8 with either
«; 3 or (3:«a, whichever is defined. If none is defined, then it can be proved that
a® B is a part of a true synchronous step term. The algorithm define functions
denoted by -geq-

Definition 23. Let K = (B, F, R, Act,l) be an activator process, <quz be the
associated "earlier than” causality on E and CTqyu, be the associated "not later
than” causality on E. A set n C E is called a cyclic event, if it either contains
exactly one element or the following two conditions are fulfilled:

(i) The events from E are pairwise unordered w.r.t. <guyz-

(ii) There is a sequence eies . ..ey of events from n, such that e; Cauz €541 and
e1r = ep (i € {1,...,k —1})*. In other words there is cycle w.r.t. Caus
through all events in 1.

An synchronous event of K is a cyclic event, that is mazximal w.r.t. the C-
relation.

3 Of course it is allowed, that some events of 77 appear more than once in the sequence
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Clearly, synchronous events of an activator process are disjoint. Moreover,
we can extend the lemma 6 as follows:

Lemma 9. Let K = (B, E, R, Act,l) be an activator process and let n be its

synchronous event. Then s = EBeEn l(e) is a defined process term.

Applying this lemma, the property of S9, . and the definition of || we can

aux?
also extend the lemma 7.

Lemma 10. Let K = (B, E, R, Act,l) be an activator process, and ny,n2 its
synchronous events. Let S5, = (F,<,C) be the associated so-structure. , If
e1 A eg, ea K €1, €1 [ ey and ex [ ey for some ex € m,ea € 19, then

Decy, U(€) | Deey, Ue) is a defined process term.

We can characterize cyclic events in the following way.

Lemma 11. Let K = (B, E, R, Act,l) be an activator process. A set n C E with
at least two elements is a cyclic event, if and only if

(i) The events from n are pairwise unordered w.r.t. <guyz.
(ii) For every monempty subset ¢ C n we have: There are events e1,eq € ¢,

f17f2 € 77\907 such that €1 Caux fl and f2 Cauxr €2-

In this statement condition (ii) can be equivalently replaced by condition

(i)’ For every monempty subset @ C n we have: There are condilions b €
Ueey %€ 0" € Uy, e and events f € ¢, f' € n\ ¢, such thatbe *f’
and b’ € Tf.

Proof. The equivalence between conditions (ii) and (ii)’ follows directly from the
definition of C,qyz.

if: Assume 7 is not a cyclic event, that means there are two events e, f € 7
with e (7%, f, although condition (ii) is fulfilled. Set ¢ = {e’ € n | e T}, €'}
Obviously e’ 7% ,,.. f for all ¢’ € . This contradicts (ii).

only if: e; Cauz €41 implies by the definition of 4y, that there is a condition
bii1 € ®bii1 with b;y1 € Te;. Assume there is a subset ¢ C 75, which does
not fulfil condition (ii), although 7 is a cyclic event. Without loss of generality

assume that there is no condition b € (J, . o €, such that there exists an event
e mn\ ¢ with b € *f. In other words (U.c,, *€) N (Ueep, 7€) = 0, ie.
Ve e n,Vf €n\y: [ ZLaus e It follows, that the transitive closure of Cg4yy
restricted to n cannot be symmetric, which is a contradiction to the fact, that n
is a cyclic event.

Lemma 12. Let s be a true synchronous step term and 7(s) = (B, E, R, Act, )
be the corresponding activator process. Then E is a synchronous event of 7(s).

Proof. Assume FE is not a synchronous event although s is a true synchronous
step term. Then there exists ¢ C FE such that there are either no activator
arcs from (J ¢, ®e to E'\ ¢ or no activator arcs from {J.cp\, *e to . With-

out loss of generality assume that there are no activator arcs from [J ey ‘e

to E\ ¢. From lemma 6 and commutativity and associativity of @, terms
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D.c, l(e) and D, {(f) are defined terms. From definition of dom,; the com-
position P, ¢, l(€) || post(D e, 1(f)) is defined and therefore also the term

(Drepe ) Pre(@ee, 1e)); (Bee, Le) | post(D pe g, 1(f)) is defined. This

contradicts the fact that s is a true synchronous step term (i.e. that s cannot be
sequentialized).

Lemma 13. Let a = s1;... ;8 be a maximally sequentialized process term.
Let SE = {n1,...,nn} be the set of all synchronous events of the activa-
tor process T(a). Then n = k and there exist a permutation v such that:

Q= @eénvl 1(8), te ;@661’,@“ l(e)

Proof. By induction: From previous lemma the statement is valid for £ = 1. If it
is valid for i < k, then from the proof of lemma 5 adding 7(s;11) to 7(s1;... ,8;)
we cannot extend neither any existing synchronous event of 7(s1;...,s;) by an
event from 7(s;41) nor the added synchronous event of 7(s;1.1) by an event from
7(81;...,8;). Since the set of events F;11 of 7(s;41) forms itself a synchronous

event satisfying 5,11 = @.cp,,, ((€), the statement is valid for 7 + 1.

Corollary 1. Leta = s1;...;8, and 3 = ry;... 1, be maximally sequentialized
process terms. If () = 7(8) then n = k and there exist a permutalion v such
that oo =1y, ;... 1Ty, .

Now we can prove the last part needed for the correspondence between pro-
cess term semantics and activator process semantics.

Theorem 4. Let o, be process terms. Then T(a) = 7(8) = a ~¢ (.

Proof. Lemma 8 provides us with maximally sequentialized process terms aeq
and fseq such that ageq ~¢ a and Bseq ~¢ . By theorem 3 we have 7(oeq) =
T(a) = 7(B) = 7(Bseq)- Thus, it suffices to show that aseq ~¢ Bseq. Denote ogeq =
515... ;8K and Bseq = T1;... ;7. By corollary 1 we have n = k and there exists
a permutation v such that aseq = ry(1)i -+ ;Tyn)- I Qseq # Bseq, consider that
is the first index satisfying v(i) # i (obviously v(i) > 7). The idea is to “bubble-
sort” step term r, ;) from the position v(i) in Bseq backwards to the position ¢,
which it has in a4, and repeat this procedure until there is no such :. Thus, it
suffices to prove that ;... ST =15 Tw()s - 3T ~E T e 3 Tu(i) To(i)—15 - - - 3 Tns
i.e. that we can exchange 7,;—1 and r,;) in Bseq. A sufficient condition for
this is that r,;)—1 || 7(;) is a defined process term. Since i was the first index
with the property v(i) # 4, the position of Ty(i)—1 1N Qseq 1S at least ¢ + 1, i.e.
Qseq = To(1)5 -+ 5 To(i=1);To(i)5 -+ 3 To(i)—15 - - - To(n)- Lhus, from Bseq and Remark
1 we hav eVe € Ey;y—1, [ € By f A eNf L e, where Ey )1, Fy(;y denote the
set of events of 7(ry(y—1), T(Tu(i)), respectively. On the other hand, from o,
and Remark 1 we have Ve € F,;)_1, f € Ey): e A f AelZ f. From lemma 10
follows that 7,(;)—1 || 74(s) is a defined process term, what finishes the proof.

Now we are prepared to state the main result of the paper, which is an
immediate consequence of theorems proved in this section.
Theorem 5. Let ENI be an elementary net with inhibitor arcs. Let Apni be
the corresponding algebraic (M, I)-net. Then there is a one-to-one correspon-
dence between ~y-equivalence classes of Ay and (isomorphism classes) of acti-
vator processes of N1 .
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7 Conclusion

In this paper we have presented an abstract axiomatic semantics for Petri nets,
which enables to distinguish between synchronous and concurrent occurrence of
steps. Within this framework, we have also defined notion of true synchronicity.
The approach is based on rewriting logic with restricted definition domains of
operations. We claim that our approach offers a dual description of processes
based on ”earlier than” and "not later than” causalities defined in the seminal
papers [6,7]. We illustrate our claim proving a one-to one correspondence be-
tween our process semantics and those described in [7] for elementary nets with
inhibitor arcs.

There are several works following the ideas of [7] in literature, e.g. [8] for
nets with priorities and [9] for place/transition nets with inhibitor arcs. Many
other papers also discuss weak causality of nets with inhibitor /read arcs [11,13,
12], or nets with read arcs [15]. However, they exclude the case where transitions
are cyclically ordered by inhibitor arcs (or read arcs). In ([13], [12]) the weak
causality is rather understood as an asymmetric conflict. In [15] the nets with
read arcs are investigated. Duration is supposed and the causalities ”e necessarily
ends before f starts” and ”e necessarily starts before f starts” are used. Thus,
in the example from Figure 1, for e and f both to occur, f has to start before
b. According [15], in the situation from Figure 2, e and f cannot both occur,
because intuitively they block each other (to occur both, first the test on the
presence of tokens has to be done (i.e. one event starts earlier) and after that
the token is consumed (the second event starts), and after that occurrence is
finished (tokens in post-sets are produced). A similar intuition (if a duration is
assumed, then consuming a token take a time and during this time absence of
tokens is post-sets can be tested) allow occurrence of both events in Figure 2.

An advantage of the algebraic approach we have presented is the fact, that
it offers an abstract framework, where by ”tuning” the underlying algebra of
information elements and the definition domain of synchronous and concurrent
composition, one can define non sequential semantics of different variants and
dialects of nets in a unifying way. Moreover, true synchronous steps play a crucial
role in Petri nets enriched by signals arcs, which are extensively used in modelling
and control of engineering systems. Presently, we are working on non-sequential
semantics for this class of nets. Another area of our present research consists
in developing a suitable general mechanism which will allow to produce causal
relations directly from the process terms.
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