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Abstract The capabilities of alternating cellular automata (ACA) to 
accept formal languages are investigated. Several notions of alternation 
in cellular automata have been proposed. Here we study so-called nonuni­
form ACAs. Our investigations center on space bounded real-time com­
putations. In particular, we prove that there is no difference in accep­
tance power regardless of whether one-way or two-way communication 
lines are provided. Moreover, the relations between real-time ACAs and 
deterministic (CA) and nondeterministic (NCA) cellular automata are 
investigated. It is proved that even the real-time ACAs gain exponential 
speed-up against nondeterministic NCAs. Comparing ACAs with deter­
ministic CAs it is shown that real-time ACAs are strictly more powerful 
than real-time CAs. 

1 Introduction 

Linear arrays of finite automata can be regarded as models for massively parallel 
computers. Mainly they differ in how the automata are interconnected and in 
how the input is supplied. Here we are investigating arrays with two very simple 
interconnection patterns. Each node is connected to its both immediate neigh­
bors or to its right immediate neighbor only. Correspondingly they are said to 
have two-way or one-way communication lines. The input mode is parallel. At 
initial time each automaton fetches an input symbol. Such arrays are commonly 
called cellular automata. 

Although deterministic, nondeterministic and alternating finite automata 
have the same computing capability there appear to be essential differences 
when they are used to construct deterministic (CA), nondeterministic (NCA) 
and alternating (ACA) cellular automata. (We use the denotation OCA, NOCA 
and AOCA to indicate one-way communication lines.) For example, it is a fa­
mous open problem whether or not CAs and OCAs have the same computing 
power (L(OCA) =? L(CA)) [13] but the problem is solved for nondeterministic 
arrays (L(NOCA) = L(NCA)) [4]. It is known that the real-time OCA lan­
guages are properly contained in the linear-time OCA languages (Lrt(OCA) � 
Llt(OCA)) [3,15,6]. But on the other hand, Lrt(NOCA) = Llt(NOCA) has been 
shown in [1]. Since Llt(NOCA) = Lrt(NCA) (which follows from the closure of 
Lrt(NOCA) under reversal [1] and Llt(NOCA) = LR 

rt(NCA)) we have the identity 
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Lrt(NOCA) = Lrt(NCA). For deterministic arrays it holds Lrt(OCA) � Lrt(CA) 
[13].

Altogether there is little known about the properness of the known inclusions. 
The dilemma is emphazised by the open problem whether or not the real-time 
deterministic CA languages are strictly included in the exponential-time nonde­
terministic CA languages (Lrt(CA) =? L(NCA))! The latter family is identical 
to NSPACE(n) (the context-sensitive languages), whereas the former is charac­
terizable by one-way two-head alternating finite automata [7]. 

In order to prove a proper superclass that is as small as possible we cannot 
add more time but we can strengthen the single cells and simultaneously reduce 
the time to real-time again. 

Therefore, we consider arrays built by alternating finite automata. In [9] from 
the point of view of time-varying cellular automata first results concerning a re­
stricted variant of ACAs are shown. In a second work on alternating cellular 
automata [10] three models are distinguished. In nonuniform ACAs each cell 
computes its next state independently according to the local transition function. 
In uniform ACAs at every time step one deterministic local transition is non-
deterministically chosen from a finite set of such functions and is applied to all 
the cells. The last notion defines the weak ACAs where only the leftmost cell 
of the array is an alternating automaton; all the others are nondeterministic. In 
[10] it is shown that nonuniform ACAs are the most powerful of the devices and 
that linear-time weak and uniform ACAs coincide. Some other results deal with 
simulations between alternating Turing machines and ACAs. This topic is also 
the main contribution of [12] where the simulation results of [10] are extended 
and some others are shown. 

Our main interest are nonuniform ACAs under real-time restriction. The 
basic notions are defined in the next section. Section 3 is devoted to the ques­
tion whether or not two-way ACAs are more powerful than one-way AOCAs. 
We prove the answer to be ‘no’. Especially, the equivalence between ACAs and 
AOCAs is shown for all time complexities. A second result in Section 3 is the 
important technical lemma which states that a specific subclass of ACAs can be 
sped up by a constant factor as long as the time complexity does not fall below 
real-time. For such devices, especially, the equivalence of real-time and linear-
time follows. In Section 4 the relations between real-time ACAs and deterministic 
and nondeterministic cellular automata are investigated. It is proved that even 
the real-time ACAs gain exponential speed-up against nondeterministic NCAs. 
Comparing ACAs with deterministic CAs it is shown that real-time ACAs are 
strictly more powerful than real-time CAs. Thus, a proper superclass of the real-
time CA languages is obtained. Since NSPACE(n) is included in ATIME(n2) 
and, on the other hand, Lrt(ACA) will be shown to contain NSPACE(n) and is 
contained in ATIME(n2) either [10] we conclude that the real-time ACAs are a 
reasonable model at all. 

The latter result becomes important in so far as it is not known whether one 
of the following inclusions is strict: 

Lrt(CA) � Llt(CA) � L(OCA) � L(CA) � L(NCA) 
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2 Basic Notions 

We denote the rational numbers by Q, the integers by ZZ, the positive integers 
{1, 2, . . .} by IN, the set IN ⊆ {0} by IN0 and the powerset of a set S by 2S . The 
empty word is denoted by � and the reversal of a word w by wR. For the length 
of w we write |w|. 

An alternating cellular automaton is a linear array of identical alternating 
finite automata, sometimes called cells, where each of them is connected to its 
both nearest neighbors (one to the left and one to the right). For our conven­
ience we identify the cells by positive integers. The state transition of the cells 
depends on the actual state of the cell itself and the actual states of its both 
neighbors. The finite automata work synchronously at discrete time steps. Their 
states are partitioned into existential and universal ones. What makes a, so 
far, nondeterministic computation to an alternating computation is the mode of 
acceptance, which will be defined with respect to the partitioning. More formally: 

Definition 1. 
An alternating cellular automaton (ACA) is a system (S, �, #, A, F ) where 

1.� S is the finite, nonempty set of states which is partitioned into existential 
(Se) and universal (Su) states: S = Se ⊆ Su, 

2.� # /� S is the boundary state, 
3.� A � S is the nonempty set of input symbols, 
4.� F � S is the set of accepting states, 
5.� � is the finite, nonempty set of local transition functions which map from � �3 

S ⊆ {#} to S. 

Let M = (S, �, #, A, F ) be an ACA. A  configuration of M at some time t ≤ 0 is a  
description of its global state, which is actually a mapping ct : [1, . . . , n] ∪ S for 
n � IN. The configuration at time 0 is defined by the initial sequence of states. 
For a given input word w = w1 · · ·wn � A+ we set c0,w(i) :=  wi, 1  ∅ i ∅ n. 
Subsequent configurations are chosen according to the global transition �: 

Let n � IN be a positive integer and c resp. c� be two configurations defined 
by s1, . . . , sn � S resp. s1, . . . , s � S.n 

c� � �(c) →≥ ⇒ �1, . . . , �n � � : 
s1 = �1(#, s1, s2), s2 = �2(s1, s2, s3), . . . , s = �n(sn−1, sn, #)n 

Thus, � is induced by �. Observe, that one can equivalently define ACAs by 
requiring just one unique nondeterministic local transition that maps from S ⊆ �3 � � {#} to 2S \ �  . But with an eye towards later constructions we are requiring 
a finite, nonempty set of deterministic local transitions from which each cell 
nondeterministically chooses one at every time step. Obviously, both definitions 
yield equivalent devices. 

The evolution of M is represented by its computation tree. 
The computation tree TM,w of M under input w � A+ is a tree whose nodes 

are labeled by configurations. The root of TM,w is labeled by c0,w . The children 
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of a node labeled by a configuration c are the nodes labeled by the possible 
successor configurations of c. Thus, the node c has exactly |�(c)| children. 

If the state set is a Cartesian product of some smaller sets S = S0 × S1 × 
· · ·  ×  Sr , we will use the notion register for the single parts of a state. The 
concatenation of a specific register of all cells forms a track. 

If the flow of information is restricted to one-way, the resulting device is an 
alternating one-way cellular automaton (AOCA). I.e. the next state of each cell 
depends on the actual state of the cell itself and the state of its immediate neigh­
bor to the right. Thus, we have information flow from right to left. Accordingly 
acceptance in ACAs and AOCAs is indicated by the leftmost cell of the array: 
A configuration c is accepting iff c(1) � F . 

In order to define accepting computations on input words we need the notion 
of accepting subtrees. 

Definition 2. Let M = (S, �, #, A, F  ) be an ACA or an  AOCA and TM,w be 
its computation tree for an input word w � An , n � IN. A finite subtree T � of 
TM,w is said to be an accepting subtree iff it fulfills the following conditions: 

1. The root of T � is the root of TM,w . 
2. Let c be a node in  T �. If  c� � �(c) is a child of c in T � then the set of all chil-

 

dren of c in T � is c�� � �(c) | c��(i) =  c�(i) for all 1 ∅ i ∅ n such that c(i) � 
Se . 

3. The leafs of T � are labeled by accepting configurations. 

From the computational point of view an accepting subtree is built by letting 
all the cells in existential states do their nondeterministic guesses and, subse­
quently, spawning all possible distinct offspring configurations with respect to 
the cells in universal states. 

Conversely, one could build the subtree by spawning all possible distinct 
offspring configurations with respect to the cells in universal states at first, and 
letting cells in existential states do their guesses in each offspring configuration 
independently. Fortunately, it has been shown [12] that both methods lead to 
time complexities which differ at most by a constant factor. Moreover, the proofs 
given in the following can easily be adapted to that mode of acceptance such 
that both methods are equivalent in the framework in question. 

Definition 3. Let M = (S, �, #, A, F  ) be an ACA or an  AOCA. 

1. A word w � A+ is accepted by M if there exists an accepting subtree of 
TM,w . 

2. L(M) =  {w � A+ | w is accepted by M} is the language accepted by M. 
3. Let t : IN  ∪ IN, t(n) ≤ n, be a mapping. If for all w � L(M) there exists an 

accepting subtree of TM,w the height of which is less than t(|w|), then L is 
said to be of time complexity t. 

An ACA (AOCA) M is nondeterministic if the state set consists of existential 
states only. An accepting subtree is now a list of configurations which corresponds 
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to a possible computation path of M. Nondeterministic cellular automata are 
denoted by NCA resp. NOCA. 

An ACA (AOCA) is deterministic if the set � of local transition functions 
is a singleton. In these cases the course of computation is unique for a given 
input word w and, thus, the whole computation tree is a list of configurations. 
Deterministic cellular automata are denoted by CA resp. OCA. 

The family of all languages which can be accepted by devices of a type POLY 
with time complexity t is denoted by Lt(POLY). If t equals the identity function 
id(n) :=  n acceptance is said to be in real-time and we write Lrt(POLY). The 
linear-time languages Llt(POLY) are defined according to 

Llt(POLY) := Lk·id(POLY) 
k�Q, k�1 

3� Equivalence of One-Way and Two-Way Information 
Flow and Linear Speed-up 

This section is devoted to the relationship between ACAs and AOCAs and the 
speed-up of a restricted version that becomes important in subsequent proofs. 
The main results are that for arbitrary time complexities there is no difference 
in acceptance power between one-way and two-way information flow and the 
possibility to speed up so-called uniformly universal ACAs and AOCAs by a 
constant factor as long as they do not fall below real-time. Especially by the 
latter result we can show the results in the next sections even for real-time 
language families. 

Without loss of generality we may assume that once a cell becomes accept­
ing it remains in accepting states permanently. Such a behavior is simply im­
plemented by setting a flag in an additional register that will never be unset. 
Obviously, thereby the accepted language is not affected since if an node labeled 
by an accepting configuration belongs to a finite accepting subtree then there 
exists a finite accepting subtree where the node is a leaf (it is simply constructed 
by omitting all offsprings of that node). 

The next result states that one-way information flow in alternating cellu­
lar automata is as powerful as two-way information flow. This, on one hand, 
gives us a normalization since for proofs and constructions it is often useful to 
reduce the technical challenge to one-way transitions and, on the other hand, 
indicates the power of alternations since it is well known that deterministic one-
way languages form a proper subset of the deterministic two-way languages: 
Lrt(OCA) � Lrt(CA) [13]. 

Theorem 4. Let t : IN  ∪ IN, t(n) ≤ n, be a mapping. Then 

Lt(AOCA) = Lt(ACA) 

Proof. For structural reasons it suffices to show Lt(ACA) � Lt(AOCA). 



218 T. Buchholz, A. Klein, and M. Kutrib 

The idea for the simulation of an ACA by an AOCA without any loss of time 
is as follows: A cell of the AOCA ‘knows’ the actual states of itself and of its 
neighbor to the right. Additionally, it guesses the state of its neighbor to the 
left and simulates the two-way transition of the ACA. In order to verify whether 
or not the guesses are correct each cell stores its guessed state and its old state 
in additional registers. After performing a simulation step the verification can 
simply be done by comparing the old state of a cell with the guessed state of its 
neighbor to the right. Thus, the verification is done by the neighbor to the left 
of a cell, respectively. 

Obviously, the guesses of the leftmost cell are not verified. But we can restrict 
the local transition as follows: If the initial state of a cell is existential and its 
guessed left neighbor state is not the border state then it is marked by a ‘-’ 
during the first time step. If the initial state of a cell is universal and its guessed 
left neighbor state is not the border state then it is marked by a ‘+’. The effect 
of these marks is that the cells with a ‘-’ will never and the cells with a ‘+’ will 
always accept. Thus, if the cell is not the leftmost cell this behavior does not 
affect the overall computation result. But if the cell is the leftmost cell only the 
correct guesses are relevant during the remaining computation. 

Moreover, a left border state is guessed by a cell if and only if that cell has 
guessed a left border state at the first time step. Therefore, to guess a left border 
state at every time step is the only way for the leftmost cell to become accepting. 
But exactly in these cases it has simulated the correct behavior of the leftmost 
cell of the two-way ACA. 

Up to now we kept quiet about a crucial point. Whereas the verification itself 
is a deterministic task which can be performed by cells in existential as well as 
in universal states, responding to the result of the verification needs further 
mechanisms. 

We distinguish two cases: If the old state of a cell is an existential one and the 
verification by the left neighboring cell fails then the latter sends an error signal 
to the left that prevents the not marked cells passed through from accepting. 
Therefore, in an accepting subtree there are only nodes labeled by configura­
tions in which existential cells have guessed right and, hence, have simulated the 
two-way transition correctly. If the verification succeeds no further reaction is 
necessary. 

In the second case the old state of a cell is an universal one. If the verification 
by the left neighboring cell fails it sends an error signal to the left that enforces 
all not marked cells passed through to switch into an accepting state. Again, if 
the verification succeeds no further reaction is necessary. 

What is the effect of these mechanisms: In an accepting subtree in all con­
figurations with a common predecessor cells that have been existential in the 
predecessor are in the same states, respectively. Due to the first case these cells 
have simulated the two-way transition correctly. Since all siblings (spawned by 
universal states) have to lead to subtrees with accepting leafs but acceptance ac­
cording to the two-way ACA depends on the configurations with correct guesses 
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only, all configurations with wrong guesses are forced to accept to achieve the 
desired behavior. 

Altogether it follows that the AOCA can simulate the ACA without any loss 
of time. �⊂ 

Corollary 5. Lrt(AOCA) = Lrt(ACA) 

As we have shown extending the information flow from one-way to two-way 
does not lead to more powerful devices. The next lemma states that increasing 
the computation time by a constant factor does not either if we restrict the 
computations to the uniformly universal mode. A corresponding result does not 
hold for deterministic cellular automata. Instead, Lrt(OCA) � Llt(OCA) has 
been shown [3,6,15]. The relationship is a famous open problem for deterministic 
two-way devices (e.g. [5,14]). 

Uniform ACAs have been introduced in [9,10]. The main difference between 
uniform ACAs and (nonuniform) ACAs is the induction of the global transition. 
Whereas in an ACA at every time step each cell chooses independently one local 
transition, in an uniform ACA at every time step one local transition is chosen 
globally and applied to all the cells: 

Let M = (S, �, #, A, F ) be an uniform ACA, n � IN be a positive integer and 
c resp. c� be two configurations defined by s1, . . . , sn � S resp. s1, . . . , s � S.n 

c� � �(c) →≥ ⇒ �u � � : 
s1 = �u(#, s1, s2), s2 = �u(s1, s2, s3), . . . , s = �u(sn−1, sn, #)n 

Thus, in a computation tree of an uniform ACA each node has at most |�|
successors. Now a whole configuration is labeled universal (existential) if the 
leftmost cell is in an universal (existential) state. An accepting subtree is a finite 
subtree of the computation tree that includes all (one) of the successors of a 
universal (existential) node. As usual all leafs have to be labeled with accepting 
configurations. 

Now we are combining both modes in order to define an intermediate model 
that serves in later proofs as a helpful tool since its time complexity can be 
reduced by a constant factor. We are considering a computation mode that is 
nonuniform for existential and uniform for universal states. It is called uniformly 
universal mode and the corresponding devices are denoted by UUACA and 
UUAOCA. 

For our purposes it is sufficient to consider UUAOCAs M = (S, �, #, A, F ) 
which are alternation normalized as follows: 

A � Se and ⇐ �i � � : 
⇐ s1 � Se, s2 � Se ⊆ {#} : �i(s1, s2) � Su and 
⇐ s1 � Su, s2 � Su ⊆ {#} : �i(s1, s2) � Se 

Thus, at every even time step all the cells are in existential and at every odd 
time step all the cells are in universal states. 
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Lemma 6. Let t : IN  ∪ IN, t(n) ≤ n, be a mapping and k � Q, k ≤ 1, be a  
constant. For every alternation normalized UUAOCA M that accepts a language 
L(M) with time complexity k ·t there exists an alternation normalized UUAOCA 
M� with time complexity t such that L(M) =  L(M�) and vice versa. 

One central point of the proof is that the number of successor configurations 
of an universal configuration in uniformly universal mode is bounded by |�|. Its 
details can be found in [2]. 

Corollary 7. Let t : IN  ∪ IN, t(n) ≤ n, be a mapping and k � Q, k ≤ 1, be a  
constant. For every alternation normalized UUACA M that accepts a language 
L(M) with time complexity k · t there exists an alternation normalized UUACA 
M� with time complexity t such that L(M) =  L(M�) and vice versa. 

Proof. The construction of Theorem 4 does not affect the status of the cells 
(i.e. whether they are existential or universal). Therefore, for a given alternation 
normalized UUACA there exists an equivalent alternation normalized UUAOCA 
with the same time complexity. The UUAOCA can be sped up and the resulting 
automaton, trivially, can be transformed into an alternation normalized UUACA 
again. �⊂ 

4� Comparisons with (Non)Deterministic Cellular 
Automata 

It is a famous open problem whether or not the inclusion Lrt(CA) �? Llt(CA) 
is a proper one. Moreover, the seemingly easier problem Lrt(CA) �? L(CA) 
is open, too. The same holds for nondeterministic cellular automata: It is not 
known whether or not the inclusion Lrt(NCA) �? L(NCA) is strict. 

Since L(NCA) coincides with the context-sensitive languages and L(CA) with 
the deterministic context-sensitive languages the properness of the inclusion 
Lrt(CA) �? L(NCA) is also open due to the open problems mentioned and the 
famous lba-problem (i.e. in our terms L(CA) =? L(NCA)). The open problem 
Lrt(CA) �? Lrt(NCA) stresses the dilemma. Altogether, the following inclusions 
follow for structural reasons but it is not known whether one of them is strict. 

Lrt(CA) � L(OCA) � L(CA) � L(NCA) and 

Lrt(CA) � Lrt(NCA) � L(NCA). 

In the present section we compare real-time ACAs to deterministic and non­
deterministic cellular automata. The next result shows that adding alternations 
to nondeterministic computations yields enormous speed-ups. 

Theorem 8. L(NCA) � Lrt(ACA) 

Proof. Let M = (S, �, #, A, F  ) be an NCA. Since the number of cells is bounded 
nby the length of the input n the number of configurations is bounded by |S| . 

nTherefore, we can assume that M has the exponential time complexity |S| . 
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The following construction is done for |S| = 2. A generalization is straight­
forward. The first step is to define an alternation normalized UUACA M = 
(S�, �� , #, A, F �) which needs 3 ·n time steps to simulate 2n steps of the NCA M. 
For the main part of M� (a deterministic track is added later) we set 

S� := A ⊆ S2 ⊆ S3, Se 
� := A ⊆ S2, S� := S3 ,u 

�� := {�e | 1 ∅ i, j ∅ |S|, 1 ∅ k ∅ |F |} ⊆ {�e | 1 ∅ i ∅ |S|} ⊆ {�u 
2 },1 , �
u 

i,j,k i 

where �e
i , �

u and �u will be defined in the following. i,j,k , �
e 

1 2 

Let n denote the length of the input, � = {�1, . . . , �d}, S = {s1, . . . , sr } and 
F = {f1, . . . , fv }. 

In its first time step M saves its input configuration, guesses an accepting 
configuration of M and another configuration of M: 

⇐ p1, p2 � A, p3 � A ⊆ {#}: 
�e 
i,j,k (p1, p2, p3) := (p2, si, sj ) 
�e 
i,j,k(#, p2, p3) := (p2, si, fk), 1 ∅ i, j ∅ |S|, 1 ∅ k ∅ |F |

The idea is to guess successively an accepting computation path c0, . . . , c2n 

of M. The configuration on the second track should be c2n−1 and the accepting 
configuration on the third track should be c2n . 

From now on at every universal step for each configuration two offsprings 
are spawned. One gets the configurations on the first and second track and the 
other the configurations on the second and third track: 

⇐ (p1,1, p1,2, p1,3), (p3,1, p3,2, p3,3) � S3 ⊆ {#}, (p2,1, p2,2, p2,3) � S3: 
�u (p1,1, p1,2, p1,3), (p2,1, p2,2, p2,3), (p3,1, p3,2, p3,3) := (p2,1, p2,2)1 � ��
�u (p1,1, p1,2, p1,3), (p2,1, p2,2, p2,3), (p3,1, p3,2, p3,3) := (p2,2, p2,3)�2 

Since c1 represents the configurations c0, c2n−1 and c2n (on its first, second 
and third track) its both successors represent the configuration pairs (c0, c2n−1 ) 
and (c2n−1 , c2n ). (The notation (ci, cj ) says that the first track contains ci and 
the second one cj .) 

In every further existential step the configuration between the represented 
configurations is guessed: 

⇐ (p1,1, p1,2), (p3,1, p3,2) � S2 ⊆ {#}, (p2,1, p2,2) � S2: 
�e (p1,1, p1,2), (p2,1, p2,2), (p3,1, p3,2) := (p2,1, si, p2,2), 1 ∅ i ∅ |S|i 

Thus, the two possible configurations of M at time step 3 are represent­
ing the configuration triples (c0, c2n−2 , c2·2n−2 ) and (c2·2n−2 , c3·2n−2 , c4·2n−2 ). One 
time step later we have the four pairs (c0, c2n−2 ), (c2n−2 , c2·2n−2 ), (c2·2n−2 , c3·2n−2 ) 
and (c3·2n−2 , c4·2n−2 ). 

Concluding inductively it is easy to see that at time t = 2·m, 1  ∅ m ∅ n there 
exist 2t configurations of M representing the pairs (c0, c2n−t ), (c2n−t , c2·2n−t ), 
(c2·2n−t , c3·2n−t ), . . . ,  (c(2t −1)·2n−t , c2t ·2n−t ). 

For t = 2  · n we obtain (c0, c1), (c1, c2), . . . , (c2n −1, c2n ). Now M� can locally 
check whether the second element of a pair is a valid successor of the first ele­
ments of the cell and its neighbors according to the local transitions of M. If  
the check succeeds M has guessed an accepting computation path of M and 
accepts the input. 
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In order to perform the check each cell of M� has to be aware of the time step 
2 · n. For this purpose a deterministic FSSP algorithm [11,16] is started on an 
additional track which synchronizes the cells at time 2 · n. Altogether the result 
of the check is available at time step 2 ·n+ 1 and needs another n− 1 time steps 
to get into the leftmost cell. We conclude that M� has time complexity 3 · n. By  
Lemma 6 the alternation normalized UUACA M� can be sped up to real-time. 

It remains to show that Lrt(UUACA) � Lrt(ACA). The proof is a straight­
forward adaption of the proof that (nonuniform) ACAs are at least as powerful 
as uniform ACAs [10]. �⊂ 

Corollary 9. L(NCA) � Lrt(AOCA) 

Extending the previously mentioned chains of inclusions by the last result 
we obtain 

Lrt(CA) � L(OCA) � L(CA) � L(NCA) � Lrt(ACA) and 

Lrt(CA) � Lrt(NCA) � L(NCA) � Lrt(ACA). 

The next result shows that in both chains one of the inclusions is a proper 
one. It states Lrt(CA) � Lrt(ACA). We prove the inclusion by the use of a 
specific kind of deterministic cellular spaces as connecting pieces. A deterministic 
cellular space (CS) works like a deterministic cellular automaton. The difference 
is the unbounded number of cells. In cellular spaces there exists a so-called 
quiescent state q0 such that the local transition satisfies �(q0, q0, q0) =  q0. At  
time 0 all the cells from ZZ except the cells 1, . . . , n  which get the input are in 
the quiescent state. Obviously, at every time step the number of nonquiescent 
cells increases at most by 2. 

In [8] an infinite hierarchy of language families has been shown: For example, 
if r � Q, r ≤ 1, and � � Q, � >  0, then Lnr (CS) � Lnr+� (CS). 

Especially, for r = 1 and � = 1 it holds Lrt(CS) � Ln2 (CS). 
Cellular spaces which are bounded to the left (and unbounded to the right) 

are equivalent to the original model since both halflines can be simulated on 
different tracks in parallel. Moreover, one obtains again an equivalent model if 
the number of cells is bounded by the time complexity. Let w = w1 · · ·wn be an 
input word and s : IN  ∪ IN, s(n) ≤ n, be a mapping. The family of languages 
acceptable by deterministic cellular automata with initial configuration 

c0,w : [1, . . . , s(|w|)] ∪ S, c0,w = 
wi if 1 ∅ i ∅ |w|
q0 if |w| + 1  ∅ i ∅ s(|w|) 

is denoted by Lt,s(CA). It follows immediately Lt(CS) = Lt,t(CA) (here we 
assume always �(q0, q0, #) =  q0). 

Theorem 10. Lrt(CA) � Lrt(ACA) 
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Proof. From Lt(CS) = Lt,t(CA) for t = id we obtain Lrt(CS) = Ln,n(CA). The 
latter family is based on simultaneously n-time bounded and n-space bounded 
cellular automata, i.e. real-time (classical) cellular automata. Thus, Lrt(CS) = 
Ln,n(CA) = Lrt(CA). By the result in [8] for r = 1 and � = 1 it follows Lrt(CS) � 

2Ln2 (CS) which is equivalent to Lrt(CA) � Ln2 (CS) = Ln ,n2 (CA). Now in order 
2to prove the theorem we have to show Ln ,n2 (CA) � Lrt(ACA). 

The following construction results in an alternation normalized UUACA M� 

which simulates a simultaneously n2-time bounded and n2-space bounded CA 
M. Note that a deterministic computation task can per se be regarded as alterna­
tion normalized and meets the conditions of the uniformly universal computation 
mode. 

Let c0, . . . , cn denote the configurations of an accepting computation path 2 

of M on input w = w1 · · ·wn. M� gets the input c0(i) =  c0(i) =  wi, 1  ∅ i ∅ n, 
and ‘knows’ c0(i), n + 1  ∅ i ∅ n2, to be the quiescent state q0. 

The key idea for M� is to guess the states cn2 −n(1), . . . , cn2 −n(n) existentially 
during the first time step and subsequently to spawn two offspring computa­
tions universally. One of them is the deterministic task to simulate M on input 
cn2 −n(1), . . . , cn2 −n(n) for n time steps in order to check whether M would ac­
cept. The second offspring has to verify whether the guess has been correct (i.e. 
M produces a corresponding configuration at time step n2 − n). Therefore, at 
the third time step it guesses the states cn2 −2·n(1), . . . , cn2 −2·n(2 · n) two times 
on three tracks: On one track in the compressed form (i.e. every cell contains 
two states), on another track the states cn2 −2·n(1), . . . ,  cn2 −2·n(n) and on a third 
track the states cn2 −2·n(n+1), . . . , cn2 −2·n(2·n). (Whether or not the guess yields 
two times the same sequence can deterministically be checked.) At the next time 
step M� universally spawns three offsprings: One of them is the deterministic 
task to simulate M on cn2 −2·n(1), . . . , cn2 −2·n(2 · n) for n time steps to check 
whether M would compute the previously guessed states cn2 −n(1), . . . , cn2 −n(n) 
and, thus, to verify the previous guess. The second and third offsprings have 
to verify whether the new guesses are correct. The second offspring guesses 
cn2 −3·n(1), . . . , cn2 −3·n(2·n) and iterates the described procedure. The third task 
has to guess the states cn2 −3·n(1), . . . ,  cn2 −3·n(3 · n) two times at four tracks: 
In the compressed form (i.e. three states per cell) and cn2 −3·n(1), . . . , cn2 −3·n(n) 
and cn2 −3·n(n + 1), . . . , cn2 −3·n(2 · n) and cn2 −3·n(2n + 1), . . . , cn2 −3·n(3 · n) on  
separate tracks. Now a corresponding procedure is iterated. After the guessing 
one offspring simulates M for n time steps on cn2 −3·n(1), . . . , cn2 −3·n(3 · n) and 
another three offsprings are verifying the guesses. 

Concluding inductively at time 2 · i there exist offspring computations for 
the verification of cn2 −i·n(j · n + 1), . . . , cn2 −i·n((j + 1)  · n) where 2 ∅ i ∅ n and 
0 ∅ j ∅ i − 1. 

For i = n the sequences c0(j · n + 1), . . . , c0((j + 1)  · n) have to be verified. 
This can be done by checking whether the states match the initial input. For 
this reason the cells have to be aware of the time step 2 ·n what can be achieved 
by providing a deterministic FSSP algorithm on an additional track as has been 
done in the previous proof. Moreover, the computations have to know to which 
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initial input symbols their sequences have to be compared. These that verify the 
sequences cn2 −i·n(1), . . . , cn2 −i·n(n) behave slightly different. They are spawn­
ing three (instead of four) offsprings at every universal step. Since exactly the 
sequence c0(1), . . . , c0(n) has to be compared to the input w1 · · ·wn whereas all 
other sequences simply have to be compared to q0, . . . , q0, the verification can 
be done. 

The FSSP fires at time 2 ·n. Afterwards the (partial) simulation of M needs 
another n time steps. To collect the result of that simulation and to get it into 
the leftmost cell needs at most n further time steps. Altogether, M� has the 
time complexity 4 · n. Following the last steps of the proof of Theorem 8 the 
alternation normalized UUACA M� can be sped up to real-time and one can 
conclude L(M�) � Lrt(ACA). �⊂ 

Altogether in the previous construction the number of states of M� depends 
linearly on the number of states of M. 

Another interpretation of the last theorem is the possibility to save time and 
space simultaneously when adding alternation to a deterministic computation. 
Moreover, now we know that at least one of the following inclusions is strict: 

Lrt(CA) � Lrt(NCA) � Lrt(ACA) 
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