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Abstract. In this paper we consider four different definitions for an
extension of a partially defined Boolean function in which the input con-
tains some missing bits. We show that, for many general and reasonable
families of function classes, three of these extensions are mathematically
equivalent. However we also demonstrate that such an equivalence does
not hold for all classes.

1 Introduction

A Boolean function, or a function in short, is a mapping f : B
n 7→ B, where

B = {0, 1}. Given a function f , a Boolean vector x ∈ B
n is called its true vector,

if f(x) = 1, and its false vector, if f(x) = 0. Let us denote the set of true vectors
of f by T (f), and let F (f) = B

n \T (f) denote the set of its false vectors. Let us
denote by Call the family of all Boolean functions f : B

n 7→ B, and let us call any
subfamily of Call a class. We shall consider various classes of Boolean functions
in the sequel, defined in many different ways.

A partially defined Boolean function (a pdBf in short) is defined by a pair of
sets (T, F ) such that T, F ⊆ B

n. A Boolean function f is called an extension of
the pdBf (T, F ) if T ⊆ T (f) and F ⊆ F (f) hold, that is, if such an f correctly
classifies all the vectors a ∈ T and b ∈ F . Let us denote by E(T, F ) the family of
extensions of the pdBf (T, F ). Evidently, the disjointness of the sets T and F is a
necessary and sufficient condition for the existence of an extension E(T, F ) 6= ∅.
It may not be evident, however, to find out if a given pdBf has an extension
belonging to a particular class C of Boolean functions, or not. This problem has
been studied in various fields such as learning theory, knowledge discovery, data
mining and logical analysis of data [1,4,5,6,8,9,11,13].
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In practical cases, the fact that C ∩ E(T, F ) = ∅ might be due to some
classification errors in the input. To correct this type of errors, provided that
they are not in a large number, one can consider the optimization problem of
finding the largest subsets T ∗ ⊆ T and F ∗ ⊆ F for which E(T ∗, F ∗) ∩ C 6= ∅
holds. These problems have extensively been studied (e.g., in [8,11]) for a large
variety of classes.

In this paper we shall consider another type of errors in the input, the case
in which some data vectors are “incomplete” in the sense that some of their
components are not available at the time of reading the input. Such missing
information may either be due to some measurement errors at some earlier stages
of data generation, or they are the results of data entry errors, or such lack of
information might be due to the high cost of obtaining those.

To model such situations, let us consider the set M = {0, 1, ∗}, and let us
interpret the asterisk components ∗ of a vector v ∈ M

n as missing bits. Then, a
pdBf with missing bits (or in short a pBmb) can be defined as a pair (T̃ , F̃ ), where
T̃ , F̃ ⊆ M

n. Given a pBmb, it is possible to consider more than one notion of
extensions f , depending on how to interpret ∗’s in the extensions; in this paper,
we give four different definitions, two of which have already been discussed in
[9]. We then prove for many important classes of functions that three of these
definitions are equivalent. However, it is also demonstrated that this equivalence
does not hold for all classes.

2 Extensions of pBmbs

For a vector v ∈ M
n, let us introduce the notations ON(v) = {j | vj = 1, j =

1, 2, . . . , n} and OFF (v) = {j | vj = 0, j = 1, 2, . . . , n}. For a subset Ã ⊆ M
n,

let S(Ã) = {(v, j)|v ∈ Ã, vj = ∗} be the collection of all missing bits of the
vectors in Ã. If Ã is a singleton {v}, we shall also write S(v) instead of S({v}).
Clearly, B

n ⊆ M
n, and v ∈ B

n holds if and only if S(v) = ∅. Let us consider a
binary assignment α ∈ B

Q to a subset Q ⊆ S(Ã) of the missing bits. Then vα

denotes the vector obtained from v ∈ Ã by replacing the ∗ components which
belong to Q by the binary values assigned by α:

vα
j =

{
vj if (v, j) 6∈ Q
α(v, j) if (v, j) ∈ Q.

Let Ãα denote the set {vα | v ∈ Ã}. For example, for the set Ã = {u = (1, ∗, 0, 1),
v = (0, 1, ∗, ∗), w = (1, 1, ∗, 0)} ⊂ M

4 we have S(Ã) = {(u, 2), (v, 3), (v, 4),
(w, 3)}. If Q = {(u, 2), (v, 4)}, an assignment (α(u, 2), α(v, 4)) = (1, 0) ∈ B

Q

yields Ãα = {uα = (1, 1, 0, 1), vα = (0, 1, ∗, 0), wα = (1, 1, ∗, 0)}.
To a pBmb (T̃ , F̃ ) we shall always associate the set S = S(T̃ ∪ F̃ ) of its

missing bits. For a pBmb (T̃ , F̃ ) and an assignment α ∈ B
S , let (T̃α, F̃α) be the

pdBf defined by T̃α = {aα | a ∈ T̃} and F̃α = {bα | b ∈ F̃}.
Let us call a pBmb (T̃ , F̃ ) consistent with respect to a class C of Boolean

functions, if there exists an assignment α ∈ B
S for which the pdBf (T̃α, F̃α)
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has an extension in C. A Boolean function f ∈ E(T̃α, F̃α) ∩ C will be called a
consistent extension of (T̃ , F̃ ) in the class C.

Problem CE(C)

Input: A pBmb (T̃ , F̃ ), where T̃ , F̃ ⊆ M
n.

Question: Does (T̃ , F̃ ) have a consistent extension in class C?

Let us note that, in case (T̃ , F̃ ) has a consistent extension, the output of
CE(C) might not be unique, and at an important extreme end, it may occur
that for every possible interpretations of the missing bits the obtained pdBf has
an extension belonging to C. Let us call a pBmb (T̃ , F̃ ) fully consistent with the
class C if this occurs, i.e. if (T̃α, F̃α) has an extension in C for every α ∈ B

S (the
corresponding extensions may differ for different α’s.)

Problem FC(C)

Input: A pBmb (T̃ , F̃ ), where T̃ , F̃ ⊆ M
n.

Question: Is (T̃ , F̃ ) fully consistent with the class C ?

Let us remark that, unlike for problem CE(C), confirming a YES for problem
FC(C) might become a computational burden because one may have to provide
2|S| different extensions, for each possible assignment to the missing bits of
(T̃ , F̃ ), even if each extension f ∈ E(T̃α, F̃α) ∩ C has a small representation. For
this reason, we shall consider a special case in which in fact all these extensions
coincide. Let us call a Boolean function f a robust extension of a given pBmb
(T̃ , F̃ ) if

f(aα) = 1 and f(bα) = 0 for all a ∈ T̃ , b ∈ F̃ and for all α ∈ B
S .

The corresponding decision problem can be stated as follows.

Problem RE(C)

Input: A pBmb (T̃ , F̃ ), where T̃ , F̃ ⊆ M
n.

Question: Does (T̃ , F̃ ) have a robust extension in class C ?

Let us denote by E(T̃ , F̃ ) the family of all robust extensions of a given pBmb
(T̃ , F̃ ).

Let us remark now that even in this special case, the computational verifica-
tion of a YES may not be an easy problem. Consider, for instance, the case when
the output function f is represented by a DNF. Then, verifying that f(aα) = 1
holds for a vector a ∈ T̃ and for all α ∈ B

S(a) might be as difficult as the tauto-
logy problem, which is known to be co-NP-complete even if its input is restricted
to 3-DNF-s (see [12]).1

1 The tautology problem is to decide if a given DNF ϕ satisfies ϕ ≡ 1. This is the
complement of satisfiability problem, which is to decide, given a CNF ϕ, if there
exists a vector v for which ϕ(v) = 1.
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We shall therefore consider a further special case, when such difficulties will
not arise. Consider an elementary conjunction (i.e., term)

t(x) =
∧
j∈P

xj

∧
j∈N

x j

for some subsets P, N ⊆ {1, 2, . . . , n} with P ∩ N = ∅. We shall call t a robust
term with respect to a pBmb (T̃ , F̃ ) and a vector a ∈ T̃ , if t(aα) = 1 for all
α ∈ B

S(a) and t(bβ) = 0 for all b ∈ F̃ and β ∈ B
S(b). Let us note that a term t is

robust with respect to (T̃ , F̃ ) and a ∈ T̃ if and only if S(a) ∩ (P ∪ N) = ∅, and
(ON(b) ∩ N) ∪ (OFF (b) ∩ P ) 6= ∅ for all b ∈ F̃ , conditions which are all easy to
check. Let us then call a Boolean function f a very robust extension of (T̃ , F̃ ),
if it is a robust extension which can be represented by a disjunction of robust
terms.

Problem VR(C)

Input: A pBmb (T̃ , F̃ ), where T̃ , F̃ ⊆ M
n.

Question: Does (T̃ , F̃ ) have a very robust extension in class C ?

provided.
Let us denote by E∗(T̃ , F̃ ) the family of all very robust extensions of the pBmb
(T̃ , F̃ ).

Problems CE(C) and RE(C) and some related optimization problems have
been considered extensively for various classes in [7,9]. In this paper we concen-
trate on the relations between FC(C), RE(C) and VR(C). It is quite immediate
to see from the above definitions that very robust extensions are robust as well,
and that pBmbs which have robust extensions in a given class C are also fully
consistent with that class.

Somewhat surprisingly, we can show that for many very general families of
classes C, these three problems FC(C), RE(C) and VR(C) are equivalent. However
such an equivalence does not hold for all classes. In fact, for certain classes C,
problem RE(C) is polynomially solvable, while FC(C) is co-NP-complete.

3 Classes of Boolean Functions

We shall assume in the sequel that Boolean functions (functions, in short) are
represented either by an explicit algebraic form, or by an oracle. In either case,
it is possible to compute the values of such a function for given input vectors.
In each case in the sequel, we shall make clear what is the representation of the
considered family of functions.

Let us call an elementary conjunction of literals a term. The most common
representation we shall consider for a function f will be either a disjunctive
normal form (or DNF in short), which is a disjunction of terms.

For two functions f and g, we shall write f ≤ g, if f(x) = 1 always im-
plies g(x) = 1, and f < g if f ≤ g and f 6= g. For a Boolean expression A,
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let us denote by A = 1 − A its negation. The components of the (unknown)
vector x = (x1, ..., xn) will be called Boolean variables, while variables and their
complements together are called literals.

A term t is called an implicant of a function f if t ≤ f , and it is a prime
implicant if t is a maximal implicant, i.e., t ≤ f and no term t′ exists such that
t < t′ ≤ f . It is well-known that every Boolean function can be represented
by the DNF formed by the disjunction of all of its prime implicants. It is also
well-known that in general, there are many other DNFs representing the same
function.

We shall consider many different classes of Boolean functions, whose defini-
tions will be either via some representation independent functional properties,
or by properties of some of the DNF representations, or via some other repre-
sentations.

A large family of classes of the first type are the transitive or generalized
monotone classes. Let us consider a partial order � of the vectors B

n, and let us
say that a function f is �-monotone, if f(x) ≤ f(y) holds whenever x � y. For
a given partial order � on B

n, let us denote by C� the family of all �-monotone
functions. Then, we shall call a class C transitive, if there exists a partial order
� on B

n for which C = C�.
Most notable examples for transitive classes are the family of positive (also

called monotone) functions, C+ = C≥, where f ∈ C+ if f(x) ≥ f(y) holds whe-
never x ≥ y holds (componentwise), and the family Creg of regular Boolean
functions, where Creg = C3 for the relation 3, defined by x 3 y if and only if∑k

j=1 xj ≥ ∑k
j=1 yj for all 1 ≤ k ≤ n.

Another frequently used partial order on the Boolean cube is a “tilted” mo-
notone order. To an arbitrary vector b ∈ B

n, we can associate a partial order ≥b

of the Boolean cube B
n by defining that v ≥b w holds if and only if v⊕b ≥ w⊕b

holds, where ⊕ denotes the exclusive-or operation (the componentwise mod 2
addition, e.g. (1100) ⊕ (0110) = (1010)). In other words, ≥b is like the regular
monotone order ≥ in which b plays the role of the zero-vector (0, 0, ..., 0), and
b is the maximum vector. The family of ≥b-monotone functions will be denoted
by C≥b

. Thus, in particular C+ = C≥0 holds. Let us finally remark that the fa-
mily Call of all Boolean functions itself is a transitive class, corresponding to the
“empty” partial order on B

n.
Some other non-transitive classes, defined via a representation independent

property can be obtained by taking the union of various transitive classes. For
instance, a function f is called unate if it is ≥b-monotone for some vector b ∈ B

n.
The family of unate functions, hence is the union of all the ≥b-monotone classes,
Cunate =

⋃
b∈Bn C≥b

.
Other examples for classes defined via a representation independent property

include the family of self-dual functions CSD, consisting of functions f for which
f = fd, where the dual fd of a Boolean function f is defined by f(x1, ..., xn) =
f (x 1, ..., x n). Similarly, the family of dual-minor functions CD-minor consists of
the functions satisfying the inequality f ≤ fd, while the class of dual-major
functions CD-major is formed by the functions satisfying f ≥ fd.
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Another large family of classes, the so called DNF-classes are defined via
their DNF representation. Let us consider a family of terms T, and let us define
the corresponding DNF-class CT by CT = {f(x) =

∨
t∈S t(x) | S ⊆ T} as the

collection of all Boolean functions formed by the disjunction of a subset of terms
from T. For example, if T consists of all terms of degree at most k (elementary
conjunctions involving at most k literals), then the corresponding DNF-class is
the family of the so-called k-DNFs, Ck-DNF . The special cases of linear functions
(C1-DNF ) and quadratic functions (C2-DNF ) should, in particular be mentioned.
Another notable example for a DNF-class is the family of Horn functions, CHorn.
A Boolean function f is called Horn, if it can be represented by a DNF in which
every term involves at most one negative variable. In other words, if T is the
family of terms involving at most one negative variable, then Horn functions
form the corresponding DNF-class, CT = CHorn.

Let us remark that DNF-classes CT for which T is closed under consensus (for
definition see Section 5) will play a special role due to the property that, for such
a DNF, all its prime implicants must also belong to T. Among consensus closed
classes we should mention 2-DNFs, Horn functions, and ≥b-monotone functions.

Given the Boolean functions f and g, we shall call g a minor of f , and will
denote it by g v f , if g can be represented by a disjunction of some of the prime
implicants of f . Let us then call a class C minor closed if f ∈ C and g v f imply
g ∈ C. Minor closed classes include, in particular, all consensus closed DNF
classes, and unions of those, such as renamable Horn functions, unate functions,
q-Horn functions (see e.g., [3]), etc.

One other important class of functions, the class CTH of threshold functions,
is defined usually by a different representation. A Boolean function f is called
threshold if there exist real numbers w1, ..., wn and w0 such that f(x) = 1 if
and only if the inequality

∑n
j=1 wjxj ≥ w0 holds. In other words, f is threshold

exactly when the sets T (f) and F (f), viewed as point sets in the Euclidean space
R

n, are linearly separable. Of course, threshold functions could also be represen-
ted by DNFs (or CNFs), but for most threshold functions such a representation
would be much less efficient computationally.

4 Equivalencies between RE(C) and FC(C)

In this section we shall show a series of results claiming, somewhat surprisingly,
the equivalence of problems RE(C) and FC(C), under some widely applicable
conditions. Let us remark here that two decision problems are equivalent if they
have the same output (YES or NO) for all possible input. Equivalent decision
problems are of course also equivalent computationally.

Let us also note that due to the space limitations we could not include all
the proofs here, and we refer the reader to [10] for the missing details.

Let us first consider those classes C of Boolean functions which are closed
under conjunction and disjunction; i.e., f ∧ g ∈ C and f ∨ g ∈ C for all f, g ∈ C.

Theorem 1. Let us assume that the class C of Boolean functions is closed under
conjunction and disjunction. Then problems RE(C) and FC(C) are equivalent.
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Proof. Since the existence of a robust extension always implies full consistency,
we only show the opposite implication. Assuming that the pBmb (T̃ , F̃ ) is fully
consistent with C, we show that (T̃ , F̃ ) has also a robust extension.

By the assumption, for every pair α ∈ B
S(T̃ ) and β ∈ B

S(F̃ ), there exists an
extension fα,β ∈ C ∩ E(T̃α, F̃ β). Let us then consider the Boolean function f
defined by

f =
∨

α∈BS(T̃ )

( ∧
β∈BS(F̃ )

fα,β

)
.

We claim that f is a robust extension of (T̃ , F̃ ) in the class C. First, f ∈ C follows
from our assumption that C is closed under conjunction and disjunction.

To see that f is a robust extension of (T̃ , F̃ ), let us first consider a vector
a ∈ T̃ and an arbitrary assignment α∗ ∈ B

S(T̃ ). Since aα∗ ∈ T̃α∗
, we have∧

β∈BS(F̃ ) fα∗,β(aα∗
) = 1 by the fact that fα∗,β ∈ E(T̃α∗

, F̃ β) for all β ∈ B
S(F̃ ).

Thus f(aα∗
) = 1 is implied, for all α∗ ∈ B

S(T̃ ).
Analogously, for a vector b ∈ F̃ and an assignment β∗ ∈ B

S(F̃ ) we can
observe first that fα,β∗(bβ∗

) = 0 holds for all α ∈ B
S(T̃ ), implied again by

fα,β∗ ∈ E(T̃α, F̃ β∗
). Thus, in this case

∧
β∈BS(F̃ ) fα,β(bβ∗

) = 0 follows for all

α ∈ B
S(T̃ ), implying hence f(bβ∗

) = 0, for all β∗ ∈ B
S(F̃ ).

These two observations then show that f is indeed a robust extension of
(T̃ , F̃ ). ut

It is easy to see that transitive classes are closed under conjunction and
disjunction (and even more, a class is transitive if and only if it is closed under
conjunction and disjunction, see [2]) and hence the following corollary is implied
by the above theorem:

Corollary 1. Problems RE(C) and FC(C) are equivalent for all transitive clas-
ses, including Call, C+, Cregular and C≥b

for all b ∈ B
n.

Let us consider next certain lattice like transitive relations. We shall say that
a partial order � on B

n is cube-lattice like if there is a unique �-maximum and
a unique �-minimum in any subcube of B

n, or equivalently, if for every term t,
there are unique vectors u, v ∈ T (t) such that u � w � v holds for all w ∈ T (t).
Let us note that all partial orders mentioned in the previous section (e.g., ≥b for
b ∈ B

n, 3, etc.) are cube-lattice like, and there are many others. For instance,
an arbitrary permutation of the 2n vertices of B

n, viewed as a linear order, is
cube-lattice like.

For vectors v, w ∈ M
n, we write v ≈ w if there is an assignment α ∈ B

S({v,w})

such that vα = wα, and we say that v is potentially identical with w. For example,
if v = (1, 0, ∗, 1, ∗) and w = (1, ∗, 0, 1, ∗) then v ≈ w holds.

To every vector a ∈ M
n we can associate the subcube B(a) = {u ∈ B

n|u ≈
a} = {aα|α ∈ B

S(a)} of B
n consisting of all Boolean vectors one can obtain from

a by assigning binary values to its missing bits. Given a vector a ∈ M
n and

a cube-lattice like partial order � on B
n, let us denote by a+ ∈ B(a) (resp.,
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a− ∈ B(a)) the unique �-maximal vector (resp., the unique �-minimal vector)
in the subcube B(a). Furthermore, for any subset S ⊆ M

n let S+ = {a+|a ∈ S}
and S− = {a−|a ∈ S} denote the corresponding subsets of Boolean vectors.

With these notations, we can state the following generalization of [9, Lemma
1]:

Lemma 1. If C is an arbitrary subfamily of a transitive class C� with a cube-
lattice like partial order �, then a pBmb (T̃ , F̃ ) has a robust extension in C if
and only if the pdBf (T̃−, F̃+) has an extension in C.

Proof. Since T̃− = T̃α∗
for some α∗ ∈ B

S(T̃ ), and F̃+ = F̃ β∗
for some β∗ ∈

B
S(F̃ ), it follows that any robust extension of (T̃ , F̃ ) will be an extension of

(T̃−, F̃+), by the definition of a robust extension.
To see the reverse direction, let us assume that f ∈ E(T̃−, F̃+) ∩ C. Since

all functions in C are �-monotone, and since aα � a− holds, we have f(aα) ≥
f(a−) = 1 implied for all a ∈ T̃ and α ∈ B

S(T̃ ). Similarly, bβ ≤ b+ and f(b+) = 0
implies f(bβ) ≤ f(b+) = 0 for all b ∈ F̃ and β ∈ B

S(F̃ ). Hence, this function f is
also a robust extension of (T̃ , F̃ ) in C. ut

This lemma immediately implies the following statement.

Theorem 2. If the class C is a subfamily of a transitive class C� with a cube-
lattice like partial order �, then problems RE(C) and FC(C) are equivalent.

Proof. Indeed, if the pBmb (T̃ , F̃ ) is fully consistent with the class C, then the
pdBf (T̃−, F̃+) has an extension f ∈ C∩E(T̃−, F̃+). This f will then be a robust
extension of (T̃ , F̃ ) in C by Lemma 1. The converse direction is obvious by the
definitions. ut
Corollary 2. For any subfamily C of C+, Cregular and C≥b

for any b ∈ B
n,

problems RE(C) and FC(C) are equivalent.

Let us next consider DNF-classes.

Theorem 3. Problems RE(C) and FC(C) are equivalent for all DNF-classes
C = CT.

Proof. Let us only show that fully consistency implies the existence of a robust
extension, since the converse direction is immediate from the definition.

Observe first that, given a true vector a ∈ T̃ and an assignment α ∈ B
S(a),

each false vector b ∈ F̃ has a unique assignment β = β(α) ∈ B
S(b) minimizing

the Hamming distance between the Boolean vectors aα and bβ .
Let us fix an arbitrary vector a ∈ T̃ and an assignment α ∈ B

S(T̃ ), and define
β∗ ∈ B

S(F̃ ) as the unique assignment which coincides with β(α) ∈ B
S(b) for all

b ∈ F̃ . Such an assignment obviously can be constructed by concatenating the
β(α) assignments for b ∈ F̃ , since the sets S(b) for b ∈ F̃ are pairwise disjoint.

Since (T̃ , F̃ ) is fully consistent with CT by our assumption, there exists a
Boolean function g ∈ CT ∩ E(T̃α, F̃ β∗

). Since aα is a true vector of such an
extension, g must have a term ta,α ∈ T for which ta,α(aα) = 1.
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We claim that ta,α(bβ) = 0 holds for all b ∈ F̃ and β ∈ B
S(F̃ ). To see this, let

us observe that for every vector b ∈ F̃ there must be a literal in ta,α at which
bβ∗

and aα are different, since otherwise ta,α(bβ∗
) = ta,α(aα) = 1 would follow,

contradicting the fact that g is an extension of the pdBf (T̃α∗
, F̃ β∗

). Then this
literal does not correspond to any component of S(b), otherwise we could switch
its value in β∗ to decrease the Hamming distance to aα. Thus, this literal does
not agree with any bβ for β ∈ B

S(F̃ ), and hence the claim follows.
Therefore, the Boolean function defined by

f =
∨

a∈T̃ ,α∈BS(T̃ )

ta,α.

is a robust extension of (T̃ , F̃ ) in CT. Indeed, the equations f(bβ) = 0 hold for
all b ∈ F̃ and β ∈ B

S(F̃ ) according to the above claim. Furthermore, for a true
vector a ∈ T̃ and an arbitrary assignment α ∈ B

S(T̃ ) we have f(aα) = 1 implied
by ta,α(aα) = 1. ut

Corollary 3. Problems RE(C) and FC(C) are equivalent for Call, C+, Ck-DNF ,
CHorn.

Let us finally consider self-dual, dual-minor and dual-major functions.

Theorem 4. Problems RE(C) and FC(C) are equivalent for C = CSD (resp.,
CD-minor and CD-major), if (∗, ∗, . . . , ∗) 6∈ T̃ ∪ F̃ (resp., (∗, ∗, . . . , ∗) 6∈ T̃ and
(∗, ∗, . . . , ∗) 6∈ F̃ ).

Corollaries 1, 2, 3 and Theorem 4, together with the complexity results of
RE(C) in [9], imply the following theorem.

Theorem 5. Problem FC(C) is polynomially decidable for C = Call, C+, Cregular.
C+

k-DNF (for a constant k), Ck-DNF (for k = 1, 2), CHorn, C(+)
SD , C(+)

D-minor and
C(+)

D-major, where C+
X denotes the class of positive functions in CX , while it is

co-NP-complete for C = Ck-DNF (for a constant k ≥ 3).

5 Very Robust Extensions

Very robust extensions play a computationally important role, since when they
exists, they usually can efficiently be constructed. For instance, we shall show
below that for most DNF-classes C, if RE(C) can be solved in polynomial time,
then a very robust extension can also be provided at the same time.

Let us recall that a term

t(x1, . . . , xn) =
∧
j∈P

xj

∧
j∈N

x j
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is called a robust term with respect to a ∈ T̃ for a pBmb (T̃ , F̃ ), if t(aα) = 1 for
all α ∈ B

S(a), and t(bβ) = 0 for all b ∈ F̃ and β ∈ B
S(b). In other words, if and

only if

P ⊆ ON(a) and N ⊆ OFF (a), and (1)

P ∩ OFF (b) 6= ∅ or N ∩ ON(b) 6= ∅textforeveryvectorb ∈ F̃ . (2)

Since both of these conditions are independent of the assignments to missing bits
of (T̃ , F̃ ), checking these conditions is quite straightforward. Therefore, verifying
that a given DNF is a very robust extension of a pBmb (T̃ , F̃ ) can be done in
linear time in the size of (T̃ , F̃ ). It is also clear from the definition that in a very
robust extension one never needs more than |T̃ | terms.

Furthermore, looking at conditions (1) and (2), it is easy to see that finding
a robust term for a given pBmb (T̃ , F̃ ) and vector a ∈ T̃ reduces to a feasibility
question in an associated setcovering problem, and hence it is computationally
tractable in most cases. The above immediately imply for instance the following
statement.

Theorem 6. Problem VR(C) can be solved in polynomial time for C = Call, for
C≥b

for with b ∈ B
n (thus in particular for C = C+), for C = CHorn (and for all

related classes, such as k-quasi Horn and k-quasi reverse Horn for any fixed k),
and for C = Ck-DNF with k fixed.

Let us recall that a class C is minor closed, if f ∈ C and g v f imply
g ∈ C. To discuss properties of very robust extensions, we shall further recall
the consensus method and some of its properties (see e.g., [14,15]). Given two
terms t =

∧
j∈P xj

∧
j∈N x j and t′ =

∧
j∈P ′ xj

∧
j∈N ′ x j , we say that they are in

conflict at variable xj if j ∈ (P ∩N ′)∪ (N ∩P ′) (i.e., if xj appears in one and x j

appears in the other). If t and t′ are in conflict at exactly one of the variables,
then their consensus is a term t′′ = [t, t′] defined by

t′′ =
∧

j∈(P\N ′)∪(P ′\N)

xj

∧
j∈(N\P ′)∪(N ′\P )

x j .

In other words, the consensus of t and t′ is the conjunction of all the literals
appearing in these terms, except the two, corresponding to the conflicting varia-
ble. It is easy to see that the inequality t′′ ≤ t ∨ t′ holds, and that t′′ is maximal
for this property. This implies, in particular that if t and t′ are implicants of
the Boolean function f , then their consensus t′′ = [t, t′] (when exists) is also an
implicant of f . The consensus method is the algorithm, in which consensuses of
implicants of a given DNF of f are formed as long as new implicants are gene-
rated. It is well-known (see e.g., [14]) that this method is complete in the sense
that all prime implicants of f will be obtained in this way, starting from any
DNF representation of f . Of course, all these notions and results can straight-
forwardly be translated for CNF representations using De Morgan’s laws. The
corresponding operation between clauses is known as resolution.
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Returning to robust terms, we are now ready to prove the following state-
ment.

Lemma 2. If f is a robust extension of the pBmb (T̃ , F̃ ), then for every vector
a ∈ T̃ , f has a prime implicant ta ≤ f , which is a robust term with respect to a.

Proof. Let us consider an (arbitrary) DNF representation of f :

f =
m∨

i=1

ti, (3)

where

ti =
∧

j∈Pi

xj

∧
j∈Ni

x j . (4)

Given a vector a ∈ T̃ , we substitute xj = 1 for variables with j ∈ ON(a), and
xj = 0 for variables with j ∈ OFF (a) into (3). Let I ⊆ {1, 2, ..., m} denote the
set of indices of those terms of (3) which do not vanish after this substitution.
For terms ti for i ∈ I, we have

Pi ∩ OFF (a) = ∅ and Ni ∩ ON(a) = ∅. (5)

Let us denote the resulting DNF by f ′ =
∨

i∈I t′i, where

t′i =
∧

j∈Pi\ON(a)

xj

∧
j∈Ni\OFF (a)

x j . (6)

Since 1 = f(aα) = f ′(aα) holds for all α ∈ B
S(a), it follows that f ′ is the

constant 1 function, and thus the only prime implicant 1 of f ′ can be obtained
by a chain of consensuses, starting with the terms of f ′. Let us note that if the
terms t′i and t′k for some i 6= k, i, k ∈ I have a consensus, then so do the terms
ti and tk. Furthermore, the variables xj , j ∈ ON(a), appear only positively, and
the variables xj , j ∈ OFF (a), appear only negatively in the resulting consensus
[ti, tk]. Applying this observation recursively, we can repeat the same chain of
consensuses which produced 1 from t′i, i ∈ I, with the corresponding terms ti,
i ∈ I, yielding an implicant t′a of f .

Clearly, t′a involves only literals xj for some j ∈ ON(a) and x j for some
j ∈ OFF (a), and thus t′a satisfies condition (1). Therefore, by deleting some
literals from t′a if needed, we can obtain a prime implicant ta of f still satisfying
(1).

Let us note finally that any (prime) implicant of f must satisfy conditions
(2) simply because f is a robust extension of (T̃ , F̃ ). ut

Theorem 7. If C is a minor closed class, then problems RE(C) and VR(C) are
equivalent.
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Proof. Since a very robust extension is also a robust extension, let us prove only
the non-trivial direction of the stated equivalence.

Let us assume that (T̃ , F̃ ) is a pBmb which has a robust extension f ∈
E(T̃ , F̃ ) ∩ C. According to Lemma 2, for every a ∈ T̃ , f has a prime implicant
ta ≤ f which is a robust term of (T̃ , F̃ ). We claim that the Boolean function

g =
∨
a∈T̃

ta (7)

is a very robust extension of (T̃ , F̃ ) in the class C.
Clearly, g ≤ f is a minor of f by its definition, hence g ∈ C is implied by the

facts that C is minor closed and f ∈ C. Since f ∈ E(T̃ , F̃ ), the inequality g ≤ f
also implies that g(bβ) ≤ f(bβ) = 0 for all b ∈ F̃ and β ∈ B

S(b). Also, since g
contains a robust term ta for every a ∈ T̃ , it follows that g(aα) = 1 holds for
all a ∈ T̃ and α ∈ B

S(a). This implies that g is a robust extension of the pBmb
(T̃ , F̃ ). Finally, since g contains only robust terms, it is a very robust extension
of (T̃ , F̃ ). ut
Corollary 4. Problems RE(C) and VR(C) are equivalent for C = Call, C≥b

with
b ∈ B

n (thus in particular C+), C2-DNF , CHorn, Cr-Horn, Cunate, Cq-Horn and
CD-minor.

The next corollary follows from Corollaries 3 and 4.

Corollary 5. For the classes C = Call, CHorn, C+, and C2-DNF , problems VR(C),
RE(C) and FC(C) are all equivalent.

Besides Theorem 6, we have the following complexity results from Corollary
4 and the results of RE(C) in [9].

Theorem 8. Problem VR(C) is polynomially solvable for C = CD-minor, while
it is NP-hard for C = Cr-Horn and Cunate.

6 Cases of Non-equivalence between FC(C), RE(C), and
VR(C)

In this section we shall show that problems FC(C), RE(C) and VR(C) are not
always equivalent, despite the many quite general equivalences we have shown
in the previous sections. We first give several classes C for which FC(C) and
RE(C) are not equivalent, followed by a class for which RE(C) and VR(C) are
not equivalent.

First, one might think that Theorem 1 could be generalized to prove the
equivalence of RE(C) and FC(C) for classes closed under conjunction (but not
necessarily closed under disjunction). This, however, is not the case, as the follo-
wing simple example shows. Let us consider the class C∗ consisting of functions
f for which f(v)f(w) = 0 holds for all pairs of vectors v, w ∈ B

n which are
at Hamming distance 1. Clearly, this class C∗ is closed under conjunction. Let
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us now consider the pBmb (T̃ , F̃ ) given by T̃ = {(1, ∗)} and F̃ = ∅. Since the
equation f(1, 0) = f(1, 1) = 1 must hold for any robust extension f of (T̃ , F̃ ), f
does not belong to C∗. Therefore, (T̃ , F̃ ) has no robust extension in C∗. However,
f = x1x2 ∈ C∗ is an extension of the pdBf ({(1, 1)}, ∅) and g = x1x̄2 ∈ C∗ is an
extension of the pdBf ({(1, 0)}, ∅). These imply that (T̃ , F̃ ) is fully consistent
with C∗.

Let us demonstrate next that, for the class of threshold functions CTH , pro-
blems RE(C) and FC(C) are not equivalent. Let us recall first that a pdBf
(T, F ) has a threshold extension, if and only if there exist n + 1 real numbers
w1, w2, . . . , wn and w0 such that:

n∑
j=1

wjaj ≥ w0 for all a ∈ T, textand
n∑

j=1

wjbj < w0 for all b ∈ F. (8)

It is well known that this condition is also equivalent to the disjointness of their
respective convex hulls,

conv(T ) ∩ conv(F ) = ∅, (9)

where conv(X) denotes the convex hull of the set X in the n-dimensional real
space. It is also easy to see by the definitions that a pBmb (T̃ , F̃ ) has a robust
threshold extension if and only if

conv(T̃ ) ∩ conv(F̃ ) = ∅, (10)

where conv(X̃) = conv(∪α∈BS(X̃)X̃α) for a subset X̃ ⊆ M
n.

Let us now consider the pBmb (T̃ , F̃ ) defined by

T̃ =
{

( ∗, 1, 1, 1 )
( 0, 0, 0, 0 )

}
, F̃ =




( 1, 1, 1, 0 )
( 0, 1, 0, 1 )
( 0, 0, 1, 1 )


 .

The only one missing bit of (T̃ , F̃ ) has two possible interpretations, yielding
T 1 = {(1, 1, 1, 1), (0, 0, 0, 0)} and T 0 = {0, 1, 1, 1), (0, 0, 0, 0)}. It is easy to verify
that the threshold Boolean function defined by 5x1 − 3x2 − 3x3 + 2x4 ≥ 0 is
an extension of the pdBf (T 1, F̃ ), and that −5x1 + 2x2 + 2x3 − 3x4 ≥ 0 defines
a threshold extension of (T 0, F̃ ). Hence, the pBmb (T̃ , F̃ ) is fully consistent
with CTH . However, (T̃ , F̃ ) has no robust threshold extension by (10), since the
fractional vector ( 1

3 , 2
3 , 2

3 , 2
3 ) belongs to the convex hulls of both T̃ and F̃ .

We can also show the non-equivalence of FC(C) and RE(C) for the classes
such as Cunate and Cr-Horn.

In concluding this section, we demonstrate with the example (T̃ , F̃ ) defined
in the table below that RE(C3-DNF ) and VR(C3-DNF ) are not equivalent.

T̃ =
{

( 1, 1, ∗, 1, 1 )
}

, F̃ =




( 1, 1, 0, 1, 0 )
( 1, 1, 0, 0, 1 )
( 1, 0, 1, 1, 1 )
( 0, 1, 1, 1, 1 )


 .
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This pBmb does not have a very robust 3-DNF extension, because the only
robust term for a = (1, 1, ∗, 1, 1) is the quartic term t = x1x2x4x5.

On the other hand, the 3-DNF

φ = x1x2x3 ∨ x 3x4x5

is a robust extension of (T̃ , F̃ ), hence E(T̃ , F̃ ) ∩ C3-DNF 6= ∅.
Let us remark that in fact, problem VR(C3-DNF ) is always polynomially

decidable, while RE(C3-DNF ) is co-NP-complete (see e.g., [9]).

7 Complexity of FC(CT H)

We have already seen in Section 6 that problems RE(CTH) and FC(CTH) are
not equivalent. It is known that RE(CTH) is polynomially solvable (see e.g. [9]),
and we can show below that problem FC(CTH) is not only inequivalent, but has
in fact a different complexity.

Theorem 9. Problem FC(CTH) is co-NP-complete, even if |S(a)| ≤ 1 holds for
all a ∈ T̃ ∪ F̃ .

Proof. First we show that FC(CTH) belongs to co-NP. By (9), a pBmb (T̃ , F̃ ) is
not fully consistent with the class CTH if and only if there exists an assignment
α ∈ B

S such that conv(T̃α) ∩ conv(F̃α) 6= ∅. Therefore, FC(CTH) is in co-NP,
since the last condition can be checked in polynomial time (for instance by linear
programming).

To prove the completeness, we reduce the following NP-complete problem to
our problem (see e.g., [12]).

Problem Exact Cover
Input: A hypergraph H = (V, H) such that V = {1, 2, . . . , n} and

H = {E1, E2, . . . , Em}, where E ⊆ V for all E ∈ H.
Question: Is there an H∗ ⊆ H which exactly covers V ; i.e., for which

E ∩ E′ = ∅ for all E 6= E′ ∈ H∗ and
⋃

E∈H∗ E = V ?

We may assume without loss of generality that any H∗ which exactly covers
V contains E1. This does not affect the NP-hardness of the problem, as it can
be seen easily, since we always can modify the input by including one more
hyperedge, E1, which is disjoint from all other hyperedges of H.

Let V1 = {n+1, n+2, . . . , n+m} and V2 = {n+m+1, n+m+2, . . . , n+2m}
and let W = V ∪V1 ∪V2. We shall denote by (R;S) the vector v ∈ M

W for which
ON(v) = R and S(v) = {(v, j) | j ∈ S}. (Then OFF (v) = V \ (R ∪ S); thus in
particular, v = (R; ∅) denotes a binary vector.) Let us define a pBmb (T̃ , F̃ ) by
the following T̃ , F̃ ⊆ M

W .

T̃ = {a(1) = (V ∪ {n + 1} ∪ {n + m + 1}; ∅)}
∪{a(i) = ({n + m + i}; {n + i}), i = 2, 3, . . . , m}

F̃ = {b(0) = (∅; ∅)} ∪ {b(1) = (E1 ∪ {n + 1} ∪ V2; ∅)}
∪{b(i) = (Ei ∪ {n + i}; ∅), i = 2, 3, . . . , m}.
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For this pBmb we have |S(a)| ≤ 1 for all a ∈ T̃ and S(F̃ ) = ∅. Thus, we write
simply F̃ instead of F̃α, in the sequel.

We claim that this (T̃ , F̃ ) is not fully consistent with CTH if and only if an
exact cover H∗ ⊆ H exists. This will then imply the theorem.

First, we show the “only-if” part of the above claim. Let us assume that for
an assignment α ∈ B

S(T̃ ) the pdBf (T̃α, F̃ ) has no threshold extension. It follows
from (9) that there exist nonnegative real numbers θi (i = 1, 2, . . . , m) and ηi

(i = 0, 1, . . . m) such that

m∑
i=1

θi = 1,
m∑

i=0

ηi = 1, and
m∑

i=1

θia
α
(i) =

m∑
i=0

ηib(i). (11)

By comparing the corresponding components on the two sides of the last equality
of (11), we have

η1 = θi =
1
m

for i = 1, 2, ..., m (12)

ηi =
{ 1

m if α(a(i), n + i) = 1,
0 if α(a(i), n + i) = 0. for i = 2, 3, . . . , m (13)

Moreover, η0 = 1 − ∑m
i=1 ηi ≥ 0 follows.

Let us define now a family H∗ ⊆ H by

H∗ = {Ei | ηi =
1
m

, i = 1, 2, ..., m},

Although the proof is omitted (see [10]), we can prove that H∗ is an exact cover
of H, which completes the “only-if” part of our claim.

For the “if” part, take an arbitrary exact cover H∗ ⊆ H, and associate an
assignment α ∈ F̃ to it by defining

α(a(i), n + i) =
{

1 if Ei ∈ H∗

0 otherwise.

It is then easy to see that with the nonnegative real numbers

θi =
1
m

, for i = 1, 2, ..., m,

ηi =

{
1
m if Ei ∈ H∗,
0 otherwise,

for i = 1, 2, ..., m,

and η0 = 1 − |H∗|
m , all equations in (11) hold. Hence T̃α and F̃ are not linearly

separable, which proves that (T̃ , F̃ ) is not fully consistent with CTH . ut
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8 Conclusion

In this paper, we have considered the relations between problems FC(C), RE(C)
and VR(C). We showed that for many general and reasonable families of classes
such as C = Call, CHorn, C+, and C2-DNF , these three problems are equivalent.
We also demonstrated that such an equivalence does not hold for all classes C.
For instance, we showed that problem RE(CTH) is polynomially solvable, while
FC(CTH) is co-NP-complete.
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