
Local π-Calculus at Work:
Mobile Objects as Mobile Processes?

Massimo Merro1??, Josva Kleist2, and Uwe Nestmann2

1 INRIA, Sophia-Antipolis, France
2 BRICS - Basic Research in Computer Science,

Danish National Research Foundation,
Aalborg University, Denmark

Abstract. Obliq is a distributed, object-based programming language.
In Obliq, the migration of an object is proposed as creating a clone of
the object at the target site, whereafter the original object is turned into
an alias for the clone. Obliq has an only informal semantics, so there is
no proof that this style of migration is correct, i.e., transparent to object
clients. In this paper, we focus on Øjeblik, an abstraction of Obliq. We
give a π-calculus semantics to Øjeblik, and we use it to formally prove
the correctness of object surrogation, an abstraction of object migration.

1 Introduction

The work presented in this paper is in line with the research activity to use
the π-calculus as a toolbox for reasoning about distributed object-oriented pro-
gramming languages. Former works on the semantics of objects as processes
have shown the value of this approach: while [22,9,19,10] have focused on just
providing formal semantics to object-oriented languages and language features,
the work of others [18,20] has been driven by a specific programming problem.
Our work tackles a problem in Obliq, Cardelli’s lexically-scoped distributed pro-
gramming language [4]. In this setting, Cardelli proposed to implement object
migration by creating a clone of the object at the target site and then turning the
original (local) object into an alias for the new (remote) object. The question
arises, whether this style of object migration is correct, and how that can be
stated formally. However, Obliq is not equipped with a formal semantics, apart
from an unpublished note by Talcott [21], which provides a configuration-style
semantics for a subset of Obliq excluding migration. The aim of our project [15]
is to remedy this lack of formality and to reason formally about migration.

Previous work Since Obliq is lexically scoped, we may ignore the aspects of
distribution, at least when regarding the results of Obliq computations, unless
distribution sites fail. Following this idea, Øjeblik, which we introduce in Sec-
tion 3, is an object-based language that represents Obliq’s concurrent core [16],
? A draft full paper is available at http://www.cs.auc.dk/research/FS/ojeblik/

?? Supported by Marie Curie fellowhip, EU-TMR, No. ERBFMBICT983504.

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 390–408, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Local π-Calculus at Work: Mobile Objects as Mobile Processes 391

but it can also be seen as a concurrent extension of the Imperative Object Calcu-
lus [1]. Øjeblik supports surrogation, a distribution-free abstraction of migration.

In [16] we gave a formal definition of correctness for object surrogation in
Øjeblik which can be straightforwardly extended to object migration in Obliq.
The intuition is that, in order to be correct, the surrogation (resp. migration)
of an object must be transparent to the clients of that object, i.e., the object
must behave the same before and after surrogation (resp. migration). We have
formalized this concept as the simple equation a.ping .= a.surrogate where the
left side represents the object a before surrogation (a.ping returns a if reachable),
the right side represents the object a after surrogation, and .= is an appropriate
contextual equivalence, based on the possibility of convergence.

In [16] we have also given several proposals of configuration-style semantics
for Øjeblik. One of them fits the Obliq implementation [3,4], but does not gu-
arantee the correctness of object surrogation as defined above. This has been
formally shown by exhibiting Øjeblik contexts that are able to distinguish the
terms a.ping and a.surrogate. Similar counterexamples apply to object surro-
gation in Obliq, as we have tested using the Obliq interpreter [3]. In order to
achieve the correctness of surrogation, we have proposed an improved semantics
in [16], but that work did not contain a proof.

Contribution of the paper In this paper, we present a π-calculus semantics
for Øjeblik corresponding to the aforementioned variant proposed in [16]. We
also give a notion of contextual equivalence for objects defined in terms of may
convergence on π-processes corresponding to the equivalence .=. More precisely,
our semantics uses Local π [12], in short Lπ, a variant of the asynchronous
π-calculus [7], where the recipients of a channel are local to the process that has
created the channel. We prove the correctness of surrogation in two parts.

The algebraic part (Theorem 1) relates, with respect to arbitrary π-calculus
contexts, the core component of the translation of a single object in its ping’ed
and surrogate’d version—both after commitment to the respective request under
the condition that the request did not arise internally from the object itself. Here,
we use powerful adaptations of proof techniques, partially known from standard
π-calculus and Lπ [12], also to exhibit that the alias-component of the surrogate’d
version behaves like a forwarder for external requests (Lemma 6). Due to the
unavoidable complexity of the language and its semantics, the proof of Theorem 1
is non-trivial, but it provides the seeked insight that we gave the proper π-cal-
culus semantics to aliased objects—which actually drove the development of the
proper corresponding operational semantics to aliased objects in [16].

The iterative part (Theorem 2, as conjectured in [16]) relates the may-conver-
gence behavior of the terms a.ping and a.surrogate, within Øjeblik-contexts. Here,
we constructively simulate arbitrarily long converging sequences “up to” Theo-
rem 1, so the Øjeblik-contexts must guarantee that the requests will be external.
The main difficulty of Theorem 2 is that inherently concurrent Øjeblik-contexts
may non-deterministically prevent either term from eventually committing to

392 M. Merro, J. Kleist, and U. Nestmann

the externally requested operation; this also rules out both the must-variant of
convergence equivalence as well as bisimulation equivalences.

Summing up, we give (to our knowledge) the first formal proof that migration
can be correctly implemented in terms of cloning and aliasing. Due to lack of
space, proofs are sketched or omitted; complete proofs are found in the full paper.

2 Local π: An “Object-Oriented” π-Calculus

Local π [12], in short Lπ, is a variant of the asynchronous π-calculus [7] where,
similar to the Join-calculus [5], the recipients of a channel are local to the process
that has created the channel. This is achieved by imposing the syntactic con-
straint that only the output capability of names may be transmitted, i.e., the
recipient of a name may only use it in output actions. This property makes Lπ
particularly suitable for giving the semantics to, and reasoning about, concurrent
object-oriented languages. In particular, we can easily guarantee the uniqueness
of object identities—a fundamental feature of objects: in object-oriented langua-
ges, the name of an object may be transmitted; the recipient may use that name
to access the methods of the object, but it cannot create a new object with the
same name. When representing objects in the π-calculus, this translates directly
into the constraint that the process receiving an object name may only use it in
output actions—a guarantee in our setting.

2.1 Terms and Types

In Table 1, we consider a typed version of polyadic Lπ extended with: (i) labeled
values ` v, called variants [19], with case analysis; (ii) tuple values 〈 v1. . vn 〉,
with pattern matching, (iii) constants k, called keys, with matching.

To deal with these rather complex values, we introduce several syntactic
categories. As additional metavariables, we let s, p, q, r, m, t range over channels,
y over variables, w range over values, Q over processes, and i, j, d, h, m over
tuple, variant, or other indices. We abbreviate ` 〈〉 and ` () with `, as well as
q〈〉 and q().P with q and q.P , respectively, while ṽ denotes a sequence v1 . . vm.

Restriction, both inputs, and both destructors are binders for the names
x, x1, . . . , xm in the respective scopes P, P1, . . . , Pm. We assume the usual de-
finitions of free and bound occurrences of names, based on these binders; the
inductively defined functions fn(P) and bn(P) denote those of process P . Si-
milarly, fc(P) and bc(P) denote the free and bound channels of process P .
Moreover, n(P) = fn(P) ∪ bn(P) and c(P) = fc(P) ∪ bc(P). Substitutions, ran-
ged over by σ, are type-preserving functions from names to values (types are
introduced below). For an expression e, eσ is the result of applying σ to e, with
the usual renaming to avoid captures. We write e{v/x} for a substitution that
operates only on name x, leaving all the other names unchanged. Relabelings,
ranged over by ρ, are functions from labels to labels. We write P [`

′
/̀] to replace

all occurrences of label ` by label `′ in values occurring in term P . Substitution

Local π-Calculus at Work: Mobile Objects as Mobile Processes 393

Table 1. π-Calculus

Channels: c ∈ C Values
Keys: k ∈ K v ::= x variable
Names: ∈ N | ` v variant

n ::= c | k | 〈 v1. . vn 〉 tuple

Auxiliary: u ∈ U Types
Variables: ∈ X T ::= C(T) channel type

x ::= n | u | K key type
| [`1:T1 ; . . . ; `m:Tm] variant type

Labels ∈ L | 〈 T1 . . Tm 〉 tuple type
`, `1, `2, . . . | X type variable

| µX. T recursive type

Processes
P ::= 0 nil process

| c(x).P single input
| cv output
| P1 | P2 parallel
| (νn:T) P restriction
| ! c(x).P replicated input
| if [k=k1] then P1 elif [k=k2] then P2 else P3 key testing
| case v of `1 (x1):P1 ; . . . ; `m (xm):Pm variant destructor
| let (x1 . . xm) = v in P tuple destructor

The locality constraint requires that in (single and replicated) inputs
and (variant and tuple) destructors the bound names x, x1, . . . , xm must not
be used in free input position within the respective scope P, P1, . . . , Pm.

and relabeling have the highest operator precedence, parallel composition the
lowest.

Types are introduced for essentially three reasons: (i) they allow us to cleanly
define some abbreviations, (ii) we use them to give a typed semantics of Øje-
blik, and (iii) they allow us to formally prove the main result of the paper using
typed behavioral equivalences. Abusing the notation for sets of names and the
corresponding types, we use K and C also as type constructors, where channel
types are parameterized over the type of value they carry. For variants and tuples
we use standard notations (c.f. [19]). In a recursive type µX.T , occurrences of
variable X in type T must be guarded, i.e., underneath a variant or channel
constructor. We often omit the type annotation of restriction, when it is clear
from the context or not important for the discussion. A type environment Γ is
a finite mapping from variables to types. A typing judgment Γ ` P asserts that
process P is well-typed in Γ , and Γ ` v:T that value v has type T in Γ . There is
one typing rule for each process construct; each of them is straightforward. (We

394 M. Merro, J. Kleist, and U. Nestmann

provide the type system in the full version of the paper.) A type environment Γ
is closed if it contains only names, no auxiliary variables.

2.2 Semantics and Proof Techniques

We equip our π-calculus with a standard reduction semantics. Its rules, defining
the reduction relation −→, are precisely those of [13], but based on a notion of
structural equivalence that is extended to deal with if-, case-, and let-constructs.
For simplicity, we only consider the semantics of well-typed processes.

Definition 1. Structural equivalence, written ≡, is the smallest relation pre-
served by parallel composition and restriction, which satisfies the axioms below:

– P ≡ Q, if P is α-convertible to Q;
– P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R;
– (νa)0 ≡ 0, (νa) (νb) P ≡ (νb) (νa) P ,
– (νa) (P | Q) ≡ P | (νa) Q, if a 6∈ fn(P);
– if [k1=k1] then P1 elif [k=k2] then P2 else P3 ≡ P1;
– if [k=k1] then P1 elif [k2=k2] then P2 else P3 ≡ P2, if k1 6=k;
– if [k=k1] then P1 elif [k=k2] then P2 else P3 ≡ P3, if k1 6=k 6=k2;
– case `j vj of `1 (x1):P1 ; . . . ; `j (xj):Pj ; . . . ; `m (xm):Pm ≡ Pj{vj/xj};
– let (x1 . .xm) = 〈 v1. . vm 〉 in P ≡ P{ṽ/̃x}.

The relation =⇒ is the reflexive-transitive closure of −→. For any relation R on
processes, −→R denotes −→R, and =⇒R the reflexive-transitive closure of −→R.

As regards behavioral equivalences, we focus on barbed bisimulation [14], a
uniform mechanism for defining behavioral equivalences in any process calculus
possessing (i) a reduction relation and (ii) an observability predicate. Barbed
bisimulation equips a global observer with a minimal ability to observe actions
and/or process states but it is not a congruence. By closing barbed bisimulation
under contexts we obtain a much finer relation. A context C[·] is a process with
exactly one hole, written [·], where a process may be plugged in. A context
C[·] is static if it is structurally equivalent to (νã) (P | [·]), for some P and ã.
We let E[·] range over static contexts. In an asynchronous scenario, only output
actions are usually considered observable [2]. A process P has a barb at channel c,
written P↓c, if P ≡ E[cv] for some static context E[·], value v, and channel
c ∈ fn(P). We write P⇓c, if there exists a process P ′ with P =⇒ P ′ and P ′↓c.
In a typed scenario, only well-typed context are usually considered. Therefore,
we recall the notion of (∆/Γ)-context [17,19]: when filled with a process P with
Γ ` P , a (∆/Γ)-context C[·] guarantees the typing ∆ ` C[P].

We often work with channels that have been extruded to the environment.
To keep track of the fact that they cannot be used in input by the environment
we generalize the standard typed barbed relations.

Definition 2 (Barbed Relations). Let C ⊆ C. Barbed C-bisimilarity, writ-
ten ∼̇=C, is the largest symmetric relation on processes, such that P ∼̇=C Q implies:

1. If P
τ−−→ P ′, then there exists Q′ such that Q =⇒ Q′ and P ′ ∼̇=C Q′

Local π-Calculus at Work: Mobile Objects as Mobile Processes 395

2. If P↓c, with c 6∈ C, then Q⇓c.

Let Γ be a typing, and P and Q two processes such that Γ ` P, Q. We say
that P and Q are barbed Γ ;C-equivalent, written P 'Γ ;C Q, if, for each closed
type environment ∆ and static (∆/Γ)-context C[·] not containing names in C in
input position, we have C[P] ∼̇=C C[Q]. We say that P and Q are barbed Γ ;C-
congruent, written P ∼=Γ ;C Q, if, for each closed type environment ∆ and (∆/Γ)-
context C[·] not containing names in C in input position, we have C[P] ∼̇=C C[Q].

If C=∅ in Definition 2, we omit C and get the standard definitions of barbed
bisimilarity ∼̇=, barbed Γ -equivalence 'Γ , and barbed Γ -congruence ∼=Γ , respec-
tively. If C={s}, we write ∼=Γ ;s for ∼=Γ ;C and 'Γ ;s for 'Γ ;C . Due to the restrictions
on the contexts, it holds that sv ∼=Γ ;s 0 and, by asynchrony, s(u).0 ∼=Γ ;s 0.

The main inconvenience of barbed equivalences and congruences is that they
use quantifications over contexts in the definition, and this unnecessarily com-
plicates proofs of process equality. In the long version of this paper, we provide
and make use of labeled characterizations. Parts of our proofs are based on the
generalization (to our setting) of Lπ proof techniques [12] that are based on spe-
cial processes called link. A link (sometimes called a forwarder [8]), is a process
! p(u).qu, abbreviated p . q, that behaves as an unbounded unordered buffer re-
ceiving values at one end (p) and retransmitting them at the other end (q). The
following lemma allows us to always output bound names instead of free names.
Its proof, in pure Lπ, can be found in [11], but its generalization to our typed
setting is straightforward.

Lemma 1. Let Γ ` av, for some Γ . Let b ∈ fc(v) with Γ ` b:C(T). Let d 6∈ c(v)
and w = v{d/b}. Then av ∼=Γ (νd:C(T)) (aw | d . b).

3 Øjeblik: A Concurrent Object Calculus

The set L of untyped Øjeblik expressions is generated, as shown in Table 2,
where l ranges over method labels. In this section, we present the Øjeblik’s call-
by-value semantics, first informally, then formalized using the π-calculus of § 2,
through which also a standard behavioral semantics is defined.

Objects. An object [lj=mj]j∈J consists of a finite collection of updatable na-
med methods lj=mj , for pairwise distinct labels lj . In a method ς(s, x̃)b, the
letter ς denotes a binder for the self variable s and argument variables x̃ within
the body b. Moreover, every object in Øjeblik comes equipped with special me-
thods for cloning, aliasing, surrogation, and pinging, which cannot be updated.

Method invocation a.l〈 a1 . . an 〉 with field l of the object a containing the
method ς(s, x̃)b results in the body b with the self variable s replaced by the
enclosing object a, and the formal parameters x̃ replaced by the actual para-
meters a1 . . an of the invocation. Method update a.l⇐m overwrites the current
content of the named field l in a with method m and evaluates to the modified
object. The operation a.clone creates an object with the same fields as the origi-
nal object and initializes the fields to the same entries as in the original object.

396 M. Merro, J. Kleist, and U. Nestmann

a, b ::= O object
| a.l〈 a1 . . an 〉 method invocation
| a.l⇐m method update
| a.clone shallow copy
| a.alias〈b〉 object aliasing
| a.surrogate object surrogation
| a.ping object ping
| s, x, y, z variables
| let x = a in b local definition
| fork〈a〉 thread creation
| join〈a〉 thread destruction

O ::= [lj=mj]j∈J object record
mj ::= ς(sj , x̃j)bj method

Table 2. Øjeblik Syntax

The operation a.alias〈b〉 replaces the object a with an alias for b, regardless of
whether a is already an alias or still an object record; if b itself is an alias to,
e.g., an object c, then we consequently create, by transitivity, an alias chain.

The operation a.surrogate turns object a into a local proxy for a remote copy
of itself, as implemented by the uniform method surrogate=ς(s)s.alias〈s.clone〉.
The operation a.ping is implemented by another uniform method ping=ς(s)s,
such that it returns of the object o that results from the evaluation of a its
“current identity”, i.e., due to possible forwarding the current endpoint of an
alias chain potentially starting at object o.

Scoping. An expression let x= a in b (non-recursive) first evaluates a, binding
the result to x, and then evaluates b within the scope of x.

Concurrency. Computational activity takes place within so-called threads. In
addition to the main thread, new threads can be created by the fork command.
The result of a forked computation is grabbed by the join command.

Self-Infliction, Serialization, Protection. The current self of a thread is the
self of the last method invoked in the thread that has not yet completed. An
Øjeblik operation is self-inflicted (also: internal) if it operates on the current
self; otherwise, it is external. Øjeblik objects are serialized : within any object,
at any time, at most one thread may be active. Serialization is implemented
by associating with each object a mutex that is locked when a thread enters
the object and released when the thread exits the object. More precisely, the
mutex is always acquired for external operations, but never for internal ones;
this concept allows a method to recursively call its siblings through self, but it
excludes mutual recursion between objects. Øjeblik objects are protected : the
critical operations update, aliasing, and cloning, are only allowed if they are
internal. An operation is called valid if it is internal or not critical.

Local π-Calculus at Work: Mobile Objects as Mobile Processes 397

[[a.clone]]kp
def= (νq)

(
[[a]]kq

∣∣ q(y, k′) . y〈cln p, k′〉
)

[[a.alias〈b〉]]kp
def= (νqxqy)

(
[[a]]kqy

∣∣ qy(y, ky).([[b]]ky
qx | qx(x, kx) . y〈ali 〈x, p〉, kx〉)

)
[[a.lj⇐ς(s, x̃)b]]kp

def= (νq)
(
[[a]]kq

∣∣ q(y, k′).(νt)
(
! t(s, x̃, r, k).[[b]]kr | y〈updj 〈t, p〉, k′〉))

[[a.lj 〈 a1 . . an 〉]]kp
def= (νqq1· · ·qn)

(
[[a]]kq

∣∣ q(y, k0).([[a1]]k0
q1 | q1(x1, k1).([[a2]]k1

q2 | · · ·
qn(xn, kn).y〈invj 〈x1 . . xn, p〉, kn〉 · · ·))

)
[[a.surrogate]]kp

def= (νq)
(

[[a]]kq | q(y, k′) . y〈sur p, k′〉)
[[a.ping]]kp

def= (νq)
(

[[a]]kq | q(y, k′) . y〈png p, k′〉)
[[let x = a in b]]kp

def= (νq)
(

[[a]]kq | q(x, k′) . [[b]]k
′

p

)
[[x]]kp

def= p〈x, k〉
[[fork(a)]]kp

def= (νqt)
(

[[a]]νq | p〈t, k〉 | q(x, k′).t(r, k′′).r〈x, k′′〉)
[[join(b)]]kp

def= (νq)
(

[[b]]kq | q(t, k′) . t〈p, k′〉)
Table 3. Øjeblik Semantics — Clients, Scoping, Concurrency

3.1 Translational Semantics

In addition to the core π-calculus of Section 2, we use parameterized recursive
definitions, which can be faithfully represented in terms of replication [13].

The semantics as presented in Tables 3 and 4, maps Øjeblik-terms into π-
calculus terms parameterized on two names: in a term [[a]]kp, the channel p is
used to return the term’s result, while the key k represents the term’s current
self, which is required to deal with self-infliction. The essence of the semantics
is to set up processes representing objects that serve clients’ requests. Different
requests for operating on objects are distinguished by corresponding π-calcu-
lus labels. We explain the semantics by showing how requests are generated by
clients, and then how they are served by objects. We omit explanations for the
semantics of scoping and concurrency; they can be found in the full paper.

Clients. In Table 3, the current self k of encoded terms is ‘used’ as the current
self of the evaluation of the first subterm in left-to-right evaluation order. All the
translations in Table 3 follow a common scheme. For example, in the transla-
tion of a method invocation [[a.lj〈 a1 . . an 〉]]kp, the subterms a, a1 . . an have to be
evaluated one after the other: the individual evaluations use private return chan-
nels q, q1 . . qn, which are subsequently asked for the respective results y, x1 . .xn,
but also for the respective new current self i, i1 . . in to be used by the next eva-
luation—this can be same as for the previous evaluation, but is not necessarily
so (c.f. the description of object managers below). After the last subterm an

has returned its result, the accumulated information is used to send a suitable
request with label invj to self-channel y of object a, also carrying the overall
result channel p and the latest current self in. Thus, the responsibility to signal
a result on p is passed on to the respective object manager waiting at y.

398 M. Merro, J. Kleist, and U. Nestmann

[[O]]kp
def= (νst̃)

(
p〈s, k〉 ∣∣ newOO〈 s, t̃ 〉 ∣∣ ∏

j∈J

! tj(sj , x̃j , r, k
′).[[bj]]k

′
r

)

newOO〈 s, t̃ 〉 def= (νmemikeki)
(

me
∣∣ OMO〈 s, me, mi, ke, ki, t̃ 〉

)
newAO〈 s, sa 〉 def= (νmemikeki)

(
me

∣∣ AMO〈 s, me, mi, ke, ki, sa 〉
)

OMO〈 s, m̃, ke, ki, t̃ 〉 def= s(l, k).(νk∗)
(

if [k=ki] then

case l of cln (r) : OMO〈 s, m̃, ke, k
∗, t̃ 〉 | (νs∗)

(
r〈s∗, k∗〉 | newOO〈 s∗, t̃ 〉)

;

ali (sa, r) : AMO〈 s, m̃, ke, k
∗, sa 〉 | r〈sa, k

∗〉 ;

updj (t′, r) : OMO〈 s, m̃, ke, k
∗, t1 . . tj−1, t

′, tj+1 . . tn 〉 | r〈s, k∗〉 ;

invj (x̃, r) : OMO〈 s, m̃, ke, k
∗, t̃ 〉 | tj〈s, x̃, r, k∗〉 ;

sur (r) : OMO〈 s, m̃, ke, k
∗, t̃ 〉 | [[s.alias〈s.clone〉]]k

∗
r ;

png (r) : OMO〈 s, m̃, ke, k
∗, t̃ 〉 | [[s]]k

∗
r

elif [k=ke] then

OMO〈 s, m̃, ke, k
∗, t̃ 〉 ∣∣ case l of cln (r) : mi(k).me ;

ali (sa, r) : mi(k).me ;

updj (t′, r) : mi(k).me ;

invj (x̃, r) : CM[tj〈s, x̃, r∗, k∗〉] ;

sur (r) : CM[[[s.alias〈s.clone〉]]k
∗

r∗] ;

png (r) : CM[[[s]]k
∗

r∗]

else OMO〈 s, m̃, ke, ki, t̃ 〉 ∣∣ me.
(

s〈l, ke〉 | mik
))

CM[·] def= (νr∗)
(
[·] | r∗(y, k′).mi(k′′).(r〈y, k′′〉 | me)

)
AMO〈 s, m̃, ke, ki, sa 〉 def= s(l, k).(νk∗)

(
if [k=ki] then

case l of cln (r) : AMO〈 s, m̃, ke, k
∗, sa 〉 | (νs∗)

(
r〈s∗, k∗〉 | newAO〈 s∗, sa 〉)

;

ali (s′
a, r) : AMO〈 s, m̃, ke, k

∗, s′
a 〉 | r〈s′

a, k
∗〉 ;

updj (t′, r) : AMO〈 s, m̃, ke, k
∗, sa 〉 | sa〈l, k〉 ;

invj (x̃, r) : AMO〈 s, m̃, ke, k
∗, sa 〉 | sa〈l, k〉 ;

sur (r) : AMO〈 s, m̃, ke, k
∗, sa 〉 | sa〈l, k〉 ;

png (r) : AMO〈 s, m̃, ke, k
∗, sa 〉 | sa〈l, k〉

elif [k=ke] then AMO〈 s, m̃, ke, k
∗, sa 〉 | mi(k).

(
sa〈l, k〉 | me

)
else AMO〈 s, m̃, ke, ki, sa 〉 | me.

(
s〈l, ke〉 | mik

))

Table 4. Øjeblik Semantics — Objects

Local π-Calculus at Work: Mobile Objects as Mobile Processes 399

Objects. The semantics [[O]]kp of an object O := [lj=ς(sj , x̃j)bj]j∈J , as shown
in Table 4 (again similar to [10]), consists of a message that returns the ob-
ject’s reference s together with the current self k on channel p, a composition of
replicated processes that give access to the method bodies [[bj]]k

′
r , and a new ob-

ject process newOO〈 s, t̃ 〉 that connects invocations on s from the outside to the
method bodies, which are invoked by the trigger names t̃. Inside newOO〈 s, t̃ 〉,
several private names are needed: mutexes m̃ := me, mi are used for serializa-
tion; the (internal) key ki is used to detect self-infliction; the (external) key ke
is used to implement serialization in a concurrent environment (see later on).
The behavior of objects and aliases is represented by the object manager OM
and alias manager AM, respectively, which both, for each request arriving along
their reference s, first check for self-infliction [k=ki], and then, by simple case
analysis, for the kind of the request. We first explain how internal requests are
served in objects and aliases. External requests will be served later.

Serving Internal Requests [k=ki] No serialization or protection is required.
Object Managers (OM). For each field, the manager may activate appropriate

instances of method bodies (case invj : the method body bound to lj along trigger
name tj) and administer updates (case updj : install a new trigger name t′).
Cloning (case cln) restarts the current object manager in parallel with a new
object, which uses the same method bodies t̃, but is accessible through a fresh
reference s∗. Aliasing (case ali) starts an appropriate alias manager AM instead
of re-starting the previous object manager OM. Surrogation and ping (cases sur
and png) are modeled according to their uniform method definitions.

Alias Managers (AM). Local requests for cloning and aliasing are allowed
and behave analogous to the respective clauses in object managers, but restar-
ting AM instead of OM. Update, invocation, surrogation, and ping requests are
immediately forwarded as is to the aliasing target sa.

Nonces (k∗). To guarantee the receptiveness of objects, managers OM and AM
always have to be restarted with some possibly changed state. However, seria-
lization requires that at any moment, only one request shall be active in an
object. According to our semantics, program contexts will never give rise to
several competing self-inflicted requests, but, when reasoning within arbitrary
π-calculus contexts, as we do in § 4.2, their existence must be taken into account.
Therefore, we add another layer of protection to increase the robustness of se-
rialization: each time a request enters a manager, a fresh key k∗ is created to be
used in the restarted manager; this key must subsequently be used as the current
self for all activities enabled by the current request. Thus, the consumption of
one of several competing pending requests renders its competitors external. Note
that nonces would not be necessary if we were interested in correct behaviors
within only translated contexts.

Serving External Requests [k 6=ki] Serialization and protection are required.
In order to clarify the behavior of an object manager serving an external

request, Figure 1 show the five relevant “states”, starting from a free manager

400 M. Merro, J. Kleist, and U. Nestmann

F : free grab (me) // A : active

error (consume ali/cln/upd)
gggg

ssgggg
commit (consume inv/sur/png)

��

D : discarded

release (mi)WWWW

kkWWWWWW

T : terminated

release (mi)

OO

S : servingterminate (r∗)oo

Fig. 1. Object Manager Serving External Requests

that becomes active by some pending request grabbing its serialization-lock.
Then, if the request is protection-critical it is discarded, otherwise the manager
commits to it and serves it until explicit termination. In both cases, the manager
becomes free again by releasing the lock. Note that internal requests can only
be served in “state” S of a manager that currently already serves some request.
In Subsection 3.3, we explain Figure 1 in more detail; for now, it just offers an
informal device to guide the explanations of the semantics of object managers.

Serialization (me, mi, ke). As mentioned earlier, mutual exclusion within an
object is implemented by mutexes, so, upon creation of a new object newO, the
fresh mutex channel me is initialized. According to serialization, the intended
continuation behavior of an incoming external requests is blocked on me, once
it enters a manager. The manager itself is immediately restarted and remains
receptive; it also remains in its “state” according to Figure 1. Arbitrarily many
requests can be blocked this way and compete for the mutex me once it beco-
mes available. A successfully unblocked request is resent to the same manager,
but now carrying another key ke, which allows the manager to detect that the
request has grabbed the mutex, so the manager can evolve into “state” A. We
call pre-processing the procedure of intermediate blocking of requests and their
subsequent reemission with key ke instead. Alongside with the pre-processed re-
quest, its former current self k is stored on the (internal) mutex mi for recovery
after termination. This recovery is actually necessary since the original current
self k is possibly required for use later on by the sender of the request.

Nonces (k∗). Pre-processing must not reinitialize the key ki of the restarted
manager: a currently self-inflicted operation interleaved by pre-processing might
be hindered to proceed, because it could unintendedly become external.

Object Managers (OM). Cloning, aliasing, or update, are critical operations.
Once a respective pre-processed request is consumed, the manager evolves from
“state” A into “state” D: the request and its former current self k, stored on
channel mi, will be simply ignored when releasing me by consuming mik.

Invocation, surrogation, and ping, are non-critical operations. Once a respec-
tive pre-processed request is consumed, the manager evolves from “state” A into
“state” S implying that no other external request shall be served (apart from
pre-processing) until the current one has terminated. In order to be notified of
that event, we employ a call manager protocol, represented by the context CM[·]:
instead of delegating to some other process the responsibility of returning a result

Local π-Calculus at Work: Mobile Objects as Mobile Processes 401

A, B ::= [lj :B̃j→B̂j]j∈J object record type

| Thr(A) thread type

R(X) def=C(X,K)
M(B1 . . Bn→B̂) def= [[Bj]] . . [[Bn]],R([[B̂]])

[[[lj :B̃j→B̂j]j∈J]] def=

µX.C(〈




cln : R(X)
ali : 〈 X,R(X) 〉
updj :〈C(〈 X,M(B̃j→B̂j),K 〉,R(X)) 〉
invj : 〈M(B̃j→B̂j) 〉
sur : R(X)
png : R(X)




j∈J

,K 〉)

[[Thr(A)]] def=C(〈R(A),K 〉)
[[Γ, x:A]] def= [[Γ]], x : [[A]]

Table 5. Translation of Øjeblik-types

on r, a fresh return channel r∗ is created to be used within [·] in place of r, such
that the result will first appear on r∗. Until this event, other external requests
remain blocked, while internal request may well be served. After this event, the
manager evolves from “state” S into “state” T , where the former current self can
be grabbed from mi, the result y be forwarded to the intended result channel r
(along with the former current self), and the mutex me be released. Note that
externally triggered method bodies [[bj]], and also surrogation and ping bodies
[[s.alias〈s.clone〉]] and [[s]], are all run in the context of the nonce k∗, which is now
the internal key of the OM, so their further calls to s will be self-inflicted. This
is essential for surrogation, since cloning and aliasing are only allowed internally.

Alias Managers (AM). According to our discussion in [16], external requests
that arrive at an active alias manager should be blocked until the current activity
finishes and the lock me is released. Once this happens, all external requests
are—after three intermediate steps via channels me, s, and mi—forwarded to
the aliasing target sa. The pre-processing of requests, presumably superfluous
in alias managers, is necessary also there, because there may be pending pre-
processed requests that have come to existence when s was connected to an OM.

Type Translation Øjeblik is equipped with a standard static type system [16].
The translation of terms into our π-calculus is accompanied with a straightfor-
ward translation of the corresponding types in Table 5. Its importance is that
(i) the two translations together preserve typings (see the full paper for details),
and (ii) that we can exploit the type information in proofs of properties of Øje-
blik-terms, not least by applying typed barbed relations.

402 M. Merro, J. Kleist, and U. Nestmann

3.2 Behavioral Semantics

A standard way to define program equivalence is to compare the behavior of
programs within arbitrary program contexts, as, for example, shown in previous
work on the Imperative Object Calculus (IOC) [1,6]. In our setting, an Øjeblik
context C[·] has a single hole [·] that may be filled with an Øjeblik term. In
the remainder of the paper, we assume that Øjeblik-contexts always yield well-
typed terms when plugging some Øjeblik-term into the hole. As a simple notion
of program behavior to be tested based on our Øjeblik-semantics, we choose
the existence of barbs as in § 2. This closely follows the intuition that a term
[[a]]kp should tell its result on name p as soon as it knows it. So, an Øjeblik term
converges, if its semantics may report its result on the name p.

Definition 3 (Convergence). If a ∈ L is an Øjeblik term, then a⇓ if [[a]]kp⇓p.

Definition 4 (Behavioral equivalence). Two Øjeblik terms a, b ∈ L are be-
haviorally equivalent, written a

.= b, if C[a] ⇓ iff C[b] ⇓ for all contexts C[·].

Note that this equivalence is based on a may-variant of convergence. With re-
spect to our goal of reasoning about surrogation, must-variants of convergence
would be too strong, because, in a concurrent language with fork, threads may
nondeterministically affect the outcome and convergence of evaluation.

3.3 Properties of the Translational Semantics

An important advantage of using a typed Lπ semantics is the easy provability
that object managers are the unique receptors for their (bound) self-channels.

Lemma 2 (Uniqueness of Objects). Let a be an Øjeblik term. If [[a]]kp =⇒ Z
with Z ≡ (νz̃) (M | OMO〈 s, . . . 〉) or Z ≡ (νz̃) (M | AMO〈 s, . . . 〉), then s ∈ z̃
and s does not appear free in input position within M .

We now analyze, referring to Figure 1, how the shape of a particular object
manager and its surrounding context evolves during computation. We will need
a particular case thereof (Lemma 3) later on in the proof of Theorem 2.

Observation 1: Pre-processing does not change the “state” of object managers.
At any time, an object/alias manager is ready to receive a request s〈l, k〉 with
ke 6=k 6=ki. The manager is identically restarted afterwards, but will have spawned
a process me.(s〈l, ke〉 | mik) that replaces the consumed request. Let us assume
requests svj with vj := 〈 lj , kj 〉 for 1≤j≤h (and ṽ:=v1. .vh) are pre-processed by
the object manager OMO〈 s, me, mi, ke, ki, t̃ 〉, so ke 6=kj 6=ki for all 1≤j≤h. Then:

PPO〈 s, me, mi, ke, ṽ 〉 def=
∏

1≤j≤h

me.(s〈lj , ke〉 | mikj)

Local π-Calculus at Work: Mobile Objects as Mobile Processes 403

Observation 2: In object managers, ki may be extruded, me, mi, ke may not.
Assume that an invj-request along s appears at OMO〈 s, me, mi, ke, ki, t̃ 〉, is pre-
processed, gets the mutex me and re-enters along s with ke. During this, ac-
cording to the semantics, a fresh internal key k∗ is created and extruded to
the corresponding method body. The names ñ := me, mi, ke are never extru-
ded; they constitute the proper boundary of a manager during computation.
This observation also provides the formal basis for Figure 1: a term Z contai-
ning an object manager OMO〈 s, ñ, ki, t̃ 〉 corresponds to “state” F, A, D, S, or T ,
respectively (for this manager), if after moving—as far as possible—all top-level
parallel components of Z outside the scope of (νñ) the remaining component
of Z inside the scope has a characteristic shape. In the full paper, we show the
complete analysis; here, we outline two special cases: free object managers in
“state” F , and committing object managers ready to evolve from “state” A into
“state” S.

Observation 3: An object manager is free, if its external mutex is available.
In our semantics, a manager is willing to grant access, if the external mutex me
occurs unguarded in the term that describes the current “state”, so the general
shape of a free object (and analogously alias) manager is:

freeOO〈 s, ki, t̃, ṽ 〉 def= (νñ)
(

me
∣∣ OMO〈 s, ñ, ki, t̃ 〉 ∣∣ PPO〈 s, ñ, ṽ 〉)

freeAO〈 s, ki, sa, ṽ 〉 def= (νñ)
(

me
∣∣ AMO〈 s, ñ, ki, sa 〉 ∣∣ PPO〈 s, ñ, ṽ 〉)

where the keys mentioned in ṽ of PPO〈 . . . 〉 neither match ke nor ki. Note that
newOO〈 s, t̃ 〉 ≡ (νki) freeOO〈 s, ki, t̃, ∅ 〉, and analogously for newAO〈 . . . 〉.

Observation 4: An object manager is ready to commit, if it may consume
a valid pre-processed request. The following lemma derives from the ability to
commit to a valid external request—visible as the availability of a valid pre-
processed request, i.e., a request carrying ke—the shape of the object manager
before and after commitment, including all of its current pre-processed requests.

Lemma 3 (Committing Object Manager). Let a ∈ L and [[[a]]]kp =⇒ Z. If
Z ≡ E[s〈l, ke〉 | OMO〈 s, ñ, ki, t̃ 〉] with l ∈ {invj 〈x̃, r〉, png r, sur r}, and ñ =
me, mi, ke, then Z −→ Z ′ for

Z ≡ Ê[(νñ)
(
mik

′ | PPO〈 s, ñ, ṽ 〉 | OMO〈 s, ñ, ki, t̃ 〉 | s〈l, ke〉
)
]

Z ′ ≡ Ê[(νñ)
(
mik

′ | PPO〈 s, ñ, ṽ 〉 | (νk∗)(OMO〈 s, ñ, k∗, t̃ 〉 | CM[Xl〈 s 〉k∗
r∗])

)
]

for some key k′, some set ṽ of pre-processed requests, and Xl〈 s 〉 denoting the
respective continuation behavior of Table 4.

Note that the k∗ in Z ′ is fresh, so it can be extruded over PPO〈 . . . 〉 and mik
′.

As special cases, for l ∈ {png r, sur r}, of committed object managers, we define

F [·] def= (νñk∗)
(
mik

∣∣ PPO〈 s, ñ, ṽ 〉 ∣∣ OMO〈 s, ñ, k∗, t̃ 〉 ∣∣ [·])
pingOO〈 s, r, k, t̃, ṽ 〉 def= F [CM[[[s]]k

∗
r∗]]

surOO〈 s, r, k, t̃, ṽ 〉 def= F [CM[[[s.alias〈s.clone〉]]k
∗

r∗]]

and discuss their properties in Section 4.2.

404 M. Merro, J. Kleist, and U. Nestmann

4 On the Safety of Surrogation

In [16], we motivated the equation a.ping .= a.surrogate for contextual equiva-
lence .= based on convergence as a valuable goal for proving safety of surrogation.
Its interpretation is that an object a, if it is responsive to a ping-request, beha-
ves the same as the object a after surrogation. One of the main observations
in [16] was that the desired equation can not hold in full generality for Øjeblik-
contexts C[·], in which the operation x.surrogate could occur internally. The
reason is that, after internal surrogation, an object may misuse by intention the
old and new references to itself. Actually, the advice to avoid internal surroga-
tion is analogous to the fact that programmers, knowing that x=0, should never
use division by x. In constrast, external surrogation corresponds to the case
where a program receives x from some other module, so it should be guaranteed
that x will never be 0. Analogously, we conjectured in [16] that in our semantics
external surrogation is guaranteed to be safe.

In this section, we prove that C[x.ping]⇓ iff C[x.surrogate]⇓ for precisely
those cases where C[·] will never lead to self-inflicted occurrences of x.surrogate.
Although this is an undecidable criterion [4], we may still formalize it in terms of
our π-calculus semantics, as we do in Subsection 4.1, for its use in formal proofs.
In Subsection 4.2, we study the behavior of objects before and after surrogation
within tightly restricted contexts and prove them to be barbed equivalent. In
Subsection 4.3, we then give an outline of the formal proof for the safety of exter-
nal surrogations. The full paper also offers a static type system that guarantees
that surrogations will never be internal. The full paper also offers a static type
system that guarantees that surrogations will never be internal.

4.1 On the Absence of Internal Surrogation

Here, we study how to formalize that C[·] will never lead to self-inflicted occur-
rences of the term x.surrogate, when plugged into the hole.

Recall from the Øjeblik semantics in § 3 that in a particular state [[a]]kp =⇒ Z
in the computation of an arbitrary Øjeblik term a, a particular sur-request is
self-inflicted, if Z ≡ E[s〈sur r, k〉 | OMO〈 s, m̃, ke, ki, t̃ 〉] with k=ki, because it is
ready to enter the OM with k=ki (c.f. Table 4). Since we must ensure that a sur-
request never leads to internal surrogation, we must quantify over all derivatives
of [[a]]kp and check for self-infliction in each of them.

Note that, starting from the term [[C[x.surrogate]]]kp, we should not be con-
cerned with arbitrary sur-requests that appear at top-level during computation,
but only with those that “arise from the request in the hole”. However, this
property is hard to determine for two different reasons: (1) All of the names
mentioned in a sur-request may be changed dynamically by instantiation: s (due
to forwarding), r (due to a call manager protocol), and k (due to pre-processing).
(2) We have to consider arbitrarily many duplications of the request in the case
that the hole appears, at the level of Øjeblik terms, within in a method body,
which leads to replication in the π-calculus semantics. For both reasons, we need
a tool to uniquely identify the various incarnations of the request.

Local π-Calculus at Work: Mobile Objects as Mobile Processes 405

Let operate ∈ {ping, surrogate}, and let op ∈ {png, sur} denote the correspon-
ding π-calculus label (c.f. Table 3). We introduce the additional Øjeblik labels
operate? ∈ {ping?, surrogate?}, writing LT for the resulting language. The intui-
tion is that tagged labels are semantically treated exactly like their untagged
counterparts, but can syntactically be distinguished from them. Consequently,
we give a tagged semantics, written [[[]]], by adding the respective clauses for tag-
ged labels, which are just copies of the clauses for the untagged labels; we use the
tagged π-calculus labels op? ∈ {png?, sur?} at the semantics level. As a result,
both tagged and untagged requests can be sent to object and alias managers;
object managers ignore the tagging information of requests and treat op?-and
op-requests identically, but alias managers preserve the tagging information since
they simply forward requests. We also add a tag to all parameterized definitions
and abbreviations when considering the tagged semantics.

The semantics is not affected by including tagging information.

Lemma 4. Let x be an Øjeblik variable and C[·] an untagged Øjeblik context.
Then: C[x.operate]⇓ iff [[[C[x.operate?]]]]kp⇓p.

However, tagging helps us to detect all “requests arising from the hole”.

Definition 5 (Safe Contexts). Let x be a variable and C[·] an untagged Øje-
blik context. Then, C[·] is called safe for x.surrogate, if [[[C[x.surrogate?]]]]kp =⇒≡
E[s〈sur? r, k〉 | OM?

O〈 s, m̃, ke, ki, t̃ 〉] implies that k 6= ki.

We replay the definition using ping instead of surrogate. By definition of the
semantics, an Øjeblik context C[·] is then safe for x.surrogate if and only if it is
safe for x.ping. For convenience, by abuse, we simply call C[·] to be safe for x.

4.2 Committed External Surrogation is Transparent

Our main result focuses on external surrogations. In the following we show that
the two versions of an object manager at s that are committed to an external png-
and sur-request, respectively (c.f.§ 3.3), are related by typed barbed equivalence.

Theorem 1. Let Γ ` surOO〈 s, r, k, t̃, ṽ 〉 and Γ ` pingOO〈 s, r, k, t̃, ṽ 〉. Then:

surOO〈 s, r, k, t̃, ṽ 〉 'Γ ;s pingOO〈 s, r, k, t̃, ṽ 〉.

The proof of Theorem 1 requires several strong lemmas. Lemma 5 proves that
surrogation results in an alias pointing to a clone of the old object. Its proof hea-
vily relies on the nonces (c.f. page 399) used in the implementation of object and
alias managers, which control the interference with the environment. Lemma 6
proves that the aliased object manager appearing in Lemma 5 behaves as a for-
warder. Lemma 7 uses Lemma 1 to prove correctness of inlining. Lemma 8 proves
that pre-processing external requests does not preclude other requests. Lemma 9
involves two confluent reductions from right to left along r∗ and mi, respectively.
Finally, Theorem 1 can be established by applying the previous lemmas.

406 M. Merro, J. Kleist, and U. Nestmann

Lemma 5. If Γ is a suitable type environment for the processes below, then:

surOO〈 s, r, k, t̃, ṽ 〉 'Γ ;s (νs∗)
(
(νki) freeAO〈 s, ki, s

∗, ṽ 〉 ∣∣ newOO〈 s∗, t̃ 〉 ∣∣ r〈s∗, k〉).

Lemma 6. Let ṽ := v1. . vn, and vj :=〈 lj , kj 〉 for 1≤j≤n. If Γ is a suitable type
environment for the processes below, then:

(νki) freeAO〈 s, ki, s
∗, ṽ 〉 'Γ ;s s . s∗∣∣ ∏

1≤j≤n

s∗vj .

Lemma 7. Let P be a process and s a channel such that s 6∈ fc(P). If Γ is a
suitable type environment for the processes below, then:

(νs∗)
(
s . s∗ | P

) 'Γ ;s P{s/s∗}.

Lemma 8. Let ṽ := v1. . vn with vj :=〈 lj , kj 〉 and kj 6=ki for 1≤j≤n. If Γ is a
suitable type environment for the processes below, then:

∏
1≤j≤n

svj

∣∣ newOO〈 s, t̃ 〉 'Γ ;s (νki) freeOO〈 s, ki, t̃, ṽ 〉.

Lemma 9. Let ṽ := v1. . vn with vj :=〈 lj , kj 〉 and kj 6=ki for 1≤j≤n. If Γ is a
suitable type environment for the processes below, Then:

r〈s, k〉 ∣∣ (νki) freeOO〈 s, ki, t̃, ṽ 〉 'Γ pingOO〈 s, r, k, t̃, ṽ 〉.

4.3 External Surrogation is Safe

We prove our main theorem that x.ping .= x.surrogate for safe contexts C[·].
Theorem 2 (Safety). Let x be an object variable and C[·] an untagged context
in Øjeblik. If C[·] is safe for x, then C[x.ping]⇓ iff C[x.surrogate]⇓.

Proof. (Sketch) By Lemma 4, our proof obligation is equivalent to:

[[[C[x.ping?]]]]kp⇓p iff [[[C[x.surrogate?]]]]kp⇓p.

This allows us to make use of the assumption on the safety of context C[·].
Since the semantics [[[]]] is compositional, there is a π-calculus context D[·]

and names y, j, q, such that [[[C[x.operate?]]]]kp = D[y〈op? q, j〉], where D[·] itself
does not contain any message carrying a tagged request. We prove that

D[y〈png? q, j〉]⇓p iff D[y〈sur? q, j〉]⇓p.

and concentrate on the implication from right to left. The converse is analogous.
Assume that D[y〈sur? q, j〉] ⇓p. If D[N]⇓p for every process N , then this is

also the case for N = y〈png? q, j〉; otherwise, the sur?-request must contribute to
the barb. Therefore, we assume D[y〈sur? q, j〉] =⇒ P ↓p and show that there is

Local π-Calculus at Work: Mobile Objects as Mobile Processes 407

a corresponding D[y〈png? q, j〉] =⇒'Γ
Q ↓p where Q = P [png?

/sur?]. Since typed
barbed equivalence 'Γ and relabeling preserve convergence, this suffices.

We distinguish between insignificant and significant transitions, where the
former can be mimicked easily, while the latter require some work. Recall that a
reduction step due to an external request is committing (c.f. § 3.3), if it re-
presents the consumption of a pre-processed request by an object manager.
Now, we combine this characterization with the fact that we have to concen-
trate on surrogation requests arising from the hole within the reduction sequence
D[y〈op?, q, j〉] =⇒ P ↓p and call significant (−→s) precisely those steps that exhi-
bit the commitment to an external op?-request. The other steps—except for the
cases of internal surrogation, which are precisely excluded by assumption—are
insignificant : they can even be mimicked up to structural equivalence.

In order to make the proof work, we iterate the simulation steps along the
given sequence D[y〈sur? q, j〉] =⇒ P ↓p. Let us assume that this sequence has d
significant steps and that we have iterated already h−1 of them, for 0 < h ≤ d:

D[y〈sur? q, j〉] (=⇒ −→s)h−1 Ph−1 =⇒ −→s Ph ≡ Ê[surO?
O〈 sh, . . . 〉]

By (the tagged counterparts of) Lemma 3, we can precisely localize the state of
the committed object manager inside Ph after the significant step (c.f. § 4.2).
With respect to the relabeling ρ := [png?

/sur?], by assumption and iteration, we
also have the sequence:

D[y〈png? q, j〉] (=⇒ −→s)h−1'Γ Ph−1ρ =⇒ −→s Qh ≡ Ê[pingO?
O〈 sh, . . . 〉]ρ

by consuming a png?-request. Now, we apply (the tagged counterparts of) Theo-
rem 1 and Lemma 2, and the fact that barbed equivalence 'Γ implies structural
equivalence ≡ and is preserved by relabeling and get Qh 'Γ Phρ. This means
that we can mimic the significant steps, thus the whole sequence, up to 'Γ .

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs CS. Springer, 1996.
[2] R. M. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulations for the Asyn-

chronous π-calculus. Theoretical Computer Science, 195(2):291–324, 1998.
[3] L. Cardelli. obliq-std.exe — Binaries for Windows NT. http://www.luca.-

demon.co.uk/Obliq/Obliq.html, 1994.
[4] L. Cardelli. A Language with Distributed Scope. Computing Systems, 8(1):27–59,

1995. An exteded abstract as appeared in Proceedings of POPL ’95
[5] C. Fournet and G. Gonthier. The Reflexive Chemical Abstract Machine and the

join-calculus. In Proceedings of POPL ’96, ACM, 1996.
[6] A. D. Gordon, P. D. Hankin, and S. B. Lassen. Compilation and Equivalence of

Imperative Objects. In Proceedings of FSTTCS ’97, LNCS 1346. Springer, 1997.
[7] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.

In Proceedings of ECOOP ’91, volume 512 of LNCS, Springer, 1991.
[8] K. Honda and N. Yoshida. On Reduction-Based Process Semantics. Theoretical

Computer Science, 152(2):437–486, 1995.

408 M. Merro, J. Kleist, and U. Nestmann

[9] H. Hüttel and J. Kleist. Objects as Mobile Processes. Research Series RS-96-38,
BRICS, 1996. Presented at MFPS ’96.

[10] J. Kleist and D. Sangiorgi. Imperative Objects and Mobile Processes. In Procee-
dings of PROCOMET ’98. Chapman & Hall, 1998.

[11] M. Merro. Local π: A Model for Concurrent and Distributed Programming Lan-
guages. PhD thesis, Ecole des Mines, France, 2000.

[12] M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In Procee-
dings of ICALP ’98, volume 1443 of LNCS. Springer, 1998.

[13] R. Milner. The Polyadic π-calculus: A Tutorial. In Logic and Algebra of Specifi-
cation, volume 94 of Series F. NATO ASI, Springer, 1993.

[14] R. Milner and D. Sangiorgi. Barbed Bisimulation. In Proceedings of ICALP ’92,
volume 623 of LNCS. Springer, 1992.

[15] U. Nestmann. Mobile Objects (A Project Overview). In Proceedings of FBT ’99.
Herbert Utz Verlag, 1999.

[16] U. Nestmann, H. Hüttel, J. Kleist, and M. Merro. Aliasing Models for Mobile
Objects. Accepted for Journal of Information and Computation. An extended ab-
stract has appeared as Distinguished Paper in the Proceedings of EUROPAR ’99,
pages 1353–1368, LNCS 1685, September 1999, 1999.

[17] B. C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes.
Mathematical Structures in Computer Science, 6(5):409–454, 1996.

[18] A. Philippou and D. Walker. On Transformations of Concurrent Object Programs.
Theoretical Computer Science, 195(2):259–289, 1998.

[19] D. Sangiorgi. An Interpretation of Typed Objects into Typed π-calculus. Infor-
mation and Computation, 143(1):34–73, 1998.

[20] D. Sangiorgi. Typed π-calculus at Work: A proof of Jones’s parallelisation theorem
on Concurrent Objects. Theory and Practice of Object-Oriented Systems, 5, 1999.

[21] C. L. Talcott. Obliq Semantics Notes. Unpublished note. Available from
clt@cs.stanford.edu, Jan. 1996.

[22] D. Walker. Objects in the π-calculus. Information and Computation, 116(2):253–
271, 1995.

clt@cs.stanford.edu

	Introduction
	Local pi: An ``Object-Oriented'' pi-Calculus
	Terms and Types
	Semantics and Proof Techniques

	˜jeblik: A Concurrent Object Calculus
	Translational Semantics
	Behavioral Semantics
	Properties of the Translational Semantics

	On the safety of surrogation
	On the Absence of Internal Surrogation
	Committed External Surrogation is Transparent
	External Surrogation is Safe
	References

