
Approximation Algorithms for String Folding
Problems

Giancarlo Mauri and Giulio Pavesi

Dept. of Computer Science, Systems and Communication
University of Milan–Bicocca

Milan, Italy
{mauri,pavesi}@disco.unimib.it

Abstract. We present polynomial–time approximation algorithms for
string folding problems over any finite alphabet. Our idea is the following:
describe a class of feasible solutions by means of an ambiguous context-
free grammar (i.e. there is a bijection between the set of parse trees
and a subset of possible embeddings of the string); give a score to every
production of the grammar, so that the total score of every parse tree
(the sum of the scores of the productions of the tree) equals the score
of the corresponding structure; apply a parsing algorithm to find the
parse tree with the highest score, corresponding to the configuration with
highest score among those generated by the grammar. Furthermore, we
show how the same approach can be extended in order to deal with an
infinite alphabet or different goal functions. In each case, we prove that
our algorithm guarantees a performance ratio that depends on the size
of the alphabet or, in case of an infinite alphabet, on the length of the
input string, both for the two and three–dimensional problem. Finally,
we show some experimental results for the algorithm, comparing it to
other performance–guaranteed approximation algorithms.

1 Introduction

We present performance–guaranteed approximation algorithms for different ver-
sions of the string folding problem. The motivation of string folding problems
comes mainly from computational biology. One of the greatest challenges for
computational biologists nowadays is to determine the three–dimensional native
structure of a protein starting from the amino acid sequence that composes it.
The problem has been studied from many different viewpoints, and many models
have been proposed. Theoretical models are abstractions of the folding process
that emphasize the effect of some factors while hiding other aspects. Perhaps the
simplest and most studied model is the two–dimensional hydrophobic–hydrophilic
(HP) model introduced by Dill [1]. In this model, the amino acid residues are
grouped in two classes, according to their chemical properties: the hydropho-
bic, i.e. non–polar, and hydrophilic, i.e. polar. The protein instance can be thus
reduced to a binary sequence of H’s (meaning hydrophobic) and P’s (meaning
hydrophilic). Furthermore, to reduce the number of possible configurations, the

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 45–58, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

46 G. Mauri and G. Pavesi

• • •

• • •

• • •

a b b

a c c

b c d

Fig. 1. Two–dimensional embedding of the string abcabcdcb. The score of the embed-
ding is 4.

conformational space is discretized into a square lattice. Feasible structures are
therefore mappings (embeddings) of the string into the grid, where adjacent
symbols of the string lie on adjacent nodes, and no node is occupied by more
than one symbol. It has been observed experimentally that hydrophobic amino
acids tend to group inside the native structure, shielded from the environment
by the hydrophilic ones. Thus, an optimal configuration for the protein is one
that maximizes the number of H’s that are in contact on the lattice, that is, lie
on adjacent nodes of the lattice but are not adjacent in the input string. The
study of structures generated by this and other theoretical models can provide
useful insights into the dynamics of the folding process [2].

In this paper, we also deal with string folding problems of a more general type.
We are given as input a string over some alphabet. The score of an embedding
of the string is the number of equal symbols of the string that are in contact on
the grid. Figure 1 shows an example. Usually, a neutral symbol is included in
the alphabet. Contacts between neutral symbols do not contribute to the score
of an embedding. For example, in the HP model P is the neutral symbol, and
the score of the embeddings is determined only by the contacts between H’s.
The problem is to find the embedding of the string with the maximum score.
The three–dimensional version of the problem is defined in the same way; in this
case, strings are mapped into the three–dimensional rectangular grid.

The string folding problem over any alphabet (finite or infinite) is NP–
hard both in the two and three–dimensional case [3,4,5]. Moreover, the three–
dimensional version has been proved to be MAX–SNP hard [6].

The algorithms we present are suitable for more specialized discrete models of
the folding of biological sequences, where the goal function does not depend only
on contacts between equal symbols, or where contacts between equal symbols
have different weights. For example, they could be applied to the string folding
problem over an alphabet of twenty symbols, representing the twenty amino
acids that build proteins, or to the RNA folding problem over an alphabet of
four symbols. Although approximation algorithms for the HP model have already
been proposed [7,8], to our knowledge these are the first performance–guaranteed
algorithms for the generalized problems. Moreover, the same approach could be
easily extended to other discrete or non–discrete models, where the goal function
does not necessarily depend on the contacts between equal symbols, as long as
the correspondence between parse trees and feasible structures is preserved.

Approximation Algorithms for String Folding Problems 47

2 The Algorithm

We will now show the basic algorithm, that works on any finite alphabet. Let
Σ be the alphabet, with |Σ| = k, let ai, 0 ≤ i ≤ k − 1 be the symbols of the
alphabet. Let a0 be the neutral symbol, included in the alphabet. Our algorithm
is based on the following steps:

1. Define an ambiguous context–free grammar, that generates all the possible
instances of the problem (i.e., every string belonging to Σ∗).

2. Define a relation between the derivations of the grammar and a subset of all
the possible embeddings, where every production of a derivation recursively
corresponds to a layout on the lattice of the terminal symbols generated by
the production itself.

3. Assign to every production of the grammar an appropriate score, represen-
ting (a lower bound to) the number of contacts between equal (but not
neutral) symbols generated by the spatial position of the symbols associated
with the production.

4. Given an instance of the problem, apply a parsing algorithm in order to find
the parse tree with the highest score (computed as the sum of the scores of
the productions of the tree), that is, the tree corresponding to the embedding
of maximum score among those that can be generated by the grammar.

Let us now introduce the grammar we employed in our algorithm. We defined
a context–free grammar G = {T, N, S, P}, where:

1. T = {Σ ∪ u} is the set of terminal symbols, where u is a dummy terminal
symbol whose function will be explained later.

2. N = {S, L, R} is the set of nonterminal symbols.
3. R is the start symbol, i.e. the root of every parse tree.
4. P is the set of the productions, composed by the following production sche-

mes:
(1) S → t1 S t2
(2) S → t1 L t2 S t3 L t4
(3) S → t1 L t2 S t3t4
(4) S → t1t2 S t3 L t4
(5) S → t1t2
(6) S → t1 L t2t3 L t4
(7) S → t1t2t3 L t4
(8) S → t1 L t2t3t4
(9) L → t1 L t2
(10) L → t1t2
with ti ∈ Σ;
and by the following productions, that do not involve symbols from Σ:
(11) S → Suu
(12) S → uu
(13) R → SS

48 G. Mauri and G. Pavesi

The layout of the terminal symbols associated with each production is shown
in Fig. 2. The proof that every parse tree corresponds to a feasible structure is
straightforward. The score of every production is increased by one every time
two equal non–neutral symbols generated by the production are in contact. For
example, the production S → a1La1Sa1La1 has score four, S → a1La1Sa0La0
has score one, since neutral symbols do not contribute to the score, and so
on. Possible contacts between equal symbols generated by different productions
cannot be added to the score of the parse tree.

It could be argued that this grammar generates only sequences of even length.
To solve this problem, and to avoid adding further productions to the grammar,
in case of a sequence s of odd length the string actually parsed is s∗ = sa0.
In fact, it can be proved that the best embedding among those that can be
generated by the algorithm for the original sequence s is the structure found by
the algorithm for s∗, with the final neutral symbol removed.

The algorithm builds structures in which the sequence is folded onto itself
twice (see Fig. 3). The parse tree is split into two sub–trees, whose roots are the
two S symbols generated by the start symbol R. The symbols generated by each
sub–tree form a structure shaped like an “U”, giving an overall configuration
similar to a “C”. If the length of the string is even, the first and last symbol are
always in contact. Terminals generated by S nonterminals form the “backbone”
of the structure, while symbols generated by L nonterminals form lateral bran-
ches. The introduction of the dummy terminal symbol u allows the grammar to
generate a larger set of structures. The string actually parsed (after the possible
addition of a neutral symbol) is su = suu. If the second sub–tree contains only
the production S → uu, the first sub–tree generates the whole sequence, which is
again folded once to form a structure shaped like a “U”. Without this extension
the algorithm would not be able to generate U–shaped structures, with a signi-
ficant decrease on its performance ratio (take for instance the string PHPPHP
in the HP model, whose optimal structure is U–shaped).

3 The Parsing Algorithm

The parsing algorithm is based on the Earley algorithm for context–free gram-
mars [9], and it is similar to the version that computes the Viterbi parse of a
string generated by a stochastic grammar proposed by Stölcke [10]. It preserves
the worst case time (O(n3)) and space (O(n2)) complexity of the two algorithms.

The Earley parser keeps a set of states for each symbol in the input, describing
all pending derivations. A state has the form:

i : kX → λ.µ

where X is a nonterminal symbol of the grammar, λ and µ are strings of terminals
or nonterminals, such that X → λµ is a production of the grammar, i and k
are indices into the input string. The i indicates that the state belongs to the
set associated to the i-th symbol of the input string. The k indicates that the
nonterminal X has been expanded starting from the k-th symbol of the input,

Approximation Algorithms for String Folding Problems 49

| |
(1) S → t1 S t2 t1 t2 +1 if t1 = t2 6= a0

| |

| |
— t1 t4 +1 if t1 = t2 6= a0

(2) S → t1 L t2 S t3t4 (L) | +1 if t1 = t4 6= a0

— t2 t3 +1 if t2 = t3 6= a0

| |

| |
— t1 t4 — +1 if t1 = t4 6= a0

(3) S → t1 L t2 S t3 L t4 (L) (L) +1 if t1 = t2 6= a0

— t2 t3 — +1 if t2 = t3 6= a0

| | +1 if t3 = t4 6= a0

| |
t1 t4 — +1 if t1 = t4 6= a0

(4) S → t1t2 S t3 L t4 | (L) +1 if t2 = t3 6= a0

t2 t3 — +1 if t3 = t4 6= a0

| |

| |
(5) S → t1t2 t1—t2 always zero

| |
— t1 t4 — +1 if t1 = t2 6= a0

(6) S → t1 L t2t3 L t4 (L) (L) +1 if t1 = t4 6= a0

— t2—t3 — +1 if t3 = t4 6= a0

| |
t1 t4 — +1 if t3 = t4 6= a0

(7) S → t1t2t3 L t4 | (L) +1 if t1 = t4 6= a0

t2—t3 —

| |
— t1 t4 +1 if t1 = t2 6= a0

(8) S → t1 L t2t3t4 (L) | +1 if t1 = t4 6= a0

— t2—t3

—t1—
(9) L → t1 L t2 +1 if t1 = t2 6= a0

—t2—

t1— — t2
(10) L → t1t2 | or | always zero

t2— — t1

Fig. 2. Production schemes and corresponding layout of the symbols and scores. a0 is
the neutral symbol.

50 G. Mauri and G. Pavesi

a0a0

a0a0 ⇑ a0a0

a0—a0 ⇑ ‖ ⇑
| | a2La2Sa2La2

a0—a2 · a2—a0 ⇑
| · · | a0Sa0

a0—a2 · a2—a0 ⇑
| | a1Sa1

a0 a0 ⇑
| | S

a1 · a1 ⇑
| · R

a1 · a1 ⇓
| | S

a0 a0 ⇓
| | a2Sa2

a0—a2 · a2—a0 ⇓
| · · | a0Sa0

a0—a2 · a2—a0 ⇓
| | a2La2Sa2La2

a0—a0 ⇓ ‖ ⇓
a0a0 ⇓ a0a0

a0a0

Fig. 3. Structure generated by the algorithm (score 11) for the sequence
a1a0a2a0a0a2a0a0a2a0a0a2a0a1a1a0a2a0a0a2a0a0a2a0a0a2a0a1 and corresponding
parse tree. Contacts between equal symbols are shown by dots (·). Σ = {a0, a1, a2},
where a0 is the neutral symbol that does not contribute to the score of the embedding.

and the right–hand side of the production has been expanded up to the position
indicated by the dot. A state with the dot at the end of the right–hand side is
called a complete state, since the dot indicates that the left–hand nonterminal
has been completely expanded.

The algorithm is based on three steps that scan the input string from left to
right and build new states starting from the current set of states and the current
input symbol. The three steps, given in input a string s = s0 . . . sn−1, work as
follows.

Prediction For each state

i : kX → λ.Y µ

where Y is a nonterminal, and for all the productions Y → ν of the grammar,
add the state:

i : iY → .ν

Approximation Algorithms for String Folding Problems 51

It can be seen that every prediction corresponds to a potential expansion of a
nonterminal in a left–most derivation. A state generated by this step is called a
predicted state.

Scanning For each state

i : kX → λ.aµ

where a is a terminal symbol that matches the current input symbol si, add the
state:

i + 1 : kX → λa.µ

that is, move the dot one position to the right in the right–hand side. This
ensures that terminals generated by the productions match the input string.

Completion For each complete state:

i : jY → ν.

and for each state in the set j ≤ i

j : kX → λ.Y µ

with the nonterminal Y after the dot, add the state:

i : kX → λY.µ

A state generated by the completion step is called a completed state. A completed
state corresponds to the fact that one of the nonterminal symbols in the right–
hand side has been completely expanded (starting from a prediction step) and
has generated a sub–string of the input string. The algorithm performs the three
operations described above exhaustively, that is, until no new states can be
generated.

The algorithm starts from an initial dummy state, whose left–hand side is
empty:

0 : 0 → .R

(R is the start symbol of the grammar). Then, the states corresponding to R
(and the possible states deriving from the productions with R on the left–hand
side, and so on) are predicted, and the first scanning step examines the first
symbol of the input string.

After scanning the last symbol of the string, and performing the correspon-
ding completion step, the algorithm checks whether the state

n : 0 → R.

52 G. Mauri and G. Pavesi

is contained in the last set of states that has been produced, where n is the length
of the input string. This means that the start symbol R has been completely
expanded in order to build the input string, that is, the string belongs to the
language generated by the grammar. If during the computation any set of states
remains empty, the algorithm aborts, indicating that a prefix of the input string
that cannot be generated by the grammar has been detected.

The only difference between our grammar and a context–free grammar is the
introduction of a score associated with each production. We modified Earley’s
algorithm in order to compute the derivation that generates the input string
with the highest score. Basically, we added to each state a score, as follows:

i : kX → λ.µ
Score = p

Intuitively, the idea is to have at the end of the parsing a state of the form:

n : 0 → R.
Score = h

where h is the score corresponding to the highest–score parse tree among those
that can be generated for the input string. In order to obtain this result, we
modified the three steps of the algorithm as follows.

Prediction For each state

i : kX → λ.Y µ
Score = p

where Y is a nonterminal, and for all the productions Y → ν of the grammar,
add the state:

i : iY → .ν
Score = 0

that is, all predicted states have their score set to zero.

Scanning For each state

i : kX → λ.aµ
Score = p

where a is a terminal symbol that matches the current input symbol si, add the
state:

i + 1 : kX → λa.µ
Score = p

that is, scores are left unchanged by the scanning step.

Approximation Algorithms for String Folding Problems 53

Completion The actual update of the scores takes place during the completion
step. The score of the complete states changes as follows. For each complete
state:

i : jY → ν.
Score = p

the score becomes:

Score = p + q

where q is the score associated to the production Y → ν. That is, we add
to the score of the state (corresponding, as we will see, to the score of the
structures generated by the nonterminals contained in the right–hand side of
the production) the score corresponding to the layout of the terminal symbols
generated by the production itself. Then, for each subset of the current set
containing the states S1 . . . Sm of the form:

i : jY → ν.
Score = ql

that is, a subset containing complete states with the same nonterminal on the
left–hand side that were predicted at the same j, and for each state:

j : kX → λ.Y µ
Score = p

add the state:

i : kX → λY.µ
Score = p + q∗

where q∗ = max1≤l≤m{ql}. That is, we add to the score of the state the score
corresponding to the expansion of the nonterminal symbol Y with the highest
score, i.e. the parse sub–tree with root Y with the highest score. It can be proved
recursively that, at the end, the algorithm will associate the start symbol R with
the score of the parse tree with the highest score. Moreover, the best parse tree
can be reconstructed by assigning to each expanded nonterminal symbol of a
completed state the corresponding complete state with the highest score.

4 Dealing with an Infinite Alphabet

In case of an infinite alphabet, the basic algorithm cannot be applied, since it
would be impossible to generate a priori all the productions of the grammar and
their corresponding scores. The solution we adopted is the following. We let the
parser work only on the production schemes, and we build the productions on
the fly while scanning the input string. The productions contained in the states
of the parser have the terminal symbols specified only on the left side of the
dot. That is, states generated during the prediction step of the parser contain,

54 G. Mauri and G. Pavesi

instead of terminal symbols, a special wildcard symbol (∗). Wildcard symbols
are replaced by terminals during the scanning step. For example, suppose we
are scanning a given symbol si of the input string. Each state with a wildcard
symbol after the dot:

i : kX → λ. ∗ µ

generates a new state:

i + 1 : kX → λsi.µ

where λ is composed by terminal or nonterminal symbols of the grammar, and
µ is composed only by wildcard or nonterminal symbols (it does not contain
symbols belonging to Σ, since it still has to be expanded).

Also, the score of the productions cannot be computed in advance. As we have
seen, the score of a state is set to zero, until the state is completed or complete. For
complete states, the score of the corresponding production is computed according
to the rules shown in Fig. 2, and then added to the score of the state itself, as
in the finite case. When a state is completed, i.e. a nonterminal in its right–
hand side has been completely expanded, the score is updated by adding the
score of the maximum parse sub–tree generated, once again as in the finite case.
Moreover, the scoring scheme for the productions can be easily changed in order
to deal with different goal functions.

5 Performance Results

In this section, we prove some results concerning the performance of the algo-
rithm when applied to the different versions of the problem.

In order to have a performance–guaranteed approximation algorithm, for
every possible instance of the problem the ratio between the score of the struc-
ture generated by the algorithm and the score of the optimal structure must be
bounded by a constant. That is, for every possible sequence s of arbitrary length
we must have:

R(s) =
A(s)

OPT (s)
≥ R (1)

where A(s) is the score of the structure generated by the algorithm when given
as input the sequence s, and OPT (s) is the score of the optimal embedding. We
will call R the absolute performance ratio of the algorithm, and denote with Rk

the absolute performance ratio when dealing with an alphabet of size k.

5.1 Binary Alphabet

We will start from the performance ratio of the algorithm over a binary alphabet,
i.e., in the HP model. Given a string s = s0 . . . sn, where si ∈{H, P}, two symbols
si and sj can be in contact on the grid only if |j − i| is odd. Furthermore, every
symbol can be in contact with at most two other symbols, except when it is

Approximation Algorithms for String Folding Problems 55

located at one of the endpoints of the sequence. In this case, it can be in contact
with three other symbols.

Now, let he be the number of H’s in even positions in a given sequence s; ho

the number of H’s in odd positions; h∗ = min{he, ho}. We also define OPT (s)
as the score (the number of contacts between H’s) of the optimal embedding for
a given sequence s. The above considerations yield the following:

Theorem 1.
OPT (s) ≤ 2h∗ + 2 (2)

It can be observed that the upper bound 2h∗ + 2 can be reached only by
sequences of odd length with two H’s at the endpoints. We also can give a lower
bound on the number of contacts that are generated by the algorithm.

Lemma 1. Given a sequence s, there always exists an embedding for s, corre-
sponding to a parse tree generated by the algorithm, that contains dh∗+1

2 e contacts
between H’s.

The proof of this lemma is quite cumbersome. Actually, we have been able to
prove that, in the set of the structures that can be generated by the algorithm,
there always exists a structure with dh∗+1

2 e contacts, but not, for example, that
this is the best structure of the set. Thus, we could give only a lower bound on
the actual performance ratio of the algorithm. In fact, as shown in Section 6,
the worst case that we found experimentally gave a performance ratio of 3/8.
This will also affect, as we will see, the performance ratio for the more general
versions. From the result of Lemma 1, however, it is straightforward to obtain
the performance ratio of the algorithm.

Theorem 2.

R2 ≥ dh∗+1
2 e

2h∗ + 2
≥ 1

4
(3)

5.2 Finite Alphabet

We will now show the results concerning the performance of the algorithm ap-
plied to the problem over any finite alphabet. Let s be a string of symbols taken
from an alphabet Σ, with |Σ| = k. Also, let σo

i and σe
i , mbox1 ≤ i ≤ k−1 be the

number of the occurrences of the symbol ai ∈ Σ in the sequence s respectively
in an odd and in an even position (we do not consider the number of occurren-
ces of the neutral symbol a0). Finally, let σ∗

i = min{σo
i , σe

i }, 1 ≤ i ≤ k − 1, and
σ∗ = max1≤i≤k{σ∗

i }.

Lemma 2. For any sequence s over an alphabet Σ with |Σ| = k,

OPT (s) ≤ 2
k−1∑

i=1

σ∗
i + 2 (4)

56 G. Mauri and G. Pavesi

By considering the symbol that corresponds to σ∗ the only non–neutral sym-
bol of the alphabet, we can easily prove the following lemma.

Lemma 3. For any sequence s over a finite alphabet, the set of structures ge-
nerated by the algorithm contains a structure that generates at least dσ∗+1

2 e
contacts.

We want to point out that once again the structure of Lemma 3 does not
correspond to the best structure that can be generated by the algorithm. In fact,
the algorithm tries to generate contacts not only with the symbol corresponding
to σ∗, but with all the non–neutral symbols, as shown in Fig. 3. Lemma 3 gua-
rantees only three contacts between a2 symbols, while the solution found by the
algorithm contains eleven contacts, and corresponds to the optimal embedding.
However, starting from the previous two lemmas, the worst case is a sequence
where the number of occurrences of every non–neutral symbol is equal. There-
fore, we have OPT (s) ≤ 2σ∗(k − 1) + 2. This fact yields the following theorem:

Theorem 3.

Rk ≥ dσ∗+1
2 e

2
∑k−1

i=1 σ∗
i + 2

≥ σ∗ + 1
4[σ∗(k − 1) + 1]

≥ 1
4(k − 1)

(5)

5.3 Infinite Alphabet

For the proof of the performance ratio of the algorithm applied to the problem
over an infinite alphabet, we start from the fact that, although the size of the
alphabet is not bounded, the input sequence is finite. Therefore, the number of
different symbols occurring in the sequence that can generate contacts is also
finite. Let d be this number. The terms σ∗

i and σ∗ are defined as in the previous
section, but in this case we have 1 ≤ i ≤ d, with d ≤ n/2. Thus, the performance
ratio of the algorithm on a given input s of length n can be defined as follows.

Theorem 4.

R∞ ≥ dσ∗+1
2 e

2
∑d

i=1 σ∗
i + 2

≥ σ∗ + 1
4[σ∗(n

2 − 1) + 1]
≥ 1

4(n
2 − 1)

(6)

5.4 The 3D Case

Although structures generated by our algorithm are two–dimensional, they any-
way guarantee a performance ratio also for the three-dimensional problem. In
the three-dimensional lattice, each non–neutral symbol can be in contact with at
most four equal symbols (five, if it is located at the endpoints of the sequence).
This fact yields the following lemma.

Lemma 4. For any sequence s over an alphabet Σ with |Σ| = k,

OPT (s) ≤ 4
k−1∑

i=1

σ∗
i + 2 (7)

Approximation Algorithms for String Folding Problems 57

This, together with Lemma 3, gives the absolute performance ratio R3d
k for

the three-dimensional problem over an alphabet of size k.

Theorem 5.

R3d
k ≥ dσ∗+1

2 e
4

∑k−1
i=1 σ∗

i + 2
≥ σ∗ + 1

8[σ∗(k − 1) + 1]
≥ 1

8(k − 1)
(8)

It is worth mentioning that in the case of a binary alphabet the absolute per-
formance ratio of our algorithm (1/8) equals the best approximation algorithm
known for the three–dimensional problem [7].

6 Experimental Evaluation

In the two–dimensional binary case, our algorithm equals the performance ratio
of the best algorithms so far proposed [7]. Therefore, we have tested it on random
instances of the two–dimensional problem over a binary alphabet, and compa-
red the results to the other algorithms (see Table 1). Given PH = Pr[si = H],
∀i ∈ [0, n], for different values of PH we have completed 1000 runs of our algo-
rithm and of the other two with performance–guaranteed ratios of 1/4 (called
B and C as in the original paper), on instances of length 63 with two H’s at the
endpoints (in order to reach the higher bound for the goal function).

The performance ratio of our algorithm seems to decrease as the average
number of H’s in the sequence is increased. The same trend, even if with lower
ratios, is shown by algorithm C, while algorithm B has a constant ratio. In the
tests, the worst case ratio of 1/4 has been reached only by algorithm B, while
on sequences like PP(HPP)4k+1, k ≥ 3 (whose optimal score is 4k), algorithm
C produces structures with score k + 3. Thus, its performance ratio approaches
1/4 as k is increased [7]. It should be noted that our algorithm found the optimal

Table 1. Average performance ratios of algorithms B and C [7], and our algorithm
(CFG) in the two–dimensional case of the problem over a binary alphabet, for different
values of PH = Pr[si = H], ∀i ∈ [0, n].

Algorithm B C CFG

PH = .15 0.52 0.60 0.79
PH = .33 0.48 0.57 0.72
PH = .5 0.48 0.55 0.68
PH = .66 0.48 0.53 0.63
PH = .85 0.48 0.50 0.55
Average 0.48 0.55 0.67

Worst case 0.25 0.33 0.375

58 G. Mauri and G. Pavesi

solution on this set of instances. The worst case found for our algorithm is 3/8:
this, as discussed in the previous sections, leaves open the issue of its performance
ratio.

7 Conclusions

We presented polynomial–time approximation algorithms for the string folding
problem that guarantee performance ratios both for the two– and three–dimen-
sional case, and work over any alphabet, finite and infinite. To our knowledge,
these are the first performance–guaranteed approximation algorithms that can
be applied to the problem over alphabets larger than the binary one, while for
the latter we equaled the performances of the best algorithms so far proposed,
with better experimental results. In each case, the performance ratios that have
been proved serve only as a lower bound for the actual ones. Our approach can
also be easily extended to different goal functions, and also to more powerful
grammars and non–discrete versions of string folding problems, as long as the
correspondence between parse trees and feasible structures is preserved.

Acknowledgements

This work has been supported by the Italian Ministry of University, under the
project “Bioinformatics and Genomic Research”.

References

1. K.A. Dill, Dominant forces in protein folding. Biochemistry, 24(1985), 1501.
2. B. Hayes, Prototeins. American Scientist, 3(1998), 86.
3. M. Paterson, T. Przytycka, On the Complexity of String Folding. Discrete and

Applied Maths, 71(1996), 217–230.
4. P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, M. Yannakakis, On the

Complexity of Protein Folding. Proc. of the Second Annual International Conference
on Computational Biology (RECOMB ’98), 61–62, New York, 1998.

5. B. Berger, T. Leighton, Protein Folding in the HP Model is NP Complete. Proc.
of the Second Annual International Conference on Computational Biology (RE-
COMB ’98), 30–39, New York, 1998.

6. A. Nayak, A. Sinclair, U. Zwick, Spatial Codes and the Hardness of String Fol-
ding Problems. Proceedings of the 9th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA ’98), 639–648, San Francisco, 1998.

7. W.E. Hart, S.C. Istrail, Fast Protein Folding in the Hydrophobic-Hydrophilic Model.
Journal of computational biology, 3(1), 53–96, 1996.

8. G. Mauri, G. Pavesi, A. Piccolboni, Approximation Algorithms for Protein Folding
Prediction. Proceedings of the 10th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA ’99), S945–S946, Baltimore, 1999.

9. J. Earley, An Efficient Context-Free Parsing Algorithm. Communications of the
ACM, 6(1970), 451–455.

10. A. Stölcke, An Efficient Probabilistic Context–Free Parsing Algorithm That Com-
putes Prefix Probabilities. Computational Linguistics, 21(2), 165–201, 1995.

	Introduction
	The Algorithm
	The Parsing Algorithm
	Dealing with an Infinite Alphabet
	Performance Results
	Binary Alphabet
	Finite Alphabet
	Infinite Alphabet
	The 3D Case

	Experimental Evaluation
	Conclusions
	Acknowledgements
	References

