
Two Problems in Wide Area Network
Programming?

(Position Statement)

Ugo Montanari

Dipartimento di Informatica, Università di Pisa, Italy
ugo@di.unipi.it

Motivations Highly distributed networks have now become a common plat-
form for large scale distributed programming. Internet applications distinguish
themselves from traditional applications on scalability (huge number of users
and nodes), connectivity (both availability and bandwidth), heterogeneity (ope-
rating systems and application software) and autonomy (of administration do-
mains having strong control of their resources). Hence, new programming para-
digms (thin client and application servers, collaborative “peer-to-peer”, code-on-
demand, mobile agents) seem more appropriate for applications over internet.

These emerging programming paradigms require on the one hand mecha-
nisms to support mobility of code and computations, and effective infrastructu-
res to support coordination and control of dynamically loaded software modules.
On the other hand, an abstract semantic framework to formalize the model of
computation of internet applications is clearly needed. Such a semantic frame-
work may provide the formal basis to discuss and motivate controversial de-
sign/implementation issues and to state and certify properties in a rigorous way.

Concern for the limited understanding we have of network infrastructure and
its applications has been explicitly expressed in the US PITAC documents [9].
Also a theme on mobile/distributed reactive systems has been suggested as a
new, proactive initiative for long-term, innovative research in a recent meeting
promoted by the European Commission within the FET part of the V Framework
programme.

Here we point out and shortly outline two issues which arise in the definition
of such an abstract semantic framework.

Synchronization in a Coordination Framework Coordination [4] is a key
concept for modeling and designing heterogeneous, distributed, open ended sy-
stems. It applies typically to systems consisting of a large number of software
components, - considered as black boxes - which are independently programmed
in different languages, and may change their configuration during execution.

While most of the activity is asynchronous, some applications, typically com-
puter supported collaborative work or transactions among multiple partners,
need primitives for synchronization. Synchronization might consist of complex
computations to be performed by all partners on shared data before the global
? Research supported by TMR Network GETGRATS and by MURST project TOSCa.

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 609–611, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



610 U. Montanari

commit action takes place. While these primitives will be implemented in terms
of asynchronous protocols in the lower levels of system software, it is important
to offer to the user a high level model of them, to be employed for specification,
validation and verification.

The concepts developed for concurrent access to data bases, like serializability
or nested transactions, are not fully adequate in this setting, since they refer
to restricted models of computation. Instead, such issues should be considered
like name and process mobility, causal dependencies between interactions, and
refinement steps in the design process. We see this as a challenging problem,
with aspects of logic, semantics, concurrency theory, programming languages,
software architectures, constraint solving and distributed algorithms.

As a contribution we just mention two pieces of work by the author and
collaborators. The first is about a generalized version of Petri nets: A zero-safe
net [1,2] is in a stable state when certain places are empty. Step sequences from
stable states to stable states through non-stable states are transactions, and
correspond to transitions of an abstract net. The second piece of work is a model,
called tile logic [7,3] (see http://www.di.unipi.it/˜ugo/tiles.html) which extends
structured operational semantics (SOS) by Gordon Plotkin and rewriting logic
by Jose Meseguer. Tiles are inference rules which can be combined horizontally
to build transactions and vertically to build ordinary computations.

Finite State Verification with Name Creation Finite state verification is
possible when threads of control are independent of the actual data. In this case
an automaton encompassing the whole state space can be constructed, possibly
minimized, and checked for properties of interest expressed in some modal or
temporal logic. This technique has been successfully and extensively applied to
hardware and protocols.

When the computation involves the creation of new names which can occur
in transition labels, the ordinary finite state techniques cannot be applied, since
dynamic allocation of names with reuse of the old ones is required if the states
must remain finite. On the other hand, in the coordination approach control
is actually often independent from data, since computation mostly consists of
redirecting streams, connecting and disconnecting users, transferring them from
an ambient to another, resolving conflicts and performing security checks. Crea-
tion of new names is actually quite common in wide area programming, since
nonces generated during secure sessions, process locations, and causes of forthco-
ming events can also be represented as names. Finite representation techniques
for such systems together with expressive logical frameworks and efficient algo-
rithms are needed for checking security and other global and local properties of
distributed applications.

Some experience has been described in the literature with π-calculus verifi-
cation [10,5,6]. Also Marco Pistore and the author have introduced certain clas-
ses of automata, called History Dependent (HD) [8], which are able to allocate
and garbage collect names. Behavioral properties related to dynamic network
connectivity, locality of resources and processes and causality among events can
be formally verified on finite HD-automata. However efficiency is not satisfac-



Two Problems in Wide Area Network Programming 611

tory and lots of work remain to be done about the theoretical and practical
applicability of these methods.

References

1. R. Bruni and U. Montanari. Zero-safe nets: Comparing the Collective and In-
dividual Token Approaches. Inform. and Comput., 156:46–89. Academic Press,
2000.

2. R. Bruni and U. Montanari. Executing Transactions in Zero-Safe Nets. Proc.
International Conference on Petri Nets 2000, Aarhus, to appear.

3. R. Bruni, U. Montanari and V. Sassone. Open Ended Systems, Dynamic Bisi-
mulation and Tile Logic, to appear in Proc IFIP TCS2000, Sendai. Proc IFIP
TCS2000, Sendai, this volume.

4. N. Carriero and D. Gelenter. Coordination Languages and Their Significance.
Communications of the ACM, 35(2), 97–107, 1992.

5. M. Dam. Model Checking Mobile Processes. Information and Computation 129(1),
1996, pp. 35-51.

6. G. Ferrari, S. Gnesi, U. Montanari, M. Pistore and G. Ristori. Verifying Mobile
Processes in the HAL Environment In: Alan J. Hu and Moshe Y. Vardi, Eds.,
CAV’98, Springer LNCS 1427, pp.511-515.

7. F. Gadducci and U. Montanari. The Tile Model. In: G. Plotkin, C. Stirling and M.
Tofte, Eds., Proofs, Languages and Interaction: Essays in Honour of Robin Milner,
MIT Press, to appear.

8. U. Montanari and M. Pistore. An Introduction to History Dependent Automata.
In: Andrew Gordon, Andrew Pitts and Carolyn Talcott, Eds, Second Workshop
on Higher-Order Operational Techniques in Semantics (HOOTS II), ENTCS, Vol.
10, 1998.

9. President’s Information Technology Advisory Committee. Information Technology
Research: Investing in Our Future. Report to the President, National Coordination
Office for Computing, Information, and Communications, February 1999, available
from http://www.hpcc.gov/ac/report/.

10. B. Victor and F. Moller. The Mobility Workbench: A Tool for the π-calculus.
Proc. CAV’94, Springer LNCS 818.


	Motivations
	Synchronization in a Coordination Framework
	Finite State Veri cation with Name Creation
	References

