
Parallel Approximation Algorithms for
Maximum Weighted Matching in General

Graphs

Ryuhei Uehara1 and Zhi-Zhong Chen2

1 Natural Science Faculty, Komazawa University
2 Department of Mathematical Sciences, Tokyo Denki University.

Abstract. The problem of computing a matching of maximum weight
in a given edge-weighted graph is not known to be P-hard or in RNC.
This paper presents four parallel approximation algorithms for this pro-
blem. The first is an RNC-approximation scheme, i.e., an RNC algorithm
that computes a matching of weight at least 1 − ε times the maximum
for any given constant ε > 0. The second one is an NC approximation
algorithm achieving an approximation ratio of 1

2+ε
for any fixed ε > 0.

The third and fourth algorithms only need to know the total order of
weights, so they are useful when the edge weights require a large amount
of memories to represent. The third one is an NC approximation algo-
rithm that finds a matching of weight at least 2

3∆+2 times the maximum,
where ∆ is the maximum degree of the graph. The fourth one is an RNC
algorithm that finds a matching of weight at least 1

2∆+4 times the maxi-
mum on average, and runs in O(log ∆) time, not depending on the size
of the graph.

Keywords: Graph algorithm, maximum weighted matching, approxi-
mation algorithm, parallel algorithm.

1 Introduction

Throughout this paper, a graph means an edge-weighted graph, unless explicitly
specified otherwise. A matching in a graph G is a set M of edges in G such that no
two edges in M share an endpoint. The weight of a matching M is the total weight
of the edges in M . The maximum weighted matching (MWM) problem is to find
a matching of maximum weight of a given graph. The maximum cardinality
matching (MCM) problem is the special case of the MWM problem where all
edges of the input graph have the same weight.

For the MWM problem, Edmonds’ algorithm [Edm65] has stood as one of the
paradigms in the search of polynomial-time algorithms for integer programming
problems (see also [Gal86]). Some sophisticated implementations of his algorithm
have improved its time complexity: for example, Gabow [Gab90] has given an
algorithm using O(n(m + n log n)) time and O(m) space.

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 84–98, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Parallel Approximation Algorithms 85

The parallel complexity of the MWM problem is still open; Galil asks if the
MWM problem is P-complete [Gal86]. The best known lower bound is the CC-
hardness result pointed out in [GHR95] (see [MS92] for the definition of the class
CC). On the other hand, the best known upper bound is the RNC algorithm of
Karp, Upfal, and Wigderson [KUW86] for the special case where the weights on
the edges of the input graph G are bounded from above by a fixed polynomial
in the number of vertices in G. We call this case the polynomial-weight case of
the MWM problem.

From the practical point of view, Edmonds’ algorithm is too slow. Faster
algorithms are required, and heuristic algorithms and approximation algorithms
have been widely investigated. A survey of heuristic algorithms can be found
in [Avi83], and some approximation algorithms can be found in [Ven87]. In
particular, a 1

2 -approximation algorithm can be obtained by a greedy strategy
that picks up the heaviest edge e and deletes e and its incident edges, and
repeats this until the given graph becomes empty. Recently, Preis [Pre99] gave
a linear-time implementation of this greedy algorithm.

For the MCM problem, several NC approximation algorithms are known (see
[KR98] for comprehensive reference). In particular, Fischer et al. [FGHP93] sho-
wed an NC algorithm that computes a matching with cardinality at least 1 − ε
times the maximum for any fixed constant ε > 0. This NC approximation algo-
rithm is based on essential properties of the MCM problem that do not belong
to the MWM problem.

Our first result is an RNC approximation scheme for the MWM problem, i.e.,
an RNC algorithm which computes a matching of weight at least 1− ε times the
maximum for any fixed constant ε > 0. This scheme uses the RNC algorithm
for the polynomial-weight case of the MWM problem due to Karp et al. as a
subroutine.

Our second result is an NC approximation algorithm for the MWM problem.
This algorithm can be viewed as a parallelized version of the greedy strategy.
For any fixed constant ε > 0, this algorithm computes a matching of weight at
least 1

2+ε times the maximum. The work done by the algorithm is optimal up to
a polylogarithmic factor.

In the results above, the size of the problem depends not only on the number
of edges and vertices, but also on space to represent the edge weights. Thus
the algorithms are not useful when the edge weights require a large amount of
memories to represent. We next consider the algorithms that only use the total
order of the weights, and they do not need to store each weight itself.

Our third result is an NC approximation algorithm for the MWM problem.
This algorithm computes a matching of weight at least 2

3∆+2 times the maximum
weight, where ∆ is the maximum degree of given graph. It runs in O(log n) time
using n processors.

Our fourth result is an RNC approximation algorithm for the MWM problem.
This algorithm computes a matching whose expected weight is at least 1

2∆+4
times the maximum weight. It runs in O(log ∆) time using n processors. Remark

86 R. Uehara and Z.-Z. Chen

that the time complexity does not depend on the size of the graph; it can be
performed efficiently in parallel even on a large scale distributed system.

The rest of the paper is organized as follows. In section 2, we give basic
definitions of the problem. The first and second algorithms are discussed in
section 3. The third and fourth algorithms for graphs with heavy weights are
stated in section 4.

2 Preliminaries

We will deal only with graphs without loops or multiple edges. Let G = (V, E)
be a graph. For each edge e of G, wG(e) denotes the weight of e in G. We
assume that each weight is positive, and it is different from other weights. For
a subset F of edges of G, wG(F) denotes the total weight of the edges in F ,
i.e., wG(F) =

∑
e∈F wG(e). A maximal matching of G is a matching of G that is

not properly contained in another matching. A maximum weighted matching of
G is a matching whose weight is maximized over all matchings of G. Note that
a maximum weighted matching must be maximal. Let M be a matching and
α = (e1, e2, · · · , el) be a path of length l in a graph. We call α an alternating path
admitted by M if edges on α are alternately in M , that is, either {e1, e3, · · ·} ⊆ M
or {e2, e4, · · ·} ⊆ M . We sometimes unify the alternating path and the set of
edges in the matching.

The neighborhood of a vertex v in G, denoted by NG(v), is the set of vertices
in G adjacent to v. The degree of a vertex v in G is |NG(v) | , and denoted by
degG(v). The maximum degree of a graph G is maxv∈V degG(v), and denoted by
∆G. Without loss of generality, we assume that ∆G > 2. The notations wG(e),
degG(v), NG(v), and ∆G are sometimes denoted by just w(e), deg(v), N(v), and
∆ if G is understood. For F ⊆ E, G[F] denotes the graph (V, F).

The model of parallel computation used here is the PRIORITY PRAM where
the processors operate synchronously and share a common memory, both simul-
taneous reading and simultaneous writing to the same cell are allowed; in case
of simultaneous writing, the processor with lowest index succeeds. An NC algo-
rithm (respectively, RNC algorithm) is one that can be implemented to run in
polylogarithmic time (respectively, expected polylogarithmic time) using a po-
lynomial number of processors on a PRIORITY PRAM. More details about the
model, NC algorithms and RNC algorithms can be found in [Joh90,KR90].

An algorithm A for the MWM problem achieves a ratio of ρ if for every graph
G, the matching M found by A on input G has weight at least ρ ·wG(M∗), where
M∗ is a maximum weighted matching of G. An RNC approximation scheme for
the MWM problem is a family {Ai : i ≥ 2} of algorithms such that for any
fixed integer i ≥ 2, Ai is an RNC algorithm and achieves a ratio of 1 − 1

i .

Parallel Approximation Algorithms 87

3 Approximation Algorithms

3.1 Common Preprocess

Throughout the rest of this paper, let G be the input graph, M∗ be a maximum
weighted matching of G, and n and m be the number of vertices and edges in
G, respectively. Let wmax be the maximum weight of an edge in G. Let k be a
fixed positive integer and σ be a fixed positive real with 1 > σ > 0; the actual
values of k and σ will become clear later.

For each edge e of G, we define an integer r(e) as follows:

– If kn
wmax

· wG(e) ≤ 1, then let r(e) = 0.
– Otherwise, let r(e) be the smallest integer i such that kn

wmax
·wG(e) ≤ (1+σ)i.

We call r(e) the rank of e. Note that r(e) ∈ {0, 1, · · · , ⌈log1+σ kn
⌉}.

Let Ei be the set of edges of G with rank i. Let M∗
i = M∗ ∩Ei. The following

lemma shows that the total weight of edges in M∗
0 is significantly small.

Lemma 1.
∑

e∈M∗
0

wG(e) ≤ 1
2kwG(M∗).

Proof. For each edge e ∈ E0, wG(e) ≤ wmax
kn . Thus,

∑
e∈M∗

0
w(e) ≤ n

2
wmax

kn ≤
wmax
2k ≤ 1

2kw(M∗). ut
Let G′ be the graph obtained from G by deleting all edges of rank 0 and

modifying the weight of each rest edge e to be (1 + σ)r(e).

3.2 RNC approximation scheme

In this section, we present the RNC approximation scheme for the MWM pro-
blem. It is based on the following result due to Karp et al.

Lemma 2. [KUW86] There is an RNC algorithm for the polynomial-weight
case of the MWM problem.

Theorem 1. There exists an RNC approximation scheme for the MWM pro-
blem.

Proof. Let ` be an integer larger than 1. Suppose we want to compute a matching
M of G with wG(M) ≥ (1 − 1

`) · wG(M∗). Then, we fix σ = 1
` and k = d `2

2 e,
and construct G′ as in Section 3.1. Note that the weight of each edge of G′

is polynomial in n. So, we use the RNC algorithm in Lemma 2 to compute a
maximum weighted matching M ′ of G′. Note that M ′ is also a matching of G.
It remains to show that wG(M ′) ≥ (1 − 1

`)wG(M∗).
For each i ≥ 1, let M ′

i = M ′ ∩ Ei. Since M ′ is a maximum weighted mat-
ching of G′ and ∪i≥1M

∗
i is a matching of G′, we have

∑
i≥1

∑
e∈M∗

i
wG′(e) ≤

wG′(M ′) =
∑

i≥1
∑

e∈M ′
i
wG′(e) =

∑
i≥1 |M ′

i | (1 + σ)i.

88 R. Uehara and Z.-Z. Chen

On the other hand, since M∗ is a maximum weighted matching of G, we have

wG(M∗) ≥
∑

i≥1

∑

e∈M ′
i

wG(e) >
∑

i≥1

|M ′
i | wmax

kn
(1 + σ)i−1

since wmax
kn (1 + σ)i−1 < wG(e) if e ∈ M ′

i with i ≥ 1.

Thus, wG(M ′) =
∑

i≥1
∑

e∈M ′
i
wG(e) ≥ wmax

kn ·
∑

i≥1
|M ′

i | (1+σ)i

(1+σ)

≥ wmax
kn(1+σ)

∑
i≥1

∑
e∈M∗

i
wG′(e) ≥ wmax

kn(1+σ)

∑
i≥1

∑
e∈M∗

i

kn
wmax

wG(e)

= wG(M∗−M∗
0)

1+σ .

Now, by Lemma 1, wG(M ′) ≥ wG(M∗−M∗
0)

1+σ ≥ 1
1+σ

(
1 − 1

2k

)
wG(M∗). Clearly,

1
1+σ

(
1 − 1

2k

) ≥ 1 − 1
` . This completes the proof. ut

3.3 NC algorithm

In this section, we parallelize the greedy algorithm to obtain an NC approxima-
tion algorithm for the MWM problem that achieves a ratio of 1

2+ε for any fixed
ε > 0.

The NC approximation algorithm will work on graph G′ defined in Sec-
tion 3.1. Recall that each edge e of G′ inherits a rank r(e) from G. Let ` =⌈
log1+σ kn

⌉
. The highest rank is `. The algorithm works as follows:

NC Algorithm
1. For each i = `, ` − 1, · · · , 1, perform the following steps:

1.1. Find a maximal matching Mi in G′
i = (V, Fi), where Fi is the set

of edges of G′ with rank i.
1.2. Remove all edges e from G′ such that e ∈ Mi or e is incident to an

endpoint of an edge in Mi.
2. Output ∪1≤i≤`Mi.

Let M = ∪1≤i≤`Mi. By Steps 1.1 and 1.2, M is clearly a maximal matching of
G′.

Lemma 3. wG(M) ≥ 1
2(1+σ)wG(M∗ − M∗

0).

Proof. The idea is to distribute the weights of all edges of M∗ −M∗
0 to the edges

of M . Let e be an edge in M∗ − M∗
0 . Let i = r(e). We distribute the weight

wG(e) of e as follows:

– Case (1): e ∈ Mi. Then, we distribute wG(e) to e itself.
– Case (2): e 6∈ Mi but one or both endpoints of e are incident to an edge of

Mi. Then, we distribute wG(e) to an arbitrary edge e′ ∈ Mi such that e and
e′ share an endpoint. Note that 1

1+σ ≤ wG(e)
wG(e′) ≤ 1 + σ.

– Case (3): None of cases (1) and (2) occurs. Then, by the algorithm, e must
share an endpoint with at least one edge e′ ∈ Mj such that j > i. We
distribute wG(e) to an arbitrary such edge e′. Note that wG(e) ≤ (1 + σ)i ≤
(1 + σ)j−1 < wG(e′).

Parallel Approximation Algorithms 89

Consider an edge e′ ∈ M . Since M∗ − M∗
0 is a matching, at most two edges

e ∈ M∗ −M∗
0 can distribute their weights to e′. Moreover, by Cases (1) through

(3), the total weight newly distributed to e′ is at most 2(1 + σ)wG(e′). Thus,∑
e′∈M 2(1+σ)wG(e′) ≥ wG(M∗−M∗

0). Consequently, wG(M) ≥ 1
2(1+σ)wG(M∗−

M∗
0). ut
Thus we have the following theorem.

Theorem 2. There is an NC approximation algorithm for the MWM problem
that achieves a ratio of 1

2+ε for any fixed ε > 0. It runs in O(log4 n) time using
n + m processors on the PRIORITY PRAM.

Proof. Fix a positive real number ε. Suppose we want to compute a matching
M of G with wG(M) ≥ 1

2+ε · wG(M∗). Then, we fix σ = ε
3 and k = d 3

ε + 1.5e,
construct G′ as in Section 3.1, and run the above NC algorithm on input G′ to
obtain a matching M . By Lemmas 1 and 3, wG(M) ≥ 1

2(1+σ)

(
1 − 1

2k

)
wG(M∗) ≥

1
2+εwG(M∗).

We next analyze the complexity needed to compute M . G′ can be constructed
from G in O(1) time using n + m processors. M can be computed from G′ in
O(log1+σ(kn) · (log n + T (n, m)) time using max{(n + m), P (n, m)} processors
on the PRIORITY PRAM, provided that a maximal matching of a given n-
vertex m-edge graph can be computed in T (n, m) using P (n, m) processors on
the PRIORITY PRAM. According to [IS86], T (n, m) = log3 n and P (n, m) =
n + m. So, M can be computed in O(log4 n) time using n + m processors on the
PRIORITY PRAM. ut

4 Approximation Algorithms for Graphs with Heavy
Weights

We next show two algorithms that only use the total order of the weights. The
first one is an NC algorithm, and the second one is an RNC algorithm. Both
algorithms contain three phases:

Outline of Algorithms for heavy weights
1. For given G, construct a heavy spanning forest F (defined later) of G.
2. Construct a set of paths P in G[F].
3. Produce a matching in G[P].

The algorithms are the same except the phase 3. We now describe each phase,
and analyze their complexity and approximation ratio.

4.1 The First Phase

The first phase contains two steps:
1.1. In parallel, each vertex marks the heaviest edge incident to the vertex;
1.2. F is the set of marked edges.

90 R. Uehara and Z.-Z. Chen

We first show that G[F] is acyclic.

Proposition 1. G[F] is acyclic.

Proof. Assume G[F] is not acyclic and e1, e2, · · · , el are edges producing a cycle
in G[F]. We let v1, v2, · · · , vl be vertices on the cycle. If two consecutive vertices
mark the same edge, there should be an edge on the cycle not marked by any
vertices. Hence each vertex marks different edge. Thus we can assume that vi

marks ei, and w(e1) < w(e2). However, this implies that w(e1) < w(e2) < · · · <
w(el) < w(e1), that is a contradiction. ut

Thus, G[F] is a set of trees. Moreover, it is trivial that degG[F](v) > 0 for
all v in V . Hence we call F heavy spanning forest of G. We now introduce some
notions for the heavy spanning forest F . Let T be a tree in G[F], and nT be the
number of vertices in T . Then, in the first step, each of nT vertices in T marks
one edge, and T has nT − 1 edges. This implies that T has exactly one edge
marked by its both endpoints. We call the edge and two vertices a root edge and
two roots of T , respectively. That is, each tree has one root edge and two roots.
We can show the following lemma by a simple induction.

Lemma 4. Let T be a tree in F , and er be the root edge of T . Then for any
leaf-root path (el, e1, e2, · · ·, er) in T , w(el) < w(e1) < w(e2) < · · · < w(er).

That is, the root edge is the heaviest edge in the tree. We now show the theorem
for the relation between w(M∗) and w(F).

Theorem 3. w(F) ≥ w(M∗).

Proof. Let e = {u, v} be an edge in M∗, but not in F . Then, since e 6∈ F ,
e is not marked by both u and v. Let eu and ev be edges marked by u and
v, respectively. Since M∗ is a matching, neither eu nor ev is not in M∗. That
is, {eu, ev} ⊆ F − M∗. Now we divide the weight w(e) in two weights 1

2w(e),
and distribute them to eu and ev, respectively. Since e is not marked, w(e) <
w(eu), w(ev). Moreover, eu and ev are not distributed by the other edges in M∗

at the points u and v since e is an element in the matching M∗. That is, no edge
e′ in F − M∗ will be distributed more than w(e′) by the edges in M∗ − F . Thus
each edge in M∗ is either in F or it can be divided and distributed to two edges
in F − M∗. This implies that w(F) ≥ w(M∗). ut

We moreover analyze the proof of Theorem 3 in detail. Let C = F ∩ M∗,
F̂ = F −C, and M̂ = M∗ −C. We let R be the set of the root edges of F . Then
we have the following corollary.

Corollary 1. w(F) ≥ 2w(M∗) − w(C) − w(R).

Proof. In the proof of Theorem 3, each weight of an edge in M̂ is divided and
distributed to two edges in F̂ , because corresponding edges in F̂ can be distri-
buted at both endpoints. However, only root edges can be distributed at both

Parallel Approximation Algorithms 91

endpoints. Now we distribute each weight of an edge in M̂ onto two edges in F̂
without division. In the case, root edges may be distributed twice, hence we have
w(F̂) ≥ 2w(M̂)−w(R). Thus w(F) = w(F̂)+w(C) ≥ 2w(M̂)−w(R)+w(C) =
2w(M∗ − C) − w(R) + w(C) = 2w(M∗) − w(C) − w(R). ut

4.2 The Second Phase

2.1. In parallel, each vertex v with degG[F](v) > 2 deletes all edges incident to
v except two heaviest edges. Let P be the set of remaining edges. (Com-
ment: It is easy to see that G[P] is a set of paths, and degG[P](v) > 0 still
holds if v was not a leaf in F .)

We show a proposition and a lemma for trees, and main theorem in this subsec-
tion.

Proposition 2. Let T be a tree with n vertices. We let ni be the number of
vertices of degree i with 1 ≤ i ≤ ∆T . Then (a)

∑∆T

i=1 ni = n; and (b)
∑∆T

i=1 ini =
2(n − 1).

Proof. (a) is trivial. When each vertex counts up its degree, each edge is counted
exactly twice. Since any tree with n vertices has n− 1 edges [Har72, Chapter 4],
(b) follows. ut

Lemma 5. Let L(n, ∆) be the maximum number of leaves in a tree of maximum
degree ∆ with n vertices. Then L(n, ∆) ≤ (∆−2)n−2

∆−1 .

Proof. Let T be an n vertex tree with L(n, ∆) leaves. Let VI be the set of
internal vertex of T . Then, the graph induced by VI is also a tree. The induced
tree contains |VI | vertices and |VI | − 1 edges. Each leaf of T is incident to one
internal vertex. Moreover, each vertex in VI can be incident to at most ∆ vertices.
Thus we have L(n, ∆) ≤ ∆ |VI | −2(|VI | −1). We also have L(n, ∆)+ |VI | = n.
Hence L(n, ∆) ≤ (∆−2)n−2

∆−1 . ut

Theorem 4. w(P) > 1
∆G[F]−1w(F).

Proof. We first assume that G[F] contains only one tree. We let ni be the number
of vertices of degree i in G[F] with 1 ≤ i ≤ ∆. Each vertex does not delete the
nearest edge to the root edge. Thus no edge will be deleted by two different
vertices. Hence, by Proposition 2, the number of edges deleted in step 2.1 is
equal to

∑∆
i=3(i − 2)ni =

∑∆
i=3 ini − 2

∑∆
i=3 ni = 2(n − 1) − n1 − 2n2 − 2(n −

n1 − n2) = n1 − 2. Using Lemma 5, we have |P |
|F | = n−1−n1+2

n−1 ≥ n+1−L(n,∆)
n−1 ≥

(∆−1)(n+1)−(∆−2)n+2
(n−1)(∆−1) = n+∆+1

(n−1)(∆−1) = 1
∆−1 + ∆+2

(n−1)(∆−1) > 1
∆−1 .

We then consider the weights of deleted edges. For each deleted edge e, there
exists at least one edge e′ in P with w(e′) > w(e). On the other hand, for each

92 R. Uehara and Z.-Z. Chen

remaining edge e′ in P , it is corresponded by such deleted edges e at most ∆−1

times. This together with |P |
|F | > 1

∆−1 implies that w(P)
w(F) > 1

∆−1 .

When G[F] contains two or more trees, the discussion above can be applied
on each tree. More precisely, let F contain k trees T1, T2, · · · , Tk, and Pi be
the path set obtained from Ti with 1 ≤ i ≤ k. Using the discussion above, we
have w(Pi)

w(Ti)
> 1

∆−1 , consequently, w(Pi) > w(Ti)
∆−1 with 1 ≤ i ≤ k. Thus w(P) =

∑k
i=1 w(Pi) > 1

∆−1

∑k
i=1 w(Ti) = 1

∆−1w(F), consequently, w(P)
w(F) > 1

∆−1 . ut

4.3 The Third Phase

NC Algorithm

We define the distance of edges to describe the third phase of NC algorithm. Let
α = (e1, e2, · · · , el) be a path of length l. Then the distance of ei from e1 on α,
denoted by D(ei, e1), is defined by D(e1, e1) = 0, and D(ei, e1) = D(ei−1, e1)+1
for 1 < i ≤ l. The third phase of NC algorithm contains the following steps:

3.1. In parallel, find the heaviest edge in each path in P .
3.2. MN is the set of edges having even distance from the heaviest edge on

the same path.

As a result, each path in P becomes alternating path containing the heaviest
edge on the path admitted by MN . We here show a proposition and a useful
lemma for paths with special properties.

Proposition 3. Let α = (e1, e2, · · · , el) be a path with w(e1) > w(e2) > · · · >
w(el). Then the maximum weighted matching of α, say Mα, is either {e1, e3, · · · ,
el} for odd l, or {e1, e3, · · · , el−1} for even l. Moreover, w(Mα) ≥ 1

2w(α).

Proof. When l is even, considering w(e1) > w(e2), w(e3) > w(e4), · · ·, w(el−1) >
w(el), we immediately have the proposition. When l is odd, the last edge el just
increases the weight of Mα. ut

Lemma 6. Let α = (e1, e2, · · · , el) be a path such that w(e1) < w(e2) < · · · <
w(ei−1) < w(ei) > w(ei+1) > · · · > w(el) for some i with 1 < i < l. Let A1 be
the alternating path containing ei, A2 be the other alternating path, and Mα be
the maximum weighted matching of α.

(1) Either A1 = Mα or A2 = Mα. (Hence w(Mα) ≥ 1
2w(α).)

(2) When A2 = Mα, w(ei−1) + w(ei+1) ≥ w(ei).
(3) w(A1) ≥ 1

3w(α).

Proof. (1) We first show that Mα satisfies either (a) ei ∈ Mα or (b) {ei−1, ei+1} ⊆
Mα. To derive a contradiction, assume that ei 6∈ Mα, ei−1 6∈ Mα, and ei+1 ∈ Mα.
Then (Mα −{ei+1})∪{ei} is a matching heavier than Mα since w(ei) > w(ei+1),
that is a contradiction. The other symmetric case (ei 6∈ Mα, ei−1 ∈ Mα, and

Parallel Approximation Algorithms 93

ei+1 6∈ Mα) can be shown by the same argument. In the case (a), we have
ei ∈ Mα, ei−1 6∈ Mα, and ei+1 6∈ Mα. Then we can consider α as two pa-
ths (e1, e2, · · · , ei−2) and (ei+2, · · · , el) separately. Using Proposition 3, we have
Mα = {ei} ∪ {ei−2, ei−4, · · ·} ∪ {ei+2, ei+4, · · ·}, consequently, Mα = A1. In
the case (b), we have ei 6∈ Mα, ei−1 ∈ Mα, and ei+1 ∈ Mα. Thus we have
Mα = {ei−1, ei+1} ∪ {ei−3, ei−5, · · ·} ∪ {ei+3, ei+5, · · ·}, consequently, Mα = A2.
(2) Let A′

2 be (A2 − {ei−1, ei+1}) ∪ {ei}. Then A′
2 is a matching. Since A2 is

the maximum weighted matching, w(A′
2) ≤ w(A2). This implies that w(ei−1) +

w(ei+1) ≥ w(ei).
(3) By (1), either A1 = Mα or A2 = Mα. When A1 = Mα, the claim follows
from Proposition 3. Thus we assume that A2 = Mα.

We here consider two paths α1 = (e1, e2, · · · , ei−1, ei) and α2 = (ei, ei+1, · · · ,
el). Let A1

1 (and A2
1) be the alternating path of α1 (and α2, resp.) containing ei.

That is, A1
1 is the former half of A1, A2

1 is the latter half of A1, and A1
1∩A2

1 = {ei}.
Then, by Proposition 3, w(A1

1) ≥ 1
2w(α1) and w(A2

1) ≥ 1
2w(α2).

Thus, w(A1) = w(A1
1 ∪ A2

1) = w(A1
1) + w(A2

1) − w(A1
1 ∩ A2

1) ≥ 1
2 (w(α1) +

w(α2))−w(ei) = 1
2 (w(α)+w(ei))−w(ei) = 1

2 (w(α)−w(ei)) ≥ 1
2 (w(α)−w(A1)).

This implies that w(A1) ≥ 1
3w(α). ut

We here remark that, in Lemma 6(1), we cannot determine which alternating
path is heavier in general. (For example, a path (e1, e2, e3) has different answers
when w(e1) = 1, w(e2) = 3, w(e3) = 1 and w(e1) = 2, w(e2) = 3, w(e3) = 2).
We also remark that Lemma 6(1) does not hold for general weighted path (for
example, each alternating path of (e1, e2, e3, e4) is not the maximum weighted
matching for w(e1) = 5, w(e2) = 1, w(e3) = 1, w(e4) = 5).

We now show the relation between w(MN) and w(P).

Lemma 7. w(MN) ≥ 1
3w(P).

Proof. We first observe the following claim: in step 2.1, if vertex v delete an edge
{u, v}, the edge was marked by u in step 1.1. This is easy because each vertex
marked the heaviest edge in step 1.1, and remains the heaviest edge(s) in step
2.1. Using the claim and simple induction, we can show that each path in P is
either

(1) a part of some leaf-root path in some tree in F ; or
(2) two leaf-root paths connected by the root edge in a tree in F .

In the case (1), combining Lemma 4 and Proposition 3, MN contains the ma-
ximum weighted matching of the path, and that has at least half weight of
the path. Thus it is sufficient to show for the case (2). By Lemma 4, the
path α = (e1, e2, · · · , el) satisfies that w(e1) < w(e2) < · · · < w(er−1) <
w(er) > w(er+1) > · · · > w(el), where er is the root edge. Thus, according
to Lemma 6(3), for the alternating path Ar containing er, w(Ar) ≥ 1

3w(α).
Thus w(MN) ≥ 1

3w(P). ut

94 R. Uehara and Z.-Z. Chen

Combining Theorem 3, Theorem 4, and Lemma 7, we can show that the NC
algorithm is a 1

3(∆−1) -approximation algorithm. But the better approximation
ratio 2

3∆+2 will be stated in Section 4.5.

RNC Algorithm

Phases 1 and 2 are performed “locally”. That is, all computations can be perfor-
med within the neighbors. Using randomization, RNC algorithm finds a matching
in G[P] locally. The third phase of the RNC algorithm contains the following
steps:

3.1’. In parallel, each vertex randomly choose one of two edges incident to the
vertex in G[P]. (The vertices of degree one choose the unique edge incident
to the vertex.)

3.2’. MR is the set of edges chosen by both endpoints.

Since each vertex choose one edge, the resulting MR is a matching. Moreover,
since each edge in P is chosen with probability at least 1

4 , we immediately have
the following lemma.

Lemma 8. The expected value of w(MR) is at least 1
4w(P).

4.4 Complexity of Algorithms

Each algorithm uses n processors; every vertex in G has a processor associated
with it. As the input representation of G, we assume that each vertex has a list
of the edges incident to it. Thus, each edge {i, j} has two copies - one in the
edge list for vertex i and the other in the edge list for vertex j.

Theorem 5. The NC algorithm runs in O(log n) time using n processors on the
PRIORITY PRAM. The algorithm only requires the total order of the weights.

Proof. Each processor uses two memory cells to store the edges in P . The first
and second phases can be efficiently implemented modifying as follows:

1.1’. In parallel, each vertex v finds the heaviest edge e = {v, u} incident to
v;

1.2’. In parallel, v stores the first cell of v with e.
2.1’. In parallel, each vertex v checks the contents of the first cell of u. If it

is e, then the process is end. If it is not e, v tries to store the second cell
of u with e. This trial will succeed if w(e) is the heaviest among the other
edges that are tried to store the same cell.

The step 1.2’ can be done in a unit time. Moreover, it is not difficult to see that
the steps 1.1’ and 2.1’ can be done in O(log ∆) time using standard technique
with comparison operation.

Parallel Approximation Algorithms 95

In the third phase, we can easy to see the following:
(1) if e = {u, v} is a root edge, e is stored in the first cells of both u and v; and
(2) otherwise, e is stored in the first cell of one endpoint, and in the second cell
of the other.

Moreover, each non-root edge knows which endpoint is close to the root edge;
the endpoint storing the second cell with the edge. Thus step 3.1 can be done in
O(1) time, and step 3.2 can be done in O(log n) time using standard list ranking
technique (see e.g., [KR90]).

Throughout the computation, the algorithm only compares two weights of
edges. Thus the algorithm only requires to know the total order of the weights.

ut
The third phase of the RNC algorithm can be performed in O(1) time. This

immediately implies the following theorem.

Theorem 6. The RNC approximation algorithm runs in O(log ∆) time using
n processors on the PRIORITY PRAM. The algorithm only requires the total
order of the weights.

4.5 Approximation Ratios

We remind that M∗ is a maximum weighted matching, F is the heavy spanning
forest, R is the set of the root edges of F , and P is a set of paths obtained in
step 2.1. Moreover we let C = F ∩ M∗, F̂ = F − C, and M̂ = M∗ − C.

To derive good approximation ratios, we define two maximum matchings: MP

denotes a maximum weighted matching of G[P], and MF denotes a maximum
weighted matching of G[F].

Lemma 9. w(MP) ≥ 1
2(∆−1)w(F).

Proof. As seen in the proof of Lemma 7, each path in P is either

(1) a part of some leaf-root path in some tree in F ; or
(2) two leaf-root paths connected by a root edge in a tree in F .

For each path, by Lemma 6(1), MP contains heavier alternating path that has
at least half weight of the path. This together with Theorem 4 implies that
w(MP) ≥ 1

2w(P) ≥ 1
2(∆−1)w(F). ut

Lemma 10. w(MF) ≥ 1
∆w(M∗).

Proof. We first remind that MF is the maximum weighted matching in F . Thus,
since C is a matching in F , w(MF) ≥ w(C). It is easy to see that R is a matching
in F . This implies that w(MF) ≥ w(R). It is also easy to see that MP is a
matching in F , and thus w(MF) ≥ w(MP). Hence, combining Corollary 1, we
have w(F) ≥ 2w(M∗)−w(C)−w(R) ≥ 2w(M∗)−2w(MF). On the other hand,
by Lemma 9, w(MF) ≥ w(MP) ≥ 1

2(∆−1)w(F). Combining the equations, we
have (2(∆ − 1) + 2)w(MF) ≥ 2w(M∗), consequently, w(MF) ≥ 1

∆w(M∗). ut

96 R. Uehara and Z.-Z. Chen

Lemma 11. w(C) ≤ w(MF) ≤ 2w(MP).

Proof. It is clear that w(C) ≤ w(MF). Thus we show w(MF) ≤ 2w(MP). We
are going to show that the weight of each edge in MF can be distributed to an
edge in MP , and the weight of each edge in MP is distributed by such edges at
most twice. Let e = {u, v} be any edge in MF . Then three cases occur according
to e.
(1) e ∈ MP . We distribute w(e) to itself.
(2) e ∈ P − MP . We first assume that e is not a root edge. We assume that u
is closer to the root edge than v on G[F]. In the case, e is incident to e′ in P at
the vertex u with w(e′) > w(e). Thus we distribute w(e) to e′. We next assume
that e is a root edge. That is, e is a root edge not in the maximum weighted
matching of G[P]. Then, by Lemma 6, MP contains two edges e′ and e′′ such
that e′ and e′′ are the edges incident to e at vertex u and v, respectively, and
w(e′)+w(e′′) ≥ w(e). Thus we divide w(e) into w(e′) and w(e)−w(e′)(≤ w(e′′)),
and distribute them to e′ and e′′, respectively.
(3) e 6∈ MP . We assume that u is closer to the root edge than v on G[F]. In
the case, e was deleted by u in step 2.1. The vertex u remains two edges e′ and
e′′ in P with w(e′), w(e′′) > w(e). Moreover, either e′ or e′′ is in MP . Thus we
distribute w(e) to the edge in MP .

Since MF is a matching, no two edges are distributed at the same endpoint.
Thus each edge in MP is distributed at most twice at both endpoints. This
implies that w(MF) ≤ 2w(MP). ut

Theorem 7. w(MP) ≥ 2
2∆+1w(M∗).

Proof. Combining Corollary 1 and Lemma 9, we get w(MP) ≥ 1
2(∆−1)w(F) ≥

1
2(∆−1) (2w(M∗) − w(R) − w(C)). Using Lemma 11, we have 2w(MP) ≥ w(C).
On the other hand, since R ⊆ MN , w(MP) ≥ w(MN) ≥ w(R). Thus, w(MP) ≥

1
2(∆−1) (2w(M∗) − w(R) − w(C)) ≥ 1

2(∆−1) (2w(M∗) − w(MP) − 2w(MP)). Thus
w(MP) ≥ 2

2∆+1w(M∗). ut

Theorem 8. The approximation ratio of the NC algorithm is 2
3∆+2 .

Proof. We first show that w(MN) ≥ 1
2w(MP). As seen in the proof of Lemma

7, each path in P is either

(1) a part of some leaf-root path in some tree in F ; or
(2) two leaf-root paths connected by a root edge in a tree in F .

In the case (1), both MN and MP contain the same alternating path that con-
tains the heaviest edge. We consider the paths in the case (2). Let α be the path
in P , and A1 be the alternating path of α containing the root edge, and A2 be
the other alternating path. According to Lemma 6, A1 or A2 is the maximum
weighted matching of α. When A1 is the maximum weighted matching, both MN

Parallel Approximation Algorithms 97

and MP contain it. Now we assume that A2 is the maximum weighted matching
of α. Then, by Lemma 6(3), w(A1) ≥ 1

3w(α), consequently, w(A2) ≤ 2
3w(α).

Thus w(A1) ≥ 1
2w(A2). Therefore, in any cases, w(MN) ≥ 1

2w(MP).
Combining Corollary 1, Theorem 4, and Lemma 7, we have w(MN) ≥ 1

3w(P)
≥ 1

3(∆−1)w(F) ≥ 1
3(∆−1) (2w(M∗)−w(C)−w(R)). It is clear that w(MN) ≥ w(R)

since R ⊆ MN . Thus, using Lemma 11, we have w(MN) ≥ 1
3(∆−1) (2w(M∗) −

w(C) − w(R)) ≥ 1
3(∆−1) (2w(M∗) − 2w(MP) − w(MN)) ≥ 1

3(∆−1) (2w(M∗) −
5w(MN)), consequently, w(MN) ≥ 2

3∆+2w(M∗). ut

Theorem 9. The approximation ratio of the RNC algorithm is 1
2∆+4 .

Proof. Using Corollary 1, Theorem 4, and Lemma 8, we have
E(w(MR)) ≥ 1

4(∆−1)w(F) ≥ 1
4(∆−1) (2w(M∗) − w(C) − w(R)).

We now compare w(MR) with w(MP). Each edge in MP appears in MR

with probability at least 1
4 . This implies that the expected value of w(MR) is at

least 1
4w(MP). Thus, using Lemma 11, we have E(w(MR)) ≥ 1

4(∆−1) (2w(M∗)−
w(C)−w(R)) ≥ 1

4(∆−1) (2w(M∗)−3w(MP)) ≥ 1
4(∆−1) (2w(M∗)−12E(w(MR))),

consequently, E(w(MR)) ≥ 1
2∆+4w(M∗). ut

References

[Avi83] D. Avis. A Survey of Heuristics for the Weighted Matching Problem.
Networks, 13:475–493, 1983.

[Edm65] J. Edmonds. Paths, Trees and Flowers. Canad. J. Math., 17:449–467, 1965.
[FGHP93] T. Fischer, A.V. Goldberg, D.J. Haglin, and S. Plotkin. Approximating

matchings in parallel. Information Processing Letters, 46:115–118, 1993.
[Gab90] H.N. Gabow. Data Structures for Weighted Matching and Nearest Com-

mon Ancestors with Linking. In Proc. 1st Ann. ACM-SIAM Symp. on
Discrete Algorithms, pages 434–443. ACM, 1990.

[Gal86] Z. Galil. Efficient Algorithms for Finding Maximum Matching in Graphs.
Computing Surveys, 18(1):23–38, 1986.

[GHR95] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to Parallel Computa-
tion. Oxford University Press, 1995.

[Har72] F. Harary. Graph Theory. Addison-Wesley, 1972.
[IS86] A. Israeli and Y. Shiloach. An Improved Parallel Algorithm for Maximal

Matching. Information Processing Letters, 22:57–60, 1986.
[Joh90] D.S. Johnson. A Catalog of Complexity Classes. In J. van Leeuwen,

editor, The Handbook of Theoretical Computer Science, Vol. I: Algorithms
and Complexity, pages 69–161. Elsevier, 1990.

[KR90] R.M. Karp and V. Ramachandran. Parallel Algorithms for Shared-Memory
Machines. In J. van Leeuwen, editor, The Handbook of Theoretical Com-
puter Science, Vol. I: Algorithms and Complexity, pages 870–941. Elsevier,
1990.

[KR98] M. Karpinski and W. Rytter. Fast Parallel Algorithms for Graph Matching
Problems. Clarendon Press, 1998.

98 R. Uehara and Z.-Z. Chen

[KUW86] R.M. Karp, E. Upfal, and A. Wigderson. Constructing a Perfect Matching
is in Random NC. Combinatorica, 6(1):35–48, 1986.

[MS92] E.W. Mayr and A. Subramanian. The Complexity of Circuit Value and
Network Stability. Journal of Computer and System Science, 44:302–323,
1992.

[Pre99] R. Preis. Linear Time 1
2 -Approximation Algorithm for Maximum Weighted

Matching in General Graphs. In STACS ’99, pages 259–269. Lecture Notes
in Computer Science Vol. 1563, Springer-Verlag, 1999.

[Ven87] S.M. Venkatesan. Approximation Algorithms for Weighted Matching.
Theoretical Computer Science, 54:129–137, 1987.

	Introduction
	Preliminaries
	Approximation Algorithms
	Common Preprocess
	 RNC approximation scheme
	 NC algorithm

	Approximation Algorithms for Graphs with Heavy Weights
	The First Phase
	The Second Phase
	The Third Phase
	Complexity of Algorithms
	Approximation Ratios
	References

