Skip to main content

A Markov Random Field Approach to Multi-scale Shape Analysis

  • Conference paper
  • First Online:
Scale Space Methods in Computer Vision (Scale-Space 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2695))

Included in the following conference series:

Abstract

With a mind towards achieving means of image comprehension by computer, we intend to convey the benefits of (1) characterizing the geometry of object complexes in the real world as contrasted with the geometric conformation of their images, and (2) describing populations of object complexes probabilistically. We show how a multi-scale description of inter-scale residues of geometric features provides a set of efficiently trainable probability distributions via a Markov random field approach, and specifies the location and scale of geometric differences between populations. These ideas and methods are illustrated using medial representations for 3D objects, depending on their properties (1) that local descriptors have an associated coordinate frame and distance metric, and (2) that continuous geometric random variables can be used to describe all members of a population of object complexes with a common structure and the variation among those members. We demonstrate with respect to the following object-complex-relative discrete scale levels: a whole object complex, individual objects, various object parts and sections, and fine boundary details. Using this illustrative framework, we show how to build Markov random field (MRF) models on the geometry scale space based on the statistics of shape residues across scales and between neighboring geometric entities at the level of locality given by its scale. In this paper, we present how to design and estimate MRF models on two scale levels, namely boundary displacement and object sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witkin, A.: Scale-space filtering. In: Proc. Intl. Joint Conf. on Artificial Intelligence, Kalsruhe, Germany (1983) 1019–1023

    Google Scholar 

  2. Koenderink, J.: The structure of images. Bio. Cybern. 50 (1984) 363–370

    Article  MATH  MathSciNet  Google Scholar 

  3. Lindeberg, T.: Scale-space theory in computer vision. Kluwer Academic Publishers (1994)

    Google Scholar 

  4. Cao, F.: Morphological scale space and mathematical morphology. In: Scale-Space’ 99. Volume 1682 of LNCS. Springer-Verlag (1999) 164–174

    Google Scholar 

  5. Lindeberg, T.: Linear spatio-temporal scale-space. In: Proc. 1st Int. Conf. Scale-Space Theory in Computer Vision. Volume 1252 of LNCS. Springer-Verlag (1997) 113–127

    Google Scholar 

  6. Bruce, J., Giblin, P., Tari, F.: Families of surfaces: height functions and projections to planes. Math. Scand. 82 (1998) 165–185

    MathSciNet  Google Scholar 

  7. Bruce, J., Giblin, P., Tari, F.: Families of surfaces: focal sets, ridges and umbilics. Math. Proc. Cambridge Philos. Soc. 125 (1999) 243–268

    Article  MATH  MathSciNet  Google Scholar 

  8. Lu, C., Cao, Y., Mumford, D.: Surface evolution under curvature flows. J. Visual Communication and Image Representation 13 (2002) 65–81

    Article  Google Scholar 

  9. Damon, J.: Scale-based geometry for nondifferentiable functions, measures, and distributions. Parts I–III. (Preprint)

    Google Scholar 

  10. Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. Int. J. Comput. Vision 15 (1995) 189–224

    Article  Google Scholar 

  11. Siddiqi, K., Bouix, S., Tannenbaum, A.R., Zuker, S.W.: Hamilton-Jacobi skeletons. Int. J. Computer Vision 48 (2002) 215–231

    Article  MATH  Google Scholar 

  12. Olver, P., Sapiro, G., Tannenbaum, A.: Invariant geometric evolutions of surfaces and volumetric smoothing. SIAM J. Appl. Math. 57 (1997)

    Google Scholar 

  13. Mallat, S.G.: Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech, Signal Processing 37 (1989) 2091–2110

    Article  Google Scholar 

  14. Unser, M.: A review of wavelets in biomedical applications. Proceedings of the IEEE 84 (1996) 626–638

    Article  Google Scholar 

  15. Ho, S., Gerig, G.: Scale-space on image profiles about an object boundary. In: Scale Space’ 03. (2003)

    Google Scholar 

  16. Zhu, S.C.: Embedding Gestalt laws in the Markov random fields — a theory for shape modeling and perceptual organization. IEEE T-PAMI 21 (1999)

    Google Scholar 

  17. Lu, C.: Curvature-based multi-scale shape analysis and stochastic shape modeling. PhD thesis, Brown University (2002)

    Google Scholar 

  18. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Fifth European Conference on Computer Vision. (1998) 484–498

    Google Scholar 

  19. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Computer Vision and Image Understanding 61 (1995) 38–59

    Article  Google Scholar 

  20. Kelemen, A., Szekely, G., Gerig, G.: Three-dimensional model-based segmentation. IEEE-TMI 18 (1999) 828–839

    Google Scholar 

  21. Pizer, S.M., Chen, J.Z., Fletcher, P.T., Fridman, Y., Fritch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Joshi, S., Lu, C., Muller, K.E., Thall, A., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable m-reps for 3D medical image segmentation. Int. J. Computer Vision (To appear)

    Google Scholar 

  22. Joshi, S., Pizer, S., Fletcher, P.T., Yushkevich, P., Thall, A., Marron, J.S.: Multiscale deformable model segmentation and statistical shape analysis using medial descriptions. IEEE-TMI 21 (2002)

    Google Scholar 

  23. Styner, M., Gerig, G.: Medial models incorporating object variability for 3D shape analysis. In: IPMI’ 01. Volume 2082 of LNCS. Springer (2001) 502–516

    Google Scholar 

  24. Pizer, S.M., Fletcher, P.T., Thall, A., Styner, M., Gerig, G., Joshi, S.: Object models in multi-scale intrinsic coordinates via m-reps. Image and Vision Computing (To appear)

    Google Scholar 

  25. Gerig, G., Styner, M., Shenton, M., Lieberman, J.: Shape versus size: improved understanding of the morphology of brain structures. In: Proc. MICCAI 2001. Volume 2208 of LNCS. Springer (2001) 24–32

    Google Scholar 

  26. Thall, A.: Fast C 2 interpolating subdivision surfaces using iterative inversion of stationary subdivision rules. Technical report, Dept. of Computer Science, Univ. of North Carolina, http://midag.cs.unc.edu/pubs/papers/Thall_TR02-001.pdf (2002)

    Google Scholar 

  27. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE T-PAMI 6 (1984) 721–741

    MATH  Google Scholar 

  28. Fletcher, P.T., Lu, C., Joshi, S.: Statistics of shape via principal component analysis on Lie groups. In: CVPR’ 03. (To appear)

    Google Scholar 

  29. Fletcher, P.T., Joshi, S., Lu, C., Pizer, S.M.: Gaussian distributions on Lie groups and their application to statistical shape analysis. (Submitted to IPMI’ 03)

    Google Scholar 

  30. Lu, C., Pizer, S.M., Joshi, S.: Multi-scale shape modeling by Markov random fields. (Submitted to IPMI’ 03)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, C., Pizer, S.M., Joshi, S. (2003). A Markov Random Field Approach to Multi-scale Shape Analysis. In: Griffin, L.D., Lillholm, M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44935-3_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-44935-3_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40368-5

  • Online ISBN: 978-3-540-44935-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics