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Abstract. This work presents a new approach to texture classification,
in which orientation histograms and multiscale analysis have been com-
bined to achieve a reliable method. From the outputs of a set of filters,
the orientation and magnitude of the gradient in every point of a texture
are estimated. By combining the orientations and relative magnitudes
of the gradient, we build an orientation histogram for each texture. We
have used Fourier analysis to measure the similarity between the his-
tograms of different textures, considering the effects of a change in the
size or orientation of the image to make our method invariant under
these phenomena. Since different textures may generate very similar his-
tograms, we have analyzed the evolution of these histograms at different
scales, extracting a scale factor for each couple of compared textures to
adjust the filters which are applied to them when the multiscale analysis
is carried out.

1 Introduction

The visual identification of an object is not only provided by its shape. The
texture in the inner region may be helpful to a large extent when we try to
characterize materials, components, agglomerations, etc. Sonka et al. [1] define a
texture as something consisting of mutually related elements. A texture consists
of texture primitives or texture elements, sometimes called tezels and, due to its
wide variability, it is not simple to give a precise definition. An important prob-
lem when dealing with textures is that texture description is scale dependent. We
may deal with the problem of texture classification from many different points
of view, but we must take into account that the scale of the textures we are
comparing is a crucial factor when measuring their similarity. The distribution
of orientations has been previuosly used in [2] for the discrimination between
city and suburb photos according to the presence or absence of dominant orien-
tations. Other works have shown the results of different filters used in texture
classification when applied to a certain texture benchmark set [3] and the eval-
uation of dissimilarity measures for color and texture [4]. A complete analysis
on texture-related problems and applications, considering aspects like texture
classification, segmentation or synthesis is shown in [5].



Table 1. Modified Newton filters and corresponding orientation
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The purpose of this work is presenting an approach to texture classification
based on the description given by the estimation of the orientation in the points
within a textured region. Therefore, we must first extract a value for the orien-
tation and magnitude of the gradient in every point within the region we are
examining. From these estimations, we build an orientation histogram for each
texture, which represents the distribution of the orientations.

Since an orientation histogram does not univocally characterize a texture, the
same representation could have been extracted from different patterns. However,
the study of texture histograms at many different scales allows comparing the
evolution and interaction of the gradients, so that textures which are initially
considered as very similar start to evolve in a quite different manner.

The paper has been structured as follows: Section 2 shows how the orienta-
tion of the edges can be estimated from the outputs of a set of filters. In Sect.
3, these estimations are used to build orientation histograms which describe the
textures in terms of quantitative edge orientation distribution and the repre-
sentation of the textures through these orientation histograms allows classifying
them. The multiscale analysis of the textures is introduced in Sect. 4 to generate
better texture classifications by comparing them at different scales. Section 5
shows how darkening, lightening and inverting the images affect the classifica-
tion, which proves robust under these transformations. Finally, Sect. 6 shows
some conclusions about this work.

2 Edge Orientation Estimation

From Newton filters [6][7], we have developed a set of filters which preserve their
convenient properties, but which also avoid some of the undesirable phenom-
ena by providing them with rotational invariance and non-null weights in all
positions. The weights of the eight filters and the orientations they react to are
shown in Table 1.

The output of these filters is independent of the particular gray value of
the image border, i.e. Fj is invariant under a gray level translation as I —
I + C, where I contains the gray values of the image and C' is any constant.
This property is very important because the relevant information is provided by



the difference between neighbors, rather than the magnitude of the image gray
values.

Instead of considering the maximum of the eight filters to assign a value to
the orientation, a more accurate estimation can be obtained by considering the
whole pattern provided by the eight filters. The output of these eight filters for
a /2 oriented edge of magnitude 1 is (0,5, 8,5,0, —4, —4, —4). If we increase or
decrease the orientation in a multiple of 7/4, the output is only cyclically shifted,
but the values and their order are not altered. Figure 1 shows the outputs of
the eight filters for a circle. When the real orientation does not correspond to
one of these directions, we can estimate it by interpolating the higher value with
its two neighbors, which provides an accurate estimation of edge orientation. A
quadratic function y is built to interpolate these three values and its maximum
is used as the estimated orientation, as shown in (1) and (2), where ¢ is the index
of the filter with the highest output, F;, positions ¢ — 1 and i + 1 are calculated
modulo 8 and x,.x is the estimation of the orientation for the current point:
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By correlating the ideal pattern with the real one, we can determine how
perfect the border is. As the change from one side of the border to the other
one may be larger than 1, it is necessary to normalize the output. Thus, the
main advantage of this kind of filters is not the location of edges, but their
classification according to their orientation and the invariance under rotations
and illumination changes.

Similar filters have been proposed by Prewitt, Sobel, Robinson or Kirsch [1],
but they cause the duplication of edges, are independent of the central value or
may produce the maximum output for imperfect edges. Furthermore, they do
not constitute a set of linearly independent filters, as modified Newton filters do,
and the information they provide is not complete.

3 Orientation-Based Texture Classification

With the modified Newton filters we are able to estimate accurately the ori-
entation of the gradient in a certain pixel. Similarly, the values for the eight
main orientations can be used to estimate the magnitude of this gradient. The
interpolation of the outputs of the filters will provide us with a value for the di-
rection of the gradient in every point as well as an estimation of its magnitude.
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Fig. 1. Positive outputs of the modified Newton filters for the circle above (the higher
the output value, the darker its representation)

LT

Fig. 2. Texture examples and corresponding orientation maps and orientation his-
tograms

With these estimations, we build a histogram of the orientations by adding the
magnitude of the gradient in the points where the edges present the same ori-
entation. This histogram describes how the orientations are distributed in that
region, allowing us to determine the most significant ones, the proportion they
represent and their relation in terms of orientation distance and concentration.
Figure 2 shows an example of two textures and their corresponding orientation
histograms, which can be used to compare these textures with others.

Using the interpolation polynomial in (1), the maximum value o, which
estimates the orientation in point (j, k), is given by:
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(3)

04,k = round

It has been rounded to adjust it to a discrete signal consisting of L equidis-
tant values. For the magnitude, we use this orientation and substitute it in the
polynomial:
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The values of the histogram h; are given by the following expression, where
(VI);,, and o,k are the magnitude and the orientation extracted for point (j, k).
For normalization purposes, the global weight of all positions in the histogram
is set to 1, thus dividing each resulting component of the histogram by the sum
of all of them:

hi=32 jk (VI);,  and B= b
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In order to relate two textures, an energy function is built, in which the
Fourier coefficients of both histograms are compared. We must achieve rotational
invariance, in the sense that the result must not be affected if the textures are
rotated. A change in the orientation of a texture will only cause a cyclical shift in
the histogram. For this reason, the Fourier coefficients are modified as follows:
let f, and g, be the orientation histograms of length L corresponding to the
same texture but shifted a positions, i.e. the texture has been rotated an angle
6 = 2mwa/L, and let f; and gi be the k" Fourier coefficients of these histograms,
then fr = gke*i%. Thus, a measure of how similar the coefficients of both
textures are is given by:
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In addition, the fact that the number of discrete orientations used for the
histograms is constant and the normalization of the weights make the lengths of
the signals and the total weight equal in both textures. Consequently, a change in
the size of the region where the texture is analyzed will not cause the generation
of a different distribution. Due to the fact that the higher frequencies are more
affected by noise than the lower ones, a monotonic decreasing weighting function
w(.) can be used to emphasize the discrimination, thus obtaining the following
expression, in which the first terms have a more important contribution than
the last ones. The minimization of this function will provide the shift for which
both histograms present the best matching, i.e. the rotation which makes both
textures as similar as possible. The energy for that value is a measure of how

similar they are:

E(a) = iw <%> (fk - gke_ihf") (fk - gke_izwffm)* : (7)



We have used different linear, quadratic and exponential weighting functions
and the best results were obtained when w(z) = e~10%. To test this technique,
we have applied it to a set of textures contained in a database, which is shown in
Fig. 3. This database has been made publicly available for research purposes by
Columbia and Utrecht Universities, Columbia-Utrecht Reflectance and Texture
Database [8]. We work with grayscale images and thus, a single histogram is used
to represent the orientations of the edges in light intensity. Using the techniques
described in the previous sections, a certain texture is compared with all those
in the database and the most similar ones are selected. The similarity between
two textures is given by the energy obtained when comparing their orientation
histograms.

In Fig. 4 and Table 2, we show some results of the application of the technique
explained above. From the image database containing 60 textures of different na-
tures, but visually difficult to classify, one is selected, and the 5 best comparisons
are shown. Of course, as the selected image belongs to the set, the best match
corresponds to itself, and the energy factor is 0.

Table 2. Lowest energy values for textures 51 and 11

order txt. number wtd. energy order txt. number wtd. energy
1 51 0.00 1 11 0.00
2 40 16.03 2 30 0.59
3 38 49.21 3 49 0.61
4 56 118.39 4 10 1.20
5 57 157.10 5 26 1.62

As mentioned above, the orientation histograms extracted from the textures
describe how the different orientations are quantitatively distributed across the
region which is studied, but they do not provide any information about the spa-
tial neighborhood of the pixels with a certain orientation. Thus, a completely
noisy image, in which all orientations are equally but disorderly present in the
image would generate a similar histogram than a circle, where the orientation is
gradually increased along its outline. This forces us to search for a certain tech-
nique which complements the information provided by this kind of histograms
in order to enhance the recognition capabilities.

A multiscale analysis of the images will provide us with a series of images
which represent the evolution of each texture at different scales. In this evolu-
tion, the orientations will be differently affected by the others, depending on
their spatial proximity. This will allow us to distinguish among textures where
orientations are originally distributed in a similar way, but which are actually
different.
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Fig. 4. Results of searching for similar textures for textures 51 and 11 using (7)

4 Texture Classification through Multiscale Analysis

The interpretation of the information we perceive from the environment depends
on the scale we use to process it. At the same time, the information provided
by each scale is useful and the study of the same scene at different scales makes
it possible to perceive a wider range of realities. Furthermore, elements which
are not distinguishable at a certain scale may be clearly distinct at a different
one and the rough and detailed information extracted from an image may help
us decide when comparing textures. The multiscale analysis approach has been
successfully used in the literature for texture enhancement and segmentation
(see [9] and [10] for more details).

A multiscale analysis can be determined by a set of transformations {T7 }+>0,
where t represents the scale. Let I be an image, i.e. I : {2 — R, where {2 is
the domain where the image is defined. In what follows, we will consider for
simplicity in the exposition that 2 = R" and I € H?(§2) (Sobolev space, see
[11] for more details). That is, I and VI have finite L? norm. I; = T;(I) is a
new image which corresponds to I at a scale ¢. For a given image I, to which the
multiscale analysis is applied, we can extract a histogram {hf}izo,.., ;1 Which
determines the distribution of the orientations of I at the scale t. In this case,
the normalization of the values within a histogram is performed with respect to
the initial addition, and not with respect to the addition at that scale. In order
to compare the histograms of two images, the scale must be first adjusted.

4.1 Gaussian Multiscale Analysis

As said before, a multiscale analysis generates, for a given image, a series of
images which show the evolution of the input signal when a certain process is



applied. We will use a Gaussian filter, whose properties are described in [12] and
[13]. In one dimension, we use the following Gaussian kernel, where the scale ¢

is related to the standard deviation o according to the expression 2t = o2
1 a2 1 ww? 8
K(z) = e T = T,(f)(z) = [ =€ fy)dy . (8)
Afterwards, we quantize it as follows:
1 —n? o0 1 _(mem)? 9
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At this point, it is important to consider the relationship between the Gaus-
sian filtering and the heat equation, given by du/dt = 0%u/dx?, where u(t, ) is
the solution of the equation. Given a signal f, the result of convolving f with
the Gaussian filter K, is equivalent to the solution of the heat equation using f
as the initial data u(t,s) = K; * f(x).

Considering this relationship, a discrete version of the heat equation can be
used to accelerate the approximation of the Gaussian filtering (see [14] for more
details), which results in a recursive scheme in three steps for each direction, as
shown below, where I is the original image:
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This process will be performed by rows and by columns in order to obtain a
discrete expression for a two-dimensional Gaussian filtering. Making use of the
features of the Gaussian kernels, the result of applying a Gaussian filter with an
initial scale ¢ can be used to obtain a Gaussian filtering of the initial image for a
different scale without needing to start again from the input. We will discretize
the scale considering o,, = nog for a given og. Taking into account the relation
0% = 2t, the step size At to go from o, to o, is given by:

au= ool (ool (1) (1)

If we use niter iterations of the recursive scheme in (10) to compute I,
from I,,, the discretization scheme for the heat equation is given by:
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4.2 Scale Estimation

We must take into account that, for a certain texture, the use of different reso-
lutions forces us to apply Gaussian functions with different standard deviations,
thus requiring an adaptation stage. To do that, we first extract the evolution of
the addition of the squares of the gradients at different scales, and then we use
these factors to compare the textures. Even if the quantitative distribution of
the orientations may be alike for different textures, the spatial distribution will
cause a divergence in the evolution and interaction, so the factors will differ.

One of the properties of the Gaussian filtering is the relationship between the
resolution of two images and the effects of this kind of filters. In fact, the result of
applying a Gaussian filter with standard deviation ¢ to an image with resolution
factor = is equivalent to applying a Gaussian filter with standard deviation ko
to the same image acquired with a resolution factor kz.

Lemma 1. Let Iy(x,y), Ij(x,y) be such that there exists a constant k satisfying
that I)(z,y) = Io(kz, ky) V(z,y) € 2, then I[(x,y) = Lz (kx, ky).

Proof. The result follows from the uniqueness of the solution of the heat equa-
tion taking into account that the function Iy2;(kz, ky) is a solution of the heat
equation for the initial datum I}(z, y).

Given two textures, Iy and Ij), we will estimate the scale factor k using the
normalized evolution of the norm of the gradient, that is, we will use:

1/£|V1t|2

[1vL
2

It is well known (see for instance [12]) that ¢(Iy, £2,t) is a decreasing function
with respect to t and Lim;_oo¢(Ip, 2,t) = 0. On the other hand, from the
previous lemma, we deduce that if Ij(z,y) = Io(kz, ky) V(z,y) € 2 then:

$(lo, 2,t) = p(Ip. k2, k*t) = Iy, 2,K%t) . (14)

So in order to estimate a scale factor k between two textures Iy and I, we
will compare the functions ¢(Iy, 2, t) and ¢(I§, 2,t). Let rL = ¢(Io, 12, (0,)° /2)
and 72 = ¢(1}, 12, (0.)? /2) be the ratios obtained for two textures at the scale
0, = nog, the best adjusting coefficient k to fit the series of r2 to that of r},
both consisting of N terms, can be obtained as follows: First, we fit a value
0 < h < 1 and we interpolate the values in the series rl and r2 to obtain two
new series . and 02 which estimate the scales for which the ratios (1,1—h,1—
2h,1 —3h,...,1 — (N — 1)h) are obtained. In other words, we estimate the scale
where ¢(1, (2, ((7,11)2/2) = 1 — nh. We point out that if nh < 1, ol and o2
are well-defined because ¢(I, {2,t) is a decreasing function with respect to ¢ and



Limy oo p(Ig, £2,t) = 0. With these values, we minimize the following error to
obtain the scale factor k:

de(k N-1
%:0 = Yo (o}

4.3 Multiscale Texture Orientation Histogram Comparison

We can study how the energy obtained when comparing the orientation his-
tograms evolves as we apply a Gaussian filtering to the textures. We use the
adjusting factor k, as in (16), to relate the scales to be compared. In practice,
to estimate k, we take h = 0.1 and N = 8, n = 0,1,2,...7. Finally, we obtain
the energies for the comparison of the histograms at [V different scales, given by
(17), where n = {0,.., N — 1} and o is the minimum of o}; and ko¥%..

Op = RON and o =%gy . (17)

Figure 5 shows the results of comparing two images of the database corre-
sponding to the same texture, acquired with a different resolution. As observed,
not only the initial energy is low, but also the subsequent energies, obtained
when comparing the images at the corresponding scales, decrease as we increase
the scale. On the other hand, Fig. 6 shows the comparison of two images of
different textures and the energies, far from decreasing, increase from the initial
value. Finally, Fig. 7 shows two images of the same texture acquired at different
distances, and Fig. 8 shows the corresponding ratios and energies.

5 Robustness of Texture Classification under Darkening,
Lightening and Inversion

The following examples show how darkening, lightening and inverting a pattern
affect the results when calculating the energy which measures the similarity
between two textures. This will allow us to test the robustness of our method
when some kinds of transformations are performed in the input signal.

As observed in Fig. 9 and Table 3 (left), when a texture is darkened, the
resulting energy is very low. These low results indicate that the textures are in
fact almost identical. Only small differences in the new light intensity due to
the representation limitations cause a negligible value. The use of integer values
in intensity representation forces us to round the values once they have been
reduced, generating small differences in gradient values.
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Fig. 5. Ratios (left) and energies (right) obtained when applying a Gaussian filter to
textures 32 and 14 using (13) and (7) (horizontal axis represents the evolution of the
scale)
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Fig. 6. Ratios (left) and energies (right) obtained when applying a Gaussian filter to
textures 32 and 51 using (13) and (7) (horizontal axis represents the evolution of the
scale)

Fig. 7. Example of two images of the same texture acquired at different distances
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Fig. 9. Textures 15, 18, 21 and 38 before and after darkening

Figure 10 and Table 3 (middle) show similar consequences when the textures
are lightened. In this case, the overflow in light intensity values for the most
bright points due to the increase they undergo, which forces us to truncate the
values which exceed the maximum, causes a higher difference. However, it is
still much lower than those observed when similar but different textures are
compared, and thus, they can be neglected.

Finally, Fig. 11 and Table 3 (right) show the results when a texture has
been inverted. In most cases, the values obtained are very low and the patterns
can be considered as the same texture. Nevertheless, some cases present certain
problems due to the asymmetry of the filters used for edge orientation estimation.
As the values which result are not low enough to clarify the similarity of the
textures, thus presenting a certain ambiguity, the multiscale analysis described
in the previous sections is applied and the results dispel the doubts, since they
are very low when a texture is compared with its inverted version.



Fig. 10. Textures 3, 14, 40 and 53 before and after lightening

Fig. 11. Textures 4, 23, 35 and 52 before and after inversion

Table 3. Comparison with darkened, lightened and inverted textures

comparison wtd. energy comparison wtd. energy  comparison wtd. energy

15-drk.15 0.0083 03-1gt.03 0.0374 04-inv.04 0.2567
18-drk.18 0.0050 14-1gt.14 0.0117 23-inv.23 0.4859
21-drk.21 0.0129 40-1gt.40 0.0052 35-inv.35 0.6009

38-drk.38 0.0145 53-1gt.53 0.0757 52-inv.52 0.4927




6 Conclusion

In this work, we have presented a new approach to texture classification. By using
the modified Newton filters, we have obtained an estimation of the orientation of
the edges in every point of the textures. The extraction of orientation histograms
to describe the distribution of the orientations across a textured region permits
us to perform an initial comparison of the textures according to the quantitative
and relative distribution of the different orientations.

The comparison of the Fourier coefficients, certain normalization processes
and the use of weighting functions allow a satisfactory classification in many
cases, including size and rotational invariance. However, due to the ambiguities
that are generated by the non-injectivity of the generation of these histograms, a
further study has been carried out, by comparing the evolution of the histograms
at different scales.

This multiscale analysis of the histograms has produced quite good results,
since the visual similarity or difference between two textures is much more re-
liably detected by the evolution of the energies resulting when comparing the
histograms at different scales, which have been previously adjusted. We have
extracted the scale factor which must be used when comparing two textures to
perform the comparison appropriately.

The quite promising numerical results obtained in the tests which have been
implemented confirm the usefulness of the multiple comparison of the images,
since they endow us with a much more robust discrimination criterion. Further-
more, we have tested how our method reacts when the textures are darkened,
lightened or when their grayscale levels are inverted, obtaining very satisfactory
results.
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