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Abstract. Here we present a segmentation algorithm that uses multi-
scale diffusion with the Mumford-Shah model. The image data inside and
outside a surface is smoothed by minimizing an energy functional using a
partial differential equation that results in a trade-off between smoothing
and data fidelity. We propose a scale-space approach that uses a good
deal of diffusion as its coarse scale space and that gradually reduces the
diffusion to get a fine scale space. So our algorithm continually moves to a
particular diffusion level rather than just using a set diffusion coefficient
with the Mumford-Shah model. Each time the smoothing is decreased,
the data fidelity term increases and the surface is moved to a steady
state. This method is useful in segmenting biomedical images acquired
using high-resolution confocal fluorescence microscopy. Here we tested
the method on images of individual dendrites of neurons in rat visual
cortex. These dendrites are studded with dendritic spines, which have
very small heads and faint necks. The coarse scale segments out the
dendrite and the brighter spine heads, while avoiding noise. Backing off
the diffusion to a medium scale fills in more of the structure, which gets
some of the brighter spine necks. The finest scale fills in the small and
detailed features of the spines that are missed in the initial segmentation.
Because of the thin, faint structure of the spine necks, we incorporate into
our level set framework a topology preservation method for the surface
which aids in segmentation and keeps a simple topology.

1 Introduction

Global segmentation algorithms have the benefit of being able to extract an
object and its prominent features from an image or image volume. They have this
capability because they segment an image based on properties such as average
pixel intensity of a region or differing textures of regions. Some of these methods
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are detailed in [2], [5],[7], [8],[9]. While a global perspective avoids the noise that
more edge-based detectors would get caught up on, it can lose the fine scale
features of the object in capturing a coarse estimate of the object. It would be
useful to have a method with which to include some of these finer scale features
after this coarse segmentation has been done. In our work, a method of this type
was necessary to solve the problem of segmenting a topographically complex
biological structure from a three dimensional image volume.

The structures in question are the dendrites of pyramidal neurons in rat
visual cortex. These dendrites are studded with individual tiny branchlets called
spines. The spines are sites of synaptic contact between neurons, and their 3-
d morphology is thought to be a marker of the functional state of individual
synapses. The fine structure of spines has been extensively investigated at the
electron-microscope level – they are known to be bulbous in shape and always
connected to the dendrite by very thin necks (with diameter on the order of 0.1
micron). [10]

We obtained 3D image volumes of spiny dendrites as follows: pyramidal neu-
rons in fixed tissue slices of rat visual cortex were intracellularly injected with
the fluorescent dye Alexa-488 (Molecular Probes Inc., Eugene, OR; emission
peak = 517 nm). Individual dendritic segments were imaged in 3D using an
olympus fluoview confocal microscope, at zoom factor 8, with a 63x NA 1.2
water-immersion lens. The voxel size of these images was 0.09 x 0.09 x 0.15 mi-
crons (actually slightly above the diffraction limit of this imaging system). 3D
images were preprocessed using simple operations to improve contrast and re-
duce noise. Images were then deconvolved using an adaptive blind deconvolution
algorithm (Autoquant Imaging, Watervliet, NY).

In these images, the dendrite is more brightly fluorescent than the spines, due
to the greater volume of fluorescent dye it contains. The spine necks in particular
can be very faint both because of their very small volume, and because their size
is at the limit of resolution of the confocal microscope. Some of the spine heads
are dim as well. This is apparent by looking at a full 2D slice of the 3D images
in Fig. 1 and a close up of a section of the dendrite and its spines in Fig. 2.

The regional methods only capture the dendrite and some of the spine heads.
The first step to solve this problem is to set a smoothing parameter in the
Mumford-Shah segmentation method so that it becomes a regional algorithm
that gives a coarse segmentation of the dendrite. Then this smoothing term is
gradually reduced to capture some fine scale features. It is this stepping down of
the diffusion term that gradually gets a correct segmentation of the spine heads
and the necks that connect them to the dendrite.

2 The Mumford Shah Model

Here in this section we present the variational formulation of the main segmen-
tation algorithm (a multi-scale version of Mumford-Shah) that was used in this
project. This algorithm was implemented in a level set formulation according to
[11]. Other level set implementations of Mumford-Shah are in [1], [6] and the
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Fig. 1. 2D image plane from the middle of a 3D volume, showing the dendrite with
spines branching off

Fig. 2. Closeup of Fig. 1, showing the fine structure of spines. Pixel size = 0.09 x 0.09
microns

model itself is in [4]. The level set is evolved using a PDE that minimizes a given
energy functional. More about level set theory can be found in [12].

To implement the Mumford and Shah model, a smooth estimate of the fore-
ground and one of the background is needed so there can exist a piecewise smooth
estimate of the image data with the surface being the discontinuity between the
two estimates. Based on these smooth estimates, the level set which contains
the surface (in this case, a three dimensional surface) is evolved to minimize the
following energy functional:

E = α

∫∫∫
R

(I − f)2dV + α

∫∫∫
Rc

(I − g)2dV + β

∫∫∫
R

|∇f |2dV

+β
∫∫∫

Rc
|∇g|2dV + γ

∫∫
S

dσ (1)

where I is the image volume, f is the smooth estimate of the image in the
foreground R, g is the smooth estimate of the image in the background Rc,
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and S is the surface. The first two terms in the energy functional are data
fidelity terms that make sure that the smooth estimates of the foreground and
background match the image data as much as possible. The next two terms keep
the norm squared gradients of the smooth estimates f and g as small as possible
which results in a smoother f and g. The last term of the energy functional
is used to penalize surface area. The parameters α, β, γ ∈ [0, 1] ⊂ � should
all add up to 1 so they can be used as weights to either increase data fidelity
or smoothness or penalizing of surface area. So then the level set is evolved
according to the flow

φt = −α((I − g)2 − (I − f)2)N + β(|∇g|2 − |∇f |2)N + γκN (2)

where N is the inward normal of the surface S. The derivation of this can be
found in [1] and [4]. With each evolution of the level set φ, we need to get the
new smooth estimates f and g. This is done using the same energy functional
as above but minimization is done with respect to f when evolving the smooth
estimate f . Using the Calculus of Variations, the first variation is used to get the
Euler-Lagrange equations necessary to evolve the smooth function to a steady
state based on the the energy functional. The resulting equation to evolve the
smooth function f is

ft = 2(α(I − f) + β∆f) (3)

where ∆f is the laplacian of f :

∆f = fxx + fyy + fzz. (4)

Evolving g is similar.
A piecewise constant version of this is given by Chan and Vese in [5]. The

energy functional is given by:

E = α

∫∫∫
R

(I − u)2dV + α

∫∫∫
Rc

(I − v)2dV + γ

∫∫
S

dσ. (5)

where u and v are the means inside and outside the surface respectively. The
evolution of the the level set is given by

φt = −α(u− v)(I − u+ I − v)N + γκN . (6)

The Chan-Vese flow can also be looked at as the (β=∞) case (total smoothing)
of Mumford-Shah.

3 Multi-scale Diffusion with Mumford-Shah

So in our algorithm, the coarse Mumford-Shah segmentation that we begin with
is the (β = ∞) case which is equivalent to the Chan-Vese piecewise constant
model. We evolve the Mumford-Shah flow to steady state, decrease the smooth-
ing parameter and increase the data fidelity term.
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First let us see why the (β = ∞) case is our coarse scale space which will
segment prominent features of the image only. The update of the level set can
be rearranged as such:

φt = −2α(u− v)(I − u+ v

2
)N + γκN . (7)

If the surface is initialized so that it is outside of the object we want to segment,
then the term −2α(u− v) should not change sign while the surface is evolving.
The term I − u+v

2 shows us that the flow will move the surface according to u
(the mean of the image data inside the surface) and v (the mean of the image
data outside the surface) so that the energy

E = α

∫∫∫
R

(I − u)2dV + α

∫∫∫
Rc

(I − v)2dV (8)

is as small as possible. So what happens is with each iteration the means are
computed and the surface moves past a pixel in I if it is less than u+v

2 . This is
the case if we ignore the surface area penalty which gets rid of bright pieces of
noise because they have high curvature. The value u+v

2 in this case can be looked
at as a threshold that gets larger as the surface segments a bright object. This
flow gives a segmentation of all of the very prominent features of the object. The
problem with this is the single value u+v

2 that is used to move the surface at
all points in the image. This tends to skip over fine detail that might be fainter
than most of the rest of the object. In the case of dendrites, the main dendrite
and the head of the spines are segmented very well, but the dimmer spine necks
are totally skipped over.

To fix this we need the Mumford-Shah flow (with β �=∞) which uses a value
f+g

2 to decide whether to pass by a pixel or not. Since f and g are smooth
functions, there is a more adaptive threshold that passes by pixels depending
on a value that is more local to the pixel since f or g at each pixel is smoothed
out by its neighboring pixels. This is preferred over a global smoothing (β =∞)
which results in f = u and g = v. This allows Mumford-Shah to capture some
of the fine detail. So the premise of our algorithm is to keep backing off the
smoothing to acquire more and more detail of the object from a very nice, but
rough initial estimate. This gradual aquiring of features in a multi-step fashion
allows the flow to accurately capture more detail than a Mumford-Shah flow
with a set diffusion. The set Mumford-Shah flow does not get these details as
well as the multi-step version because it has no good coarse segmentation to
build upon.

Also an assumption that we made in the segmentation of dendrites is that
the background is constant (fairly close to zero) which turns out to be true for
all the data we have worked on. This allows us to use v or zero as the estimate
for the background which speeds up the process since it is not necessary to use
a PDE to find the smooth function g each time the surface needs to be evolved.
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Fig. 3. Set Mumford-Shah vs.Multi-Scale Mumford-Shah

Fig. 4. Mumford-Shah (β =∞) case: no topology preservation vs. topology preserva-
tion

4 Topology Preservation with Mumford Shah

It would be nice to keep objects that we segment to be as realistic as possible. In
the case with dendrites there are no holes of any kind; so a dendrite should be
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Fig. 5. Connection example: Multi-Scale Mumford-Shah without and with topology
preservation

topologically equivalent to a sphere. To keep this realism in our surface we need
a flow that preserves the topology of the surface. This will also preserve fine-scale
features (i.e. the necks of the dendritic spines). We use the method in [14] which
preserves the topology of a surface in a level-set methodology. This method looks
for simple points as described in [15], [16], and [17]. If this preservation is not
done, the surface will pinch off the necks and just segment the dendrite and the
spine heads and will not have a simple topology.

Our level set function uses values below zero to denote the inside of the surface
(the zero level set) and values above zero to denote pixels that are outside the
surface. When a value of our level set φ wants to change sign, i.e. a pixel wants
to change from foreground to the background or vice versa, it is possible that
the change will cause a change in topology. To keep this from happening we look
at a point in the level set when it is going to change sign. If this will cause a
break in topology (the point is not a simple point), we just set the value of the
level set at that point to be some small number ε that has the same sign as the
point had before.

This topology preservation helps at each step in the evolution of our surface.
The initial (β =∞) Mumford-Shah flow needs to have this preservation so that
it will not break topology so our initial coarse estimate is still topologically
equivalent to a sphere. If this topology preservation is not in place, the necks of
the dendritic spines would get pinched off as shown in Fig. 4.

It is possible to get these necks back without doing topology preservation and
just running the multi-step Mumford-Shah. The advantage of having topology
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Fig. 6. Noise example: Mumford-Shah (β =∞) case without topology preservation

Fig. 7. Noise example: Mumford-Shah (β =∞) case with topology preservation

preservation is that there is a piece of surface that is already connecting the spine
head and the dendrite where the neck should be. This makes it easier for the
multi-step Mumford-Shah to expand out over that neck. Whereas without the
neck surface there, the neck does get found, but in the case of a totally missing
neck or extremely faint data the multi-scale Mumford-Shah will not fill in the
neck completely and so it will not totally connect the spine head to the dendrite.

Another benefit of having the topology preservation is that it helps get rid of
pieces of noise. With topology preservation, there is some surface that connects
the noise to the dendrite. Without the surface connecting the noise to the den-
drite, the noise has its own local smooth function and the areas near it have a
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Fig. 8. Progression of Multi-Scale Mumford-Shah with and without topology preser-
vation

smooth function close to or equal to zero because they are background. There-
fore the noise has a greater chance of staying in the segmentation as shown in
Figure 6. With a surface connecting the noise to the dendrite, the smooth func-
tion close to that region of noise will be higher causing the noise to disappear as
in Figure 7.

5 Conclusion

Here we have shown a method to segment fine scale features of a biological
object. This scale-space approach of a multi-scale Mumford-Shah is very good for
capturing coarse and then fine-scale features. Also the preservation of topology
allows for a more realistic segmentation with no breaks in topology. In the case of
dendritic spines, we have prior knowledge of their topology and therefore we can
require that spine heads remain connected to the dendrite by a neck, even when
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there is no data for a neck. Topology preservation also improves segmentation
of spine necks in cases where the data for the neck exists but is very faint. This
is evident in Figure 8 where the progression of Multi-scale Mumford-Shah is
shown with and without topology preservation. The Multi-scale Mumford-Shah
with topology preservation captures the dendrite quite well.
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