f
Boosting with Averaged Weight Vectors

Nikunj C. Oza
Computational Sciences Division
NASA Ames Research Center
Mail Stop 269-3
Moffett Field, CA 94035-1000
oza@email.arc.nasa.gov

Abstract

AdaBoost |5] is a well-known ensemble learning algorithm that con-
structs its constituent or base models in sequence. A key step in
AdaBoost is constructing a distribution over the training exam-
ples to creite each base model. This distribution, represented as
a vector, is constructed to be orthogonal to the vector of mistakes
made by the previous base model in the sequence [6]. The idea is
to make the next base model’s errors uncorrelated with those of
the previot:s model. Some researchers have pointed out the intu-
ition that it is probably better to construct a distribution that is
orthogonal to the mistake vectors of all the previous base models,
but that this is not always possible [6]. We present an algorithm
that attempts to come as close as possible to this goal in an efficient
manner. We present experimental results demonstrating significant
improvement over AdaBoost and the Totally Corrective boosting
algorithm [5], which also attempts to satisfy this goal.

1 Introduction

Ensemble learning clgorithms are machine learning algorithms that, given a training
set, construct a combination of base models drawn from a designated hypothesis
class. AdaBoost [5 is one of the most well-known and high-performing ensemble
learning algorithms. It constructs a sequence of base models, where each model is
constructed based on the performance of the previous model on the training set.
In particular, AdaBoost calls the base model learning algorithm with a training set
weighted by a distribution.! After the base model is created, it is tested on the
training set to see how well it learned. We assume that the base model learning
algorithm is a weat learning algorithm; that is, its error is less than 0.5, so that

11f the base model learning algorithm cannot take a weighted training set as input,
then we can create a sample with replacement from the original training set according to
the distribution and call the algorithm with that sample.

it performs better than random guessing.? The weights of the correctly classified
examples and misclassified examples are scaled down and up, respectively, so that
the two groups’ total weights are 0.5 each. The next base model is generated by
calling the learning algorithm with this new weight distribution and the training
set. The idea is that, because of the weak learning assumption, at least some of
the previously misclassified examples will be correctly classified by the new base
model. Previously misclassified examples are more likely to be classified correctly
because of their higher weight, which focuses more attention on them. Kivinen
and Warmuth [6] Lave shown that AdaBoost scales the distribution with the goal
of making the next base model’s mistakes uncorrelated with those of the previous
base model. It is well-known that ensembles need to have low correlation in their

base models’ errors in order to perform well [1, 9].

Given this point, we would think, as was pointed out in (6], that AdaBoost would
perform better if the next base model’s mistakes were uncorrelated with those of
all the previous base models instead of just the previous one. It turns out that it
is not always possinle to construct a distribution consistent with this requirement.
However, we can attempt to get as close as possible to such a distribution. That is,
we may attempt to find a distribution such that the resulting base model’s mistakes
are as close as possible to being uncorrelated to all the past base models’ mistakes.
Kivinen and Warmuth [6] devised the totally corrective boosting algorithm, which
attempts to do this. However, they do not present any empirical results. Also, they
hypothesize that this algorithm will overfit and; therefore, not perform well. This
paper presents a new algorithm, called Averaging AdaBoost, which has the same
goal as the totally ‘orrective algorithm. In particular, our algorithm calculates the
next base model’s cistribution by first calculating a distribution the same way as in
AdaBoost, but then averaging it elementwise with those calculated for the previous
base models. In tis way, our algorithm attempts to take all the previous base
models into accoun: in constructing the next model’s distribution. In Section 2, we
review how AdaBoost works and, in particular, how it constructs its distributions
over the training sct for each base model. We also describe the totally corrective
algorithm here. In Section 3, we state our algorithm and describe the sense in which
our solution is the best one possible. In Section 4, we present an experimental
comparison of our algorithm with AdaBoost and the totally corrective algorithm.
Section 5 summarires this paper and describes ongoing and future work.

2 AdaBoost

Figure 1 shows AdaBoost’s pseudocode. AdaBoost constructs a sequence of base
models h; for t € {1,2,...,T}, where each one is constructed based on the per-
formance of the previous base model on the training set. In particular, AdaBoost
maintains a distribation over the m training examples. The distribution d; used
in creating the firs: base model gives equal weight to each example (d;; = 1/m
for all i € {1,2,... m}). The base model learning algorithm Ly is called with the

2The version of AdaBoost that we use was designed for two-class classification problems.
However, it is routin:ly used for a larger number of classes when the base model learning
algorithm is strong enough to have an error less than 0.5 in spite of the larger number of

classes.

AdaBoost({(ml,)y (Zmy ym)}, Ly, T)
Initialize di; = 1/m for alli € {1,2,...,m}.
Fort=1,2,....,T:
ht = Lb({(lfl, yl)) R} (xm! ym)})dt)
Calculate “he error of hi = €0 =)7, 1, (z0)y, Gtii-
If ¢ > 1/2 then,
set T =t — 1 and abort this loop.
Calculate distribution dey1:

§lic¢) lf ht(x,-) =Y

3T otherwise.
£t

[

diyri = dei X {

Output the firal hypothesis:
hyin(z) = UgMaX,ey D pn, (2)=y 109'1_;3‘

Figure 1: AdaBoost algorithm: {(z1,41), ..., (Zm,ym)} is the training set, L, is the base
model learning algorithm, and T is the maximum allowed number of base models.

Totally Corrective AdaBoost({(z1,41),.--,(Tm, ym)}, Le, T)
Initialize d; ; = 1/m for all i € {1,2,...,m}.
Fort=1,2,... T:

he = Ly({(s1,91), - > (@m, ym) }, de)-
Calculate the mistake vector u:

s = { 1 if he(zi) = yi

—1 otherwise.

If di - us < 0 then,
set T ==t — 1 and abort this loop.
Calculate cistribution dg41:
Initialize d1 = da.
For j-==1,2,..
gj = argmax,.c(1,2,...,t} d; - ugql-
1+d;-ugq,
5o=1 ey)
= (“éi'“‘ﬂ)
Fcrall i € {1,2,...,m},
di1i = 7-d;j iezp(=G;uq; .5,
where Z; = S0, i;iexp(—G&; ;i) is the normalizing factor.
Output the finil hypothesis:
hyin(z) = ergmax ey Zt:mx):y 109‘1‘276‘“

Figure 2: Totally Corrective Boosting algorithm: {(z1,1),...,(Tm,ym)} is the training
set, Ly is the base model learning algorithm, and T is the maximum allowed number of
base models.

training set and d-.* The returned model hy is then tested on the training set to
see how well it learned. Training examples misclassified by the current base model
have their weights ncreased for the purpose of creating the next base model, while
correctly-classified training examples have their weights decreased. More specifi-
cally, if h, misclascifies the ith training example, then its new weight dy;1,; is set
to be its old weight d,; multiplied by 217” where ¢, is the sum of the weights of the
examples that h; 1nisclassifies. AdaBoost assumes that Ly is a weak learner, i.e.,
e; < i with high probability. Under this assumption, % > 1, so the ith example’s
weight increases (d.41,; > dy,i). On the other hand, if hy correctly classifies the ith
example, then dgy; ; is set to dy; multiplied by 7(1_157’ which is less than one by
the weak learning assumption; therefore, example i’s weight is decreased. Under
distribution d¢y1, the total weight of the examples misclassified by h; and those
correctly classified by h; become 0.5 each. This is done so that, by the weak learning
assumption, hs, will classify at least some of the previously misclassified examples

correctly.

For all the base models A, (t € {1,2,....,T}) and the m training examples, con-
struct a vector ug € [—1,1]™ such that the ith element us; = 1 if hy classifies
the ith training example correctly (h¢(z;) = y;) and u¢; = —1 otherwise. Kivinen

and Warmuth [6] pointed out that AdaBoost calculates dy.q1 from d¢ such that
d¢y1 -ug = 0. That is, the new distribution is created to be orthogonal to the mis-
take vector of hy, which can be intuitively described as wanting the new base model
to reduce a suitablz loss function in a direction orthogonal to what the previous
base model did, so rhat the new base model’s mistakes are uncorrelated with those
of the previous mociel. This naturally leads to the question of whether one can im-
prove upon AdaBocst by constructing dey 1 to be orthogonal to the mistake vectors
of all the base hypc theses hy, ha, ..., by (i.e., dgy1-uq=0forallge {1,2,.. Lth.
Constructing such « dgy1 is not always possible. In particular, if m > t, then the
system of equations just given is overspecified, so that there may not be a solution.
Kivinen and Warmuth’s totally corrective algorithm (figure 2) attempts to solve this
problem using an itrative method. The initial parts of the algorithm are similar to
AdaBoost. That is, the totally corrective algorithm uses the same d; as AdaBoost
in creating the first base model and the next statement checks that the base model
error is less than 0.5. The difference is in the method of calculating the weight dis-
tribution for the next base model. The totally corrective algorithm repeatedly finds
the one among the * constraints that is most strongly violated, i.e., finds the value
g; having the highest value of |aj ‘g, and then projects the current distribution
onto the hyperplane defined by that violated constraint. This is similar to so-called
row action optimizetion methods 3, 4]. Kivinen and Warmuth show that, if there
is a distribution th«t satisfies all the constraints, then there is an upper bound of
%ﬁ on the number of iterations needed so that maxy; e{1,2,...,t} laj ‘ug;| < v for
any v > 0. Of course, as mentioned earlier, we cannot generally assume that there
is a distribution thait satisfies all the constraints, in which case there is no such
bound on the numter of iterations. In fact, we are not even guaranteed to reduce
maXy, e{1,2,...t} |Elj “uq;| at each iteration. To make the totally corrective algorithm
usable for our experiments, we have added two stopping criteria not present in the
criginal algorithm. Define vy ; = maxg ef1,2,..} |aj - ug;|. The algorithm stops if

3As mentioned eaclier, if Ly cannot take a weighted training set as input, then we
can give it a sample lrawn with replacement from the original training set according to

distribution d.

Averaging AdaBoost({(z1,y1),.-.,(Zm,ym)}, Ls, T)
Initialize d1; = 1/m for all i € {1,2,...,m}.
Fort=12,...,T:

he = Lb({(nlr y1)1 sy (Imx ym)}: dt)'
Calculate the error of he : €0 =)4, (zoysty; Gtoi-
If &, > 1/2 then,
set T =t — 1 and abort this loop.
Calculate crthogonal distribution:
Fori:=:1,2,...,m:

. .
f he(zi) = v
. _ ‘ —e) 1 t 1 1
Ct,i dii X { % otherwise
"y tdei + 0
1
: t+1

Output the final hypothesis:
hfin (x) = krgmaxyEY Zt:hg(m):y

1—¢
log-—=.

Figure 3: Our Averaging AdaBoost algorithm: {(z1, y1),. .., (Tm,ym)} is the training set,
Ly is the base model learning algorithm, and 7 is the maximum allowed number of base

models.

either v; j — vz, ;-1 < 0.0001 or both j > m and v ; > vt,j-1. The first constraint re-
quires that the maximum dot product decrease by some minimum amount between
consecutive iterations. The second constraint leaves the loop if, after iterating at
least as many times as the number of training examples, the maximum dot product
increases. These ar- heuristic criteria devised on the basis of observations of some

of our experiments with this algorithm.

In the next section, we describe our algorithm.

3 Our algorithm

Figure 3 shows our new algorithm. Just as in AdaBoost, our algorithm initializes
d; = 1/mfor all © € {1,2,...,m}. Then it goes inside the loop, where it calls
the base model learing algorithm Ly with the training set and distribution d; and
calculates the error »f the resulting base model h;. It then calculates c1, which is the
distribution that AdaBoost would use to construct the next base model. However,
our algorithm averages this with d1 to get d., and uses this dg instead. The loop
continues for a total of T iterations. The vector d¢t1 is a running average of the
vectors cq for g € {1,2,...,t}, which are orthogonal to the mistake vectors of the
previous ¢ base mocels (uq for g € {1,2,...,t}), respectively.

It is well-known that this deyq1 has the least average Euclidian distance to the
vectors cq for ¢ € 1,2,...,t}. In this sense, our algorithm finds a solution that
does the best job cf balancing among the ¢ constraints cq - uq = 0 without the
computational cost of a convex optimization method. It is easy to prove that d¢q1
is already a distribution (i.e., normalization is unnecessary), but space precludes us

Table 1: The datasets used in our experiments.

L:ata Set Training | Test | Inputs | Classes
Set Set

Piomoters 84 22 57 2
Balance 500 125 4 3
Breast Cancer 559 140 9 2
Gerinan Credit 800 200 20 2
Car Evaluation 1382 346 6 4
Chess 2556 640 36 2
Mashroom 6499 1625 22 2
Nursery 10368 2592 8 5
Connectd 54045 13512 42 3

from doing so here

We now demonstrate the experimental usefulness of this algorithm.

4 Experimental Results

In this section, we compare AdaBoost, the totally corrective algorithm, and our
averaging algorithr1 on nine UCI datasets [2] described in Table 1. We ran all
three algorithms with three different values of T, which is the maximum number
of base models tha: the algorithm is allowed to construct: 10, 50, and 100. Each
result reported is the average over 50 results obtained by performing 10 runs of
5-fold cross-validat on. Table 1 shows the sizes of the training and test sets for the

cross-validation rurs.

Figure 4 compares the error rates of AdaBoost and our averaging algorithm with
Naive Bayes base models. In all the plots presented in this paper, each point
marks the error rates of two algorithms when run with the number of base models
indicated in the lesend and a particular dataset. The diagonal line in the plots
contain points at which the two algorithms have equal error. Therefore, points
below /above the line correspond to the error of algorithm indicated on the y-axis
being less than/greater than the error of the algorithm indicated on the x-axis,
respectively. We can see that, for Naive Bayes base models, our averaging algorithm
performs much better than AdaBoost overall. Table 2 shows how often our averaging
algorithm significartly outperformed, performed comparably with, and significantly
underperformed AdaBoost and the Totally Corrective Algorithm. In particular,
for 10 base models. averaging significantly outperformed? AdaBoost on six of the
datasets, performed comparably on one dataset, and performed significantly worse
on two, which is written as “+6=1-2" in the table. Figure 5 shows that our averaging
algorithm performs substantially better than the Totally Corrective algorithm with
our averaging algor:thm. We examined the runs of the Totally Corrective algorithm
in more detail and ften found the overfitting that Kivinen and Warmuth thought
would happen. Due to this poor performance, we did not continue experimenting
with the totally corrective algorithm for the rest of this paper.

4\We use a t-test vith a = 0.05 to compare all the classifiers in this paper.

g %0 0 models - TS g % 10 models 7
g 45 1| s50models : P § 45 50 models © //
o 40 | 100 models - e 1 o 40 | 100models + e
2 s -
g 3¢ P § 35t
o 30 ‘/’ T 30 r . -
225t P 1 F3} P
8 20 - 1 &2
@ T @ P .
g 15f e 1 =5t - . e 1
gy o7 1 g &7 1
g 51 & 1 a>35-/./~ = 4
< 0 - " I SR L n " " < 0 A " i " ' N L L

0 5 10 15 2¢ 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 S0

AdaBoost ~ith Naive Bayes Totally Corrective AdaBoost with Naive Bayes

Figure 4: AdaBcost vs.
Boosting (Naive Buyes)

Averaged Figure 5: Totally Corrective Boosting
vs. Averaged Boosting (Naive Bayes)

Table 2: Performance of Averaged Boosting

[Compared to | Base Model [10 | 50 | 100 l
AdaBoost Naive Bayes +6=1-2 | +4=3-2 | +4=2-3
Totally Corrective Naive Bayes +6=2-1 | +6=2-1 | +6=2-1
AdaBoost Decision Trees +2=7-0 | +2=5-2 | +2=5-2
AdaBoost Decision Stumps || +2=6-1 | +2=4-3 | +2=3-4

We compare AdaBoost and our averaging algorithm using decision tree and decision
stump base models in figures 6 and 7, respectively. With decision trees, the aver-
aging algorithm pe-forms somewhat better than AdaBoost. With decision stumps,
the differences in error rates vary much more, with averaging sometimes performing

worse than AdaBoost.

5 Conclusions

We presented a boosting algorithm that trains each base model using a training
example weight vector that is based on the performances of all the previous base

1]

& 50 = - ———— 2 50 == ———
1 45 [t0Omodels // 541 10 models ~ -
L 50 models ¢ P & 50 models @ P
§ 40 | 100 models i S 40 [100 models - e 1
2 35t o 1 @ 35| '
8 e Q .
a 30t P g0 o
9 & 1
B ast 1 g o«
3 20+ e 1 @ 20 L ea
Q e Q ~ad
@ 15 ¢ ~ 1 2 15¢ &
B 1o »” { g0t -
o o g e
8@ 5} « 1 @ 51 7
g8 L= L S
<

0 5 10 15 20 25 30 35 40 45 50 < 0 5 10 15 20 25 30 35 40 45 50

AdaBoost w th Decision Trees AdaBoost with Decision Stumps

Figure 6: AdaBo)st vs. Averaged Figure 7. AdaBoost vs. Averaged

Boosting (Decision Trees) Boosting (Decision Stumps)

models rather than just the previous one. We discuss the theoretical motivation for
this algorithm and demonstrate empirical results that are superior overall relative
to AdaBoost and the Totally Corrective algorithm that has the same goal as our

algorithm.

Space precluded a detailed analysis of the performances of the base models and
their correlations, s is often done in a detailed study of ensemble methods. We
plan to do this for 1 longer version of this paper in order to compare our algorithm
to AdaBoost and the Totally Corrective algorithm in more detail. This analysis
may help to explain why Averaging AdaBoost’s improvement over AdaBoost was
greater for smaller numbers of base models. Additionally, it has been pointed
out [7, 8] that enscmbles work best when they are somewhat anti-correlated. We
attempted to explo-t this by implementing several boosting algorithms that, at each
iteration, change the base model weights so that the correctly classified examples’
weights add up not to 0.5, but slightly less than 0.5. This scheme occasionally
performed better a1d occasionally performed worse than AdaBoost. Depending on
the available running time, it may be possible to create classifiers using several of
these weight adjustment schemes and combine all of them or a subset of them in
an ensemble, or pe-haps cease using certain weight adjustment schemes if they do
not look promising for the dataset under consideration.

References

(1] K. M. Ali and M. J. Pazzani. On the link between error correlation and error reduction
in decision tree ¢nsembles. Technical Report 95-38, Department of Information and
Computer Scienc?, University of California, Irvine, 1995.

[2] C. Blake, E. Kecgh, and C.J. Merz. UCI repository of machine learning databases,
1999. (URL: htt;»://www.ics.uci.edu/~mlearn/MLRepository.html).

[3] L. M. Bregman. The relaxation method of finding the common point of convex sets
and its applicaticn to the solution of problems in convex programming. USSR Com-

putational Mathenatics and Physics, 7:200-217, 1967.

[4] Y. Censor and A Lent. An iterative row-action method for interval convex program-
ming. Journal of Optimization Theory and Applications, 34(3):321-353, 1981.

[5] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proceedings
of the Thirteenth International Conference on Machine Learning, pages 148-156, Bari,

Ttaly, 1996. Morgan Kaufmann.

[6] Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy projection. In Pro-
ceedings of the Tvelfth Annual Conference on Computational Learning Theory, pages
134-144, 1999.

[7] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active

learning. In G. Tosauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural
Information Proc2ssing Systems-7, pages 231-238. M.L.T. Press, 1995.

[8] Nikunj C. Oza. Online Ensemble Learning. PhD thesis, The University of California,
Berkeley, CA, De: 2001.

[9] K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural
classifiers. Pattern Recognition, 29(2):341-348, February 1996.

