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Abstract

AdaBoost !5] is a well-known ensemble learning algorithm that con-
structs its constituent or base models in sequence. A key step ill

AdaBoost is constructing a distribution over the training exam-

ples to crette each base model. This distribution, represented as

a vector, is constructed to be orthogonal to the vector of mistakes

made by tLe previous base model in the sequence [6]. The idea is
to make file next base model's errors uncorrelated with those of

the previol_s model. Some researchers have pointed out the intu-
ition that it is probably better to construct a distribution that is

orthogonal to the mistake vectors of all the previous base models,
but that tt_is is not always possible [6]. We present an algorithm

that atteml)ts to come as close as possible to this goal in an efficient
manner, v_e present experimental results demonstrating significant

improveme:lt over AdaBoost and the Totally Corrective boosting

algorithm [5], which also attempts to satisfy this goal.

1 Introduction

Ensemble learning t_lgorithms are machine learning algorithms that, given a training

set, construct a combination of base models drawn from a designated hypothesis

class. AdaBoost [5 is one of the most well-known and high-performing ensemble
learning algorithms It constructs a sequence of base models, where each model is

constructed based _n the performance of the previous model on the training set.

In particular, AdaBoost calls the base model learning algorithm with a training set
weighted by a distribution. 1 After the base model is created, it is tested on the

training set to see how well it learned. We assume that the base model learning

algorithm is a weal learning algorithm; that is, its error is less than 0.5, so that

IIf the base mod_[ learning algorithm cannot take a weighted training set as input,
then we can create a sample with replacement from the original training set according to
the distribution and _:all the algorithm with that sample.



it performsbetterthanrandomguessing.2 Theweightsof thecorrectlyclassified
examplesandmisclassifiedexamplesarescaleddownandup,respectively,sothat
thetwogroups'totalweightsare0.5each.Thenextbasemodelis generatedby
callingthelearninl_algorithmwith thisnewweightdistributionandthetraining
set.Theideais that, bccauscof theweaklearningassumption,at leastsomeof
thepreviouslymis:lassifiedexampleswill becorrectlyclassifiedby thenewbase
model.Previouslymisclassifiedexamplesaremorelikelyto beclassifiedcorrectly
becauseof their hgherweight,whichfocusesmoreattentionon them. Kivinen
andWarmuth[6]t_aveshownthat AdaBoostscalesthedistributionwith thegoal
ofmakingthenex_basemodel'smistakesuncorrelatedwith thoseof theprevious
basemodel.It is_:ell-knownthat ensemblesneedto havelowcorrelationin their
basemodels'error._in orderto performwell[1,9].

Giventhispoint,_,'ewouldthink,aswaspointedout in [6],that AdaBoostwould
performbetterif t!mnextbasemodel'smistakeswereuncorrelatedwith thoseof
all the previous base models instead of just the previous one. It turns out that it

is not always possi _le to construct a distribution consistent with this requirement.

However, we can at tempt to get as close as possible to such a distribution. That is,

we may attempt to find a distribution such that the resulting base model's mistakes
are as close as possible to being uncorrelated to all the past base models' mistakes.

Kivinen and Warn2uth [6] devised the totally corrective boosting algorithm, which

attempts to do this. However, they do not present any empirical results. Also, they

hypothesize that tiffs algorithm will overfit and; therefore, not perform well. This

paper presents a n_w algorithm, called Averaging AdaBoost, which has the same

goal as the totally :orrective algorithm. In particular, our algorithm calculates the
next base model's distribution by first calculating a distribution the same way as in

AdaBoost, but thei_ averaging it elementwise with those calculated for the previous
base models. In tiffs way, our algorithm attempts to take all the previous base

models into accoun; in constructing the next model's distribution. In Section 2, we

review how AdaBo:)st works and, in particular, how it constructs its distributions

over the training s,_t for each base model. We also describe the totally corrective

algorithm here. In Section 3, we state our algorithm and describe the sense in which
our solution is the best one possible. In Section 4, we present an experimental

comparison of our _lgorithm with AdaBoost and the totally corrective algorithm.
Section 5 summari_es this paper and describes ongoing and future work.

2 AdaBoost

Figure 1 shows Ad_Boost's pseudocode. AdaBoost constructs a sequence of base
models ht for t E [1,2,...,T}, where each one is constructed based on the per-

formance of the pr,vious base model on the training set. In particular, AdaBoost
maintains a distribution over the m training examples. The distribution dl used

in creating the firs:_ base model gives equal weight to each example (dl,i = 1/m

for all i E {1, 2,... m}). The base model learning algorithm Lb is called with the

2The version of AdaBoost that we use was designed for two-class classification problems.

However, it is routin,_ly used for a larger number of classes when the base model learning
algorithm is strong enough to have an error less than 0.5 in spite of the larger number of
classes.



AdaBoost({(xl, :/1),..., (xm, ym)}, Lb, T)

Initialize dl,_ = 1/m for all i C (1, 2,..., m}.

For t = 1,2,...,T:

ht = Lb(((zl,yl),..., (xm,y,_)},dt).

Calculate '.he error of h_ : et = _/:ht(_)¢_, dt,_.

If et > 1/2 then,
set T = t - 1 and abort this loop.

Calculate ,listribution dt+l :

dt+l,i = d¢,i × 2tl--c')
2et

Output the filal hypothesis:

h fin(x) = trgmax_ev Y],:h,(.)=_ l°gL_Lt"

if ht(xi) = yi

otherwise.

Figure 1: AdaBoost algorithm: {(xl,yl),..., (x,_,ym)} is the training set, Lb is the base

model learning algorithm, and T is the maximum allowed number of base models.

Totally Corrective AdaBoost({(Xl, yl ), . . . , (Xm, ym)}, Lb, T)

Initialize dl,i = 1/m for all i E {1, 2,... ,m}.

For t = 1,2,... T:

h, = nb({(:z,, yt),..., (x,_, ym)}, dt).
Calculate the mistake vector ut:

1 if ht(xi) = yiut,i = -1 otherwise.

If dt . ut _ 0 then,

set T -= t - 1 and abort this loop.

Calculate (istribution dr+l:

Initialize al = dl.

For j == 1,2, ...:

qj = argmaxqje{1,2 ..... t} IclJ " Uqj[.

/ l+aj.Uq.

_., =ln/_ ) •

F(r all i E {1,2,...,m},

rr_ ^ - ^ 'U 'where Zj = _-_i=l d3,_exp(-°_3 qJ,') is the normalizing factor.

Output the fin L1hypothesis:

h]in (x) = ergmaxuo- _]e:h_(_)=u l°gL_ -_-"

Figure 2: Totally C¢,rrective Boosting algorithm: {(x_, y_),..., (xm,ym)} is the training

set, Lb is the base model learning algorithm, and T is the maximum allowed number of

base models.



training set and d-.s The returned model hi is then tested on the training set to
see how well it leained. Training examples misclassified by the current base model

have their weights ncreased for the purpose of creating the next base model, while

correctly-classified training examples have their weights decreased. More specifi-

call),, if hi misclas, ifies the ith training example, then its new weight dt_ 1,i is set

to be its old weigh1 dt,i multiplied by 1g/7_,' where et is the sum of the weights of the

examples that ht _::fisclassifies. AdaBoost assumes that Lb is a weak learner, i.e.,
1

1 with high p:.obability. Under this assumption, _ > 1, so the ith example'set<_
weight increases (d+l,/ > dt,i). On the other hand, if ht correctly classifies the ith

example, then dt+_,i is set to dt.i multiplied by 2-U_' which is less than one by

the weak learning assumption; therefore, example i's weight is decreased. Under

distribution dt+l, the total weight of the examples misclassified by ht and those

correctly classified by ht become 0.5 each. This is done so that, by the weak learning

assumption, ht+l v, ill classify at least some of the previously misclassified examples

correctly.

For all the base models ht (t E {1, 2,. .... T}) and the m training examples, con-

struct a vector ut E [-1, 1]"_ such that the ith element ut,i = 1 if ht classifies

the ith training ex_tmple correctly (ht(xi) = Yi) and ut,i = -1 otherwise. Kivinen

and Warmuth [6] pointed out that AdaBoost calculates dt+l from dt such that

dt+l " ut = 0. That is, the new distribution is created to be orthogonal to the ntis-
take vector of ht, w__ich can be intuitively described as wanting the new base model
to reduce a suitable loss function in a direction orthogonal to what the previous

base model did, so hat the new base model's mistakes are uncorrelated with those

of the previous mociel. This naturally leads to the question of whether one can im-

prove upon AdaBo(,st by constructing dt+l to be orthogonal to the mistake vectors
of all the base hyp( theses hi, h2,..., ht (i.e., dt+l ' Uq = 0 for all q E {1, 2,..., t}).

Constructing such at dt+l is not always possible. In particular, if m > t, then the

system of equations just given is overspecified, so that there may not be a solution.
Kivinen and Warm_:th's totally corrective algorithm (figure 2) attempts to solve this

problem using an it_rative method. The initial parts of the algorithm are similar to
AdaBoost. That is, the totally corrective algorithm uses the same dl as AdaBoost

in creating the first base model and the next statement checks that the base model
error is less than 0.5. The difference is in the method of calculating the weight dis-

tribution for the ne:.:t base model. The totally corrective algorithm repeatedly finds

the one among the t constraints that is most strongly violated, i.e., finds the value

qj having the highest value of ldj • Uqj I, and then projects the current distribution
onto the hyperplanc defined by that violated constraint. This is similar to so-called

row action optimization methods [3, 4]. Kivinen and Warmuth show that, if there
is a distribution th;_t satisfies all the constraints, then there is an upper bound of
21nm

on the number of iterations needed so that maxqje{1,2 ..... t} laj • Uqjl < 3, for
any 3' > 0. Of course, as mentioned earlier, we cannot generally assume that there
is a distribution that satisfies all the constraints, in which case there is no such
bound on the numt=er of iterations. In fact, we are not even guaranteed to reduce

maxqjc{1,2 ..... t} laj • Uqil at each iteration. To make the totally corrective algorithm
usable for our experiments, we have added two stopping criteria not present in the

original algorithm. Define vtj = maxqje{1,2 ..... t} Idj " Uqjl. The algorithm stops if

3As mentioned ea-_lier, if Lb cannot take a weighted training set as input, then we
can give it a sample lrawn with replacement from the original training set according to
distribution d.



Averaging AdaBoost({(xl, yt),..., (xm, ym)}, Lb, T)

Initialize dl,_ = 1/m for all i E {1, 2,... ,m}.

For t = 1,2,...,T:
ht = Lb({(c,,y,),..., (xm,ym)},dt).

Calculate the error of ht : et = )-_,:ht(_)_ dt,i.

If ¢t > 1/2 then,
set T = t - 1 and abort this loop.

Calculate _ rthogonal distribution:

Fori::l,2,...,m:

i 1

if ht(x,) y,
ct,i = dt,i X 2 1-et)l

2_-7 otherwise

tdt,i + ct,,
_t+l,i :-

t+l

Output the final hypothesis:

h fin(X) = _rgmax_er )-]_t:h,(x)=_ l°gL_-L_ "

Figure 3: Our Averaging AdaBoost algorithm: {(x_, y_),..., (xm, ym)} is the training set,

Lb is the base model learning algorithm, and T is the maximum allowed number of base

models.

either vt,j -vt,j-i < 0.0001 or both j > m and vt, j > vt,j-1. The first constraint re-

quires that the ma_ imum dot product decrease by some minimum amount between

consecutive iterations. The second constraint leaves the loop if, after iterating at

least as many times as the number of training examples, the maximum dot product

increases. These ar_ heuristic criteria devised on the basis of observations of some

of our experiments with this algorithm.

In the next section, we describe our algorithm.

3 Our algorithm

Figure 3 shows our new algorithm. Just as in AdaBoost, our algorithm initializes

dl,i = 1/m for all : E {1,2,...,m}. Then it goes inside the loop, where it calls

the base model lear ring algorithm Lb with the training set and distribution dl and

calculates the error ,)f the resulting base model hi. It then calculates Cl, which is the

distribution that A(taBoost would use to construct the next base model. However,

our algorithm averages this with dl to get d_, and uses this d2 instead. The loop

continues for a total of T iterations. The vector dt+l is a running average of the

vectors Cq for q E { 1, 2,..., t}, which are orthogonal to the mistake vectors of the

previous t base mo(els (Uq for q E {1, 2,..., t}), respectively.

It is well-known that this dt+l has the least average Euclidian distance to the

vectors Cq for q E 1,2,...,t}. In this sense, our algorithm finds a solution that

does the best job cf balancing among the t constraints Cq • Uq = 0 without the

computational cost :)f a convex optimization method. It is easy to prove that dt+l

is already a distribution (i.e., normalization is unnecessary), but space precludes us



Table 1: The datasets used in our experiments.

ata Set Training Test Inputs I Classes
Set Set ]

P_ ornoters 84

lalance 500

Bre_Lst Cancer 559

Ge 1an Credit 800

Car _valuation 1382

Chess

M_lshroom

ursery
C mnect4

2556

6499

10368

54045

22

125

140

200

346

640

1625

2592

13512

57 2

4 3

9 2

20 2

6 4

36 2

22 2

8 5

42 3

from doing so here

We now demonstrate the experimental usefulness of this algorithm.

4 Experimental Results

In this section, we compare AdaBoost, the totally corrective algorithm, and our

averaging algorithr_ on nine UCI datasets [2] described in Table 1. We ran all

three algorithms with three different values of T, which is the maximum number
of base models tha; the algorithm is allowed to construct: 10, 50, and 100. Each

result reported is 1he average over 50 results obtained by performing 10 runs of
5-fold cross-validat on. Table 1 shows the sizes of the training and test sets for the

cross-validation ruts.

Figure 4 compares the error rates of AdaBoost and our averaging algorithm with

Naive Bayes base models. In all the plots presented in this paper, each point
marks the error rates of two algorithms when run with the number of base models

indicated in the legend and a particular dataset. The diagonal line in the plots

contain points at which the two algorithms have equal error. Therefore, points

below/above the line correspond to the error of algorithm indicated on the y-axis

being less than/gr_,ater than the error of the algorithm indicated on the x-axis,

respectively. We ca_ see that, for Naive Bayes base models, our averaging algorithm

performs much better than AdaBoost overall. Table 2 shows how often our averaging

algorithm significar_tly outperformed, performed comparably with, and significantly
underperformed A_laBoost and the Totally Corrective Algorithm. In particular,
for 10 base models averaging significantly outperformed 4 AdaBoost on six of the

datasets, performe( comparably on one dataset, and performed significantly worse

on two, which is written as "+6=1-2" in the table. Figure 5 shows that our averaging

algorithm performs substantially better than the Totally Corrective algorithm with
our averaging algor thm. We examined the runs of the Totally Corrective algorithm
in more detail and fften found the overfitting that Kivinen and Warmuth thought

would happen. Duq_ to this poor performance, we did not continue experimenting

with the totally corrective algorithm for the rest of this paper.

4We use a t-test _,,ith c_ = 0.05 to compare all the classifiers in this paper.
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Table 2: Performance of Averaged Boosting

I Compared to Base Model II 10 50 100

AdaBooqt

Totally C _ctive
AdaBoost

AdaBooqt

Naive Bayes +6=1-2 +4=3-2

Naive Bayes +6=2-1 +6=2-1
Decision Trees +2=7-0 +2=5-2

Decision Stumps +2=6-1 +2=4-3

+4=2-3

+6=2-1

+2=5-2

+2=3-4

We compare AdaBoost and bur averaging algorithm using decision tree and decision

stump base models in figures 6 and 7, respectively. With decision trees, the aver-

aging algorithm pe'forms somewhat better than AdaBoost. With decision stumps,
the differences in error rates vary much more, with averaging sometimes performing

worse than AdaBo(bst.

5 Conclusions

We presented a bo:)sting algorithm that trains each base model using a training

example weight ve(tor that is based on the performances of all the previous base
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models rather than just the previous one. We discuss the theoretical motivation for

this algorithm and demonstrate empirical results that are superior overall relative

to AdaBoost and the Totally Corrective algorithm that has the same goal as our

algorithm.

Space precluded a detailed analysis of the performances of the base models and

their correlations, _s is often done in a detailed study of ensemble methods. We

plan to do this for _ longer version of this paper in order to compare our algorithm

to AdaBoost and 1he Totally Corrective algorithm in more detail. This analysis

may help to explai_ why Averaging AdaBoost's improvement over AdaBoost was

greater for smallel numbers of base models. Additionally, it has been pointed

out [7, 8] that ens_.mbles work best when they are somewhat anti-correlated. We

attempted to explo t this by implementing several boosting algorithms that, at each

iteration, change the base model weights so that the correctly classified examples'

weights add up not to 0.5, but slightly less than 0.5. This scheme occasionally

performed better aid occasionally performed worse than AdaBoost. Depending on

the available runni;_g time, it may be possible to create classifiers using several of

these weight adjuslment schemes and combine all of them or a subset of them in

an ensemble, or pehaps cease using certain weight adjustment schemes if they do

not look promising for the dataset under consideration.

References

[1] K. M. Ali and M. J. Pazzani. On the link between error correlation and error reduction
in decision tree (nsembles. Technical Report 95-38, Department of Information and

Computer Scienc !, University of California, Irvine, 1995.

[2] C. Blake, E. Ke(gh, and C.J. Merz. UCI repository of machine learning databases,
1999. (URL: httt ://www.ics.uci.edu/_mlearn/MLRep°sit°ry'html)"

[3] L. M. Bregman. The relaxation method of finding the common point of convex sets
and its applicatk n to the solution of problems in convex programming. USSR Com-

putational Mathe:naties and Physics, 7:200-217, 1967.

[4] Y. Censor and A Lent. An iterative row-action method for interval convex program-
ming. Journal of Optimization Theory and Applications, 34(3):321-353, 1981.

[5] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proceedings
of the Thirteenth International Conference on Machine Learning, pages 148-156, Bari,

Italy, 1996. Morgan Kaufmann.

[6] Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy projection. In Pro-

ceedings of the T_elfth Annual Conference on Computational Learning Theory, pages

134-144, 1999.

[7] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active
learning. In G. T,;sauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural

Information Processing Systems-7, pages 231-238. M.I.T. Press, 1995.

[8] Nikunj C. Oza. ()nline Ensemble Learning. PhD thesis, The University of California,

Berkeley, CA, De: 2001.

[9] K. Turner and J. Ghosh. Analysis of decision boundaries in linearly combined neural
classifiers. Pattern Recognition, 29(2):341-348, February 1996.


