
A Quality Model for the Ada Standard
Container Library?

Xavier Franch and Jordi Marco

Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
c/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)

{franch,jmarco}@lsi.upc.es

Abstract. The existence of a standard container library has been largely
recognized as a key feature for improving the quality and effectiveness of
Ada programming. In this paper, we aim at providing a quality model
for making explicit the quality features (those concerning functionality,
suitability, etc.) that determine the form that such a library might take.
Quality features are arranged hierarchically according to the ISO/IEC
quality standard. We tailor this standard to the specific context of con-
tainer libraries, by identifying their observable attributes and establish-
ing some tradeoffs among them. Afterwards, we apply the resulting model
to a pair of existing container libraries. As main contribution of our pro-
posal, we may say that the resulting quality model provides a structured
framework for (1) discussing and evaluating the capabilities that the
prospective Ada Standard Container Library might offer, and (2) ana-
lyzing the consequences of the decisions taken during its design.

1 Introduction

Most important object-oriented programming languages include some standard
libraries of reusable components as part of their definition. Among them, we focus
on container libraries. A container (also known as collection) may be defined as
an object that contains (i.e., stores) other objects. Some examples of containers
are sets, maps and sequences. Object-oriented programming languages that offer
container libraries are: Java, with the Java Collections Framework (JCF) [1];
C++, with the Standard Template Library (STL) [14]; and Eiffel, with the
Eiffel Base Library [10].

Unfortunately, this is not the case for the Ada language, in spite of various
attempts and claims in this direction, among which we mention:

• Some existing widespread container libraries, such as the Booch Compo-
nents [3] and the Charles Container Library [4].

• Some events, such as the Standard Container Library for Ada workshop held
during the Ada Europe 2002 conference.

• Wide initiatives, such as the Application Standard Components Library [2]
or the prospective Working Group mentioned during the workshop above.

? Work partially supported by the Spanish research project CICYT TIC2001-2165.

Franch, X.; Marco, J. A quality model for the Ada standard container library. A: International Conference on Reliable Software Technologies. "Reliable
Software Technologies: Ada-Europe 2003: 8th Ada-Europe International Conference on Reliable Software Technologies: Toulouse, France, June 16-20,
2003: proceedings". Berlín: Springer, 2003, p. 283-296.
The final authenticated version is available online at https://doi.org/10.1007/3-540-44947-7_21

• Some opinions and claims, such as those in the comp.lang.ada discussion
list or the ACM SIGAda Chair Message for March 2002 Ada Letters: “Such
a [Container] Library could be an excellent addition to the Ada International
Standard”.

Needless to say, the existence of a standard container library for Ada would
clearly contribute to the quality of the final Ada artifacts and the effectiveness of
the software development process itself. For this reason, and also because once
deployed, its modification would be certainly difficult and should be avoided
whenever possible, having a comprehensive, structured and precise framework
for assessing the design and implementation of this library becomes utterly im-
portant.

With this objective in mind, we present in this paper a quality model aimed
at making explicit all the quality criteria (e.g., reliability, functionality, efficiency
etc.) that should be considered when building the Ada Standard Container Li-
brary. We use the ISO/IEC 9126-1 quality standard [9] as initial point. It is a
very general standard, and so the main goal of the paper is tailoring the quality
model proposed therein to the specific context of container libraries and also
showing its use by means of the evaluation of two existing container libraries.

The rest of the paper is structured as follows. Section 2 presents the ISO/IEC
9126-1 quality standard, which introduces six groups of software characteristics
that will drive the discussion. Sections 3 and 4 analyze some of the form that
these characteristics take in the domain of container libraries, and Sect. 5 discuss
their relationships. Section 6 applies the resulting quality model to two existing
container libraries, an Ada one (Booch Components) and a standard library
from other programming language (Java Collection Framework). Finally, Sect. 7
provides the main conclusions of our work.

2 The ISO/IEC 9126-1 Quality Standard

The ISO/IEC Quality Standard 9126-1 [9] provides a good framework for deter-
mining a quality model for a given domain of software components. An ISO/IEC-
9126-1-based quality model is defined by means of general characteristics of soft-
ware, which are further refined into subcharacteristics, which in turn are decom-
posed into attributes. Attributes collect the properties that software components
exhibit. Intermediate hierarchies of subcharacteristics and attributes may appear
making thus the model highly structured.

The ISO/IEC 9126-1 standard fixes six top level characteristics: functionality,
reliability, usability, efficiency, maintainability and portability (see Table 1). It
also fixes their further refinement into subcharacteristics but does not elaborate
the quality model below this level, making thus the model flexible. The model is
to be completed based on the exploration of the particular software domain and
its application context; because of this, we may say that the standard is very
versatile and may be tailored to domains of different nature, such as the one of
container libraries.

Table 1. ISO/IEC 9126-1 characteristics and subcharacteristics

Functionality

suitability presence and appropriateness of a set of functions for specified tasks

accuracy provision of right or agreed results or effects

interoperability capability of the software product to interact with specified systems

security prevention to (accidental or deliberate) unauthorized access to data

compliance adherence to functionality-related standards or conventions

Reliability

maturity capacity to avoid failure as a result of faults in the software

fault tolerance ability to maintain a specified level of performance in case of faults

recoverability capability of reestablish level of performance after faults

compliance adherence to reliability related standards or conventions

Usability

understandability effort for recognizing the logical concept and its applicability

learnability effort for learning software application

operability effort for operation and operation control

attractiveness capability of the product to be attractive to the user

compliance adherence to usability related standards or conventions

Efficiency

time behavior response and processing times; throughput rates

resource
utilization

amount of resources used and the duration of such use

compliance adherence to efficiency related standards or conventions

Maintainability

analysability identification of deficiencies, failure causes, parts to be modified, etc.

changeability capability to enable a specified modification to be implemented

stability capability to avoid unexpected effects from modifications

testability capability to enable for validating the modified software

compliance adherence to maintainability related standards or conventions

Portability

adaptability opportunity for adaptation to different environments

installability effort needed to install the software in a specified environment

co-existence
capability to co-exist with other independent software in a common
environment sharing common resources

replaceability opportunity and effort of using software in the place of other software

compliance adherence to portability related standards or conventions

In our paper, we are interested in considering the model as a means for ob-
taining quantitative measures of the attributes of the final product. Qualitative
metrics would be defined later, when considering how the different attributes
should be weighted for taking into account the requirements over the Ada Stan-
dard Container Library.

In the next sections, we adapt this quality model to the domain of container
libraries. To do so, we apply a methodology presented elsewhere [6] that extends
the hierarchy and makes explicit the relationships between the different quality
features.

3 Quality Attributes for Functionality

Functionality is probably the most relevant quality characteristic in the domain
of container libraries. Success of the Ada Standard Container Library requires
exhibiting the appropriate functionality once considered its design requirements.
It should be noted that “appropriate” does not necessarily mean “exhaustive”,
because an excess of functionality would impact negatively in other criteria such
as usability or operability. Tradeoffs among quality factors, which are part of the
quality model, would help to make this clear, see Sect. 5.

This section is structured into five subsections, one for each functionality sub-
characteristic. For each subcharacteristic, we present a table with the attributes
that play a part on them, together with some explanation.

3.1 Suitability

Not only in the domain of container libraries but also in others we have analyzed
before [6, 5], Suitability is perhaps the largest and more complex subcharacter-
istic. For this reason, it is worth to decompose it into groups of attributes, i.e.,
new subcharacteristics. In our case, we identify two of them:

• Core Suitability. Addresses the types of containers offered and their im-
plementations. These types are mainly characterised by the operations for
adding, removing, modifying and searching elements.

• General Suitability. Keeps track of additional functionalities offered by (most
of) the containers of the library, such as support for concurrent access or
iterators.

Core Suitability. Table 2 introduces the attributes for Core Suitability. Some
comments follow:

• The concept of category stands for huge groups of behaviour-related contain-
ers. Some categories such as sequences or maps will surely be present some-
how in the Ada Standard Container Library, while others such as graphs may
be a matter of discussion (in fact, most of the standard container libraries
present in other languages do not offer this container category).

• Containers and their implementations are kept separated from the very be-
ginning. A container represents an abstract data type, which may have (and
probably will have) some different implementations in the library.

• The concept of operation should be viewed from the abstract-data-type point
of view. In addition to operations, there could be generic algorithms that use
those operations (container traversal, merging, etc.). These algorithms are
represented by an attribute in the General Suitability subcharacteristic.

• It is important to include in the model itself the different types of container
elements that are present in the library, and also their relationships, which
are not shown in the table for lack of space.

• The second, the third and the fourth attributes are in fact families of at-
tributes, one for each type of category or container.

Table 2. Attributes for Core Suitability

Attribute Definition Examples

Category variety
Range of different categories of contain-
ers offered by the library

Sequences, maps, sets,
trees, graphs

Container variety
Range of different containers provided
by every category

For sequences:
stacks, queues, lists

Implementation
variety

Range of different implementations pro-
vided by every category

For maps: closed hashing,
red-black trees

Operation variety
Range of different operations provided
by every container

For stacks: empty, push,
pop, top, isEmpty

Element variety Types of container elements Universal, comparable

General Suitability. Table 3 lists the attributes for General Suitability. It
should be mentioned that other attributes could also be incorporated, but we
focused on the most usual ones:

• Position is a direct access path for elements in the container. Iterators pro-
vide a means to obtain and possibly manipulate the elements in the con-
tainer. These two features are present in most widespread container libraries,
with these names or others (e.g., iterators in STL, items in LEDA [13]).

• As some libraries do (e.g., STL and LEDA), positions and iterators may be
implemented using the same mechanism. But it is important to keep both
attributes separate, since their semantics are different.

• It is expected that these attributes will behave uniformly in the whole library,
e.g., the same error management mechanisms used throughout the library
(see 4.1).

Table 3. Attributes for General Suitability

Attribute Definition Examples

Direct access
by position

Types and operations for supporting
direct access to elements in containers

Type position; operation for
deletion by position

Iterators
Types and operations for supporting
traversal of containers

Bidirectional, unidirectional;
read, read/write

Concurrent
access

Mechanisms for managing concurrent
access to containers

Semaphores,
synchronization

Persistency
Mechanisms for storing container ele-
ments in a persistent manner

Serialization; operations for
writing to disk; file types

Algorithmic
variety

Range of generic algorithms present in
the library or in particular containers

Sorting, merging
For arrays: binary search

Error
management

Mechanisms available for error man-
agement

Use of contracts, exceptions,
messages

Sizeability
Strategies supported for managing the
size of the container

Bounded, unbounded and
resizeable containers

• An exception to the last rule is the Sizeability attribute, because some imple-
mentation strategies may prevent the use of some kind of sizeability strate-
gies (e.g., heap implementations for resizeable containers).

3.2 Accuracy

In Table 4 we present the attributes for Accuracy. We highlight the following:

• It is necessary to distinguish among the Error Management mechanisms
available (part of General Suitability) and how they are used in container
operations. The first attribute in Table 4 addresses the last topic.

• Absence of ambiguity is analyzed at the specification level, not at the im-
plementation one. For instance, it is important to know the policy that the
container follows when elements with the same value are found in an ordered
traversal. But on the other hand, it is not relevant to know the detailed be-
haviour of a concrete implementation (e.g., how a hashing strategy handle
collisions), provided that it keeps the intended specification.

• Access by position and iterators must be well defined. A survey of these
mechanisms in some widespread libraries shows that there are certain con-
ditions that may affect the accuracy of the results and may compromise the
integrity of the container. This is the reason why these new attributes have
been introduced in this subcharacteristic.

Table 4. Attributes for Accuracy

Attribute Definition Examples

Trusted
operations

Policies that ensure right results when
executing operations

Deleting non-existing elements will
not harm the state of the container

Absence of
ambiguity

Certainty about the behaviour of a
container

Priority queue: FIFO ordering of el-
ements with the same priority

Accurate access
by position

Policies and artifacts that ensure right
results when accessing by position

Operation for knowing if a position
is bound to the right element

Accurate access
by iterator

Policies and artifacts that ensure right
results when accessing by iterator

Operation for knowing if the current
element during traversal has changed

3.3 Interoperability

Table 5 introduces the attributes for Interoperability. The second attribute refers
to the possibility of using a container in a distributed system with some kind of
middleware. To do so, some actions must be taken; e.g., the interface of the con-
tainer should be defined in some specific Interface Description Language (IDL).
Although a great deal of applications would avoid the remote use of containers
for efficiency reasons, we think that the attribute must be included in the model
for its analysis when designing the Ada Container Standard Library.

Table 5. Attributes for Interoperability

Attribute Definition Examples

Language
interoperability

Ability to be invoked by programs writ-
ten in a language different from Ada

Invocation from C++ and
Eiffel

Component
interoperability

Ability to be integrated in heterogeneous
systems

CORBA, DCOM, RMI
middleware

3.4 Security

Table 6 presents the attributes for Security. We remark that:

• Concurrent Access Security is closely related to the Concurrent Access at-
tribute which belongs to the General Suitability characteristic. In other
words, as it happened with error management in 3.2, it is important to
distinguish among the available policies and how they are implemented from
the security point of view.

• Since positions and iterators provide additional access mechanisms to con-
tainers (additional with respect to the access schemes bound to the type of
container), it is important to establish their conditions of correct behaviour.
Obviously, the two resulting attributes are closely related to the ones ap-
pearing in Accuracy but it is necessary to distinguish among accuracy of
results and data security.

Table 6. Attributes for Security

Attribute Definition Examples

Concurrent
access

security

Policies and mechanisms that ensure safe
concurrent access to elements in the con-
tainer

Facilities for duplicating parts
of the container; blocking dur-
ing an iterator traversal

Direct access
by position

security

Policies and artifacts that ensure safe use
of positions when accessing the container

A position bound to an ele-
ment is the same while it is in
the container

Iterator
security

Policies and artifacts that ensure safe use
of iterators when accessing the container

Read-only iterators may not
be used in an odd manner

3.5 Functionality Compliance

Table 7 introduces the attributes for Functional Compliance. In general, the
concept of compliance comes from two different sources. The first one are reg-
ulations clearly stated in a document, such as the reference manual of the Ada
programming language. The second one stems from the current practices of the
community, which have lead to a common foundation widely accepted. Some

different communities must be taken into account, mainly the Ada community
(e.g., use the term package instead of module), the software libraries community
(e.g., use the expression browsing when performing a tool-supported search in
the library) and the data structure community (e.g., use names such as stack
and hashing).

Table 7. Attributes for Functionality Compliance

Attribute Definition Examples

Domain
compliance

Adherence to conventions of names of
containers, operations and other arti-
facts

Function-like containers should
be named something close to map
or table

Language
compliance

Adherence to conventions in the lan-
guage community

In Ada: To List for transforming
a set into a list

4 Other Quality Attributes in Container Libraries

In the previous section we have analysed all the subcharacteristics belonging
to the Functionality characteristic. The same should be done with the rest of
characteristics of the ISO/IEC 9126-1 quality standard, but this is not possible in
this paper for lack of space. So, we have focused on two other subcharacteristics
that would play also an important part in the success of the Ada Standard
Container Library.

4.1 Understandability

Table 8 introduces the attributes for Understandability. Some comments follow:

• A clear distinction among types of containers and their implementations is
crucial for supporting understandability. Information hiding is the principle
that should rule the design of the library. Therefore, no assumptions about
implementation policies should appear when defining the type of container.

• Uniformity could be defined as a family of attributes, one for each type of
concept in the library. Thus, we may talk about uniformity of error manage-
ment, uniformity on the way of using generic algorithms, and so on.

• The third attribute is different from the compliance ones (see 3.5), although
some relationships exist.

• Documentation has to be considered here from the user’s point of view.
This means that we are not addressing project documentation, such as code
comments, but documentation for understanding the product.

• The quality of the design affects the understandability of a library. Bad
designs may hide concepts and may place features in the wrong place.

• Complexity is a concept that has to be mainly with two factors: size (num-
ber of packages, number of methods, etc.) and conceptual difficulty of the
implementations, algorithms, strategies, etc.

Table 8. Attributes for Understandability

Attribute Definition Examples

Separation between
type of container -
implementation

Degree of distinction among the se-
mantics of a container type and its
available implementations

No assumptions on the
available implementations

Uniformity

Same strategies and level of detail
when dealing with the same concept
in different parts of the library

Access by position avail-
able to all types of contain-
ers

Name
appropriateness

Behaviour of library features accord-
ingly to their name

The getCurrent operation
of an iterator does not
change the current element

Quality of
documentation

Appropriateness and comprehension
of the documentation to make easy
the use of the library

UML diagrams for describ-
ing the packages; browsing
capabilities

Quality of design Quality of the design of the library Use of design patterns

Complexity
Size of the library and conceptual
difficulty of the offered features

Use of advanced implemen-
tation techniques

4.2 Changeability

Table 9 presents the attributes for Changeability. Issues worth to remark:

• Changeability may be seen from different points of view, namely: extension of
the library with new types of containers, implementations, generic algorithms
and so on; specialization of existing types of containers with new features,
new specific algorithms, etc.; modification of existing features. We could then
split the subcharacteristic into three. However, for the sake of brevity, we do
not proceed this way.

• Modularity and internal reusability are perhaps the key two factors in this
subcharacteristic. Of course, whatever final form the library takes, some
degree of modularity and reusability will exist.

• The last two attributes were previously introduced in the Understandability
subcharacteristic. This situation illustrates the fact that the hierarchy has
a graph-like form. However, it should be remarked that the focus of the at-
tribute vary depending on the subcharacteristic. For instance, complexity in
Understandability has been considered from the user point of view (basically,
number of concepts to be understood) while complexity in Changeability is
considered from the developer point of view (basically, how easy is the design
and the code of the library to be modified). In other words, metrics for this
two attributes would be definitively different.

5 Stating Relationships among Quality Attributes

We have already mentioned that a fundamental point when building a quality
model is making explicit the tradeoffs among the different quality factors that

Table 9. Attributes for Changeability

Attribute Definition Examples

Modularity
Extent of the decomposition of the
library into modules

One package for container
type

Internal
reusability

Degree of reusability of the code in-
side the library

Use of abstract classes

Programming
practices

Adoption of best programming prac-
tices in-the-small

Avoid global variables;
adopt name conventions

Decoupling
Independence of the different pack-
ages that are in the library

Use the Template Method
pattern

Quality of design Quality of the design of the library Use of design patterns

Complexity
Difficulty of analysing the internal
structure of the library

Intensive use of object-
oriented features

have been identified. The purpose of this section is to identify and characterize
the types of relationships that appear in the model.

Relationships may be classified according to two different concepts:

• Which are the types of quality factors related. The most usual case is relating
a couple of attributes, but also subcharacteristics may be related. Also, a
subcharacteristic may affect an attribute, or the other way round.

• Which is the kind of relationship. We distinguish among three types:

– Dependency. If A depends on B, then A is an attribute that makes sense
only if B satisfies some condition on its value.

– Collaboration. If A collaborates with B, growing of A (from the metrics
point of view) implies growing of B. Often, collaboration is symmetric.

– Damage. If A damages B, growing of A (from the metrics point of view)
implies shrinking of B.

As an example Table 10 enumerates some representative relationships among
the quality factors presented in Sects. 3 and 4. Some explanation is given below:

• The first relationship is a dependency among two attributes. It states that
talking about accuracy of iterators is useless when there are no iterators.

• The second one is a damage from one subcharacteristic to another. It reflects
that the more suitable the library is, the more difficult to understand.

• The third relationship is a symmetric collaboration among two attributes.
Modularity of the library clearly supports separation of concerns, while hav-
ing a conceptual distinction among type of container and implementation
will favour the ability to structure the library in a modular manner.

• Finally, the fourth relationship is a collaboration from one attribute to an-
other. Internal reusability clearly has a positive influence on uniformity of
the library, since inherited features will appear in the heirs without any
difference.

Table 10. Relationships among quality factors

Dependee Depender Type of relationship

Iterators Accurate access by iterator Dependency

Suitability Understandability Damage

Modularity
Separation type of

container – implementation
Symmetric collaboration

Internal reusability Uniformity Collaboration

It should be remarked that the analysis of the relationships among quality
attributes requires adopting a qualitative point of view of the quality model. As
stated in the introduction, qualitative measures are supposed to be introduced
when considering a specific context for the library, after analysis of the require-
ments for its design and implementation. The relationships stated here could be
then a great help when considering the implications of some requirements over
the quality of the library.

6 Applying the Quality Model

In this section we apply the resulting quality model to two existing container
libraries: an Ada one, Booch Components (BC) and the standard library from
Java, the Java Collections Framework (JCF). Due to lack of space, we do not
analyze other interesting Ada libraries (such as Charles) or standard libraries of
other languages (e.g., STL).

Table 11 summarizes the evaluation of the attributes in both libraries. The
first column identifies the subcharacteristic, the second one the attribute, and
the third and fourth the values in the libraries. The table is commented in the
rest of the section.

Core suitability. It can be observed that BC provides a richer variety of cate-
gories and containers, but there is not a significant difference in implementation
strategies. Operations on containers are usual ones: insertions, deletions, etc.
Some containers and implementation strategies require comparisons of elements
and so both libraries offer comparable elements.

General suitability. Both libraries are not well-suited for access by position.
BC does not provide this kind of access, while JCF just in lists. Also, iterators are
not as powerful as in other widespread libraries. In fact, we have a proposal [11]
enriching BC with access by position and more powerful iterators.

It must be also remarked that the direct access provided by JCF by means
of list iterators is in fact the position on the list, so in case of LinkedList imple-
mentation it is highly inefficient. This property would have appeared if efficiency
were included in the part of the quality model developed in this paper. On the
other hand, the list iterator are bidirectional and read/write.

Other general suitability attributes are more or less covered by both libraries.

Table 11. Applying the quality model to the BC and JCF libraries

��� � � � ����� � 	�
 �
�

� � ��� � � � � � ��� � ����� �
� � � � � � ��� ����� ����� � ��� � ! � !

" ��� � � � ��� � � � ! #�� ��� � � � � � � �
#$� ���$� ����� � ��� � � � � ��� ! ! � ! #�� ��� � � � � � � �

%$��� � � � �&� �
'�� � ����� � � � � � � � (� � ' (� � '
%$��� � � � ��� �)'�� ! � * � � ! #�� ��� � � � � � � �+ ,

- ./
01 2,
- 2
3454
1 6

�� ����� � 7 � � � 89� : ;�� * <
= � '���� � � � � � � ! � !> � � � � ��� �9� � ��! � ��� � � � � � ! ?9����� � � ��! � ! � � ����� � ��* � ! ?������ � � ��! � !@� ��� A � � � � � �B � � * � � ����� ��*
��� � � � � � � ! (� � ' (� � '
C � � � ����� � ��* #$� � !%$��� � � � ��� �)'�� ! � * �
�� ����� � ��* � � ��! � !@� � ! ��� �)D ��� � � � � (� � 'EF 2

,G .
2
3454
1 6

�� ����� � 7 � � � ;�� * < ;�� * <

�� � � * � � ��H � � � � � � � � D ��� � � � ! ?9��� ��! ? � � � � ! ?9! � � ! ?* � � ��<�! � � D ��� � � � ! ?9��� ��! ?�! � � !

�� � � � � ��� ��H � � � � � �
� � D ��� � � � ! I � � � � � � � � � ��! ?�� � ! � ! ?! � � � J ! ?�� � ��* ! ?�D ��� ��� ! K = � ��! I���� ��! K� � � �9����� ��L M&H � � � � � � � !

� � D ��� � � � ! I9� � ! � ! K= � ��! I���� ��! ? ! � � � � '���� ��! K
� � � ! I�! � � ! ?9! � � � � 'N! � � !

> ����� � ��� � � � � � � �
H � � � � � � O ���@! � � � � � * ��� � ��� � � < � � � � � � ��� �

89� ! � !�� ���&��� ��! ? � :���! � � � � � * � � ! K
� � <�� � ! ?9� ���

O ��� � � � � � �NH � � � � � �
= � ! � � � ����� ��� �9� � � � � � ��!� � ��� � � < � � � � � � ��� �

= � ! � � � ����� ��� ��� � � � � � ��!� � ��� � � < � � � � � � ��� �E P/.
Q R4
1 2
3454
1 6

S � � ��� � ��H � � � � � � " ��� H � � ! � � ? � � ����� � � ��� � " ��� H � � ! � � ? � � ����� � � ��� �
� � � � ! !@� ����� ! � � � � � #�� ��! ������� � � � ' O ��� ��� ��� � ! � ! ?���! � ��*&� � � � � � � � !

> � � � � � � � ! " ��� '�� � � � � � � ��� � ? � � � ' T � ��� � " ��� '�� � � � � � � ��� ��U � 7 � � ����� � ��� � ! � ! V ?� � � ' T � ��' T � � ��� H �

�� � � ��� � � � ��� � � � ! ! (��� � '�� '�� ��'�! � � � <�� � ��� W � ' #$� ��! ��� � � X � ��� � <�� ��� ! ��!B � � ! � ! � � � � � #�� ��! ������� � � � ' � � � � � � � W � � � � �
�$� * � � � � <���� � H � � � � � � #��&* � ��� � � � � � * � � � � <���! #$��* � ��� � � � � � * � � � � <���!S � � � �$��� ��� * � ��� � � S 7 � � ��� � � �N��� � <�� ��� ! � S 7 � � ��� � � ����� � <�� ��� ! �Y .,./

25
Q R4
1 2
3454
1 6

� � W � � ��� � � � � 	�� ����'�� '9?���� �9� ����'�� 'N� ��'
� � ! � W � � ��� � " � ��� ����'�� '9?�� � ! � W � � ��� �

Z � ��! � � '�� ��� � � � � � ��! � ! ?���! � ��*�� 7 � � ��� � � ��! � ! ?���! � ��*�� 7 � � ��� � � ��!����! � � � �&� �[� ����� * ��� � � � ! � !� � � ��� � � ��'�� � � � ��� � � � ! !� �&�9� ! � � � � � C � � � � ��� � � � ! !$��� ��! ������� � � � ' 89� ! � !�� � H � � � '�� � ��'�� � � � ��� � � � ! !@� !! � � ��� !�� <�� � � � � � � ��� ��� !���� '�� X�� '
\]]R/
2]6

� � � ��� � � �&� � � � ! !� ��� � � � � � � � � ! ?���! � ��* � � � � ��� � � � �� � � � ! !$��� � <�� ��� ! ��!
����� � � � � � � ��� !�� � H � � � '�� � � '�:�<�� �
� <�� � � � � � � ��� ��� !���� '�� X�� '�� �&� � <�� ���� � ��!�� <�� ��� <��@� � � � � � � ��� � ! � � �

89� ��* ��� * �
� � � � � � ��� � � ��� � � � � #���� � ��* ��� * �$� � � � � � �9� � � ��� � � � � #���� � ��* ��� * �$� � � � � � ��� � � ��� � � � �

^ ,1 ./
P_
./2 `
�� ����� ��� � �

� � � � � � ��� � � ��� � � � � #�� � � ����� ��� � ��� � � � � � ��� � � ��� � � � � #�� � � ����� ��� � ��� � � � � � ��� � � ��� � � � �

�� � � ��� � � � ��� � � � ! !! � � ��� � � � � ! ?���! � ��* � � � � ��� � � � �� � � � ! !$��� � <�� ��� ! ��!

�� � � � � � � � '�� ��� 7 � � ��� � � ���� � <�� ��� ! ��!C � � � � �$� � � � ! !�� ���� ! � � � � ��! � � ��� � � � C � � � � ��� � � � ! !$��� ��! ������� � � � ' B � ! � � � � ��!���� � H � '�� '�� ��� � ! � !
��� ����� � ! � ! � � � �Q .]R/

4 1 6

> � � � � � � �$! � � ��� � � � � � � �$� � � '�T � ��� ��� � � � � � � � !
�� � � � � �9� �[��� '�� X � � � � � ��!
C � ��� � � � � ����� � � � � � (� � '�� ��� ��* < (� � '�� ��� ��* <a `

E `
b

89� ��* ��� * � � � ����� � � � � � (� � '�� ��� ��* < (� � '�� ��� ��* <
c�d e f g h i j f k l i h m�n[j o$p l i k f g q

Accuracy. Exception handling is widely used for assuring correct results. Con-
cerning iterators and direct access, JCF has a safe although somehow restrictive
policy of invalidating iterators when other operations interfere.

Interoperability. None of the libraries offer interoperability capabilities. It
could be thought of building wrappers, using either the Export pragma and
Remote Call Interface in the case of Ada, or the CORBA and RMI standards
in the case of Java.

Security. In both cases, the security aspects are well covered.

Functionality compliance. In both cases, the libraries are compliant enough
with respect to functionality, although from time to time some odd terms appear.

Understandability. It is worth to remark some lack of uniformity in the JCF
library. For instance, JCF bidirectional iterators and access by position are only
available for lists. Also, some of the JCF method names are not according to
their functionality (e.g. the next iterator method return the current element and
then advances to the next).

The design of the JCF library is not as clear as it should be. For instance,
there are two separate hierarchies; this makes more difficult to get the general
picture.

With respect to complexity there are different tradeoffs between the two
libraries. Basically, BC offers few methods that can be combined to obtain more
functionalities while JCF has a lot of different methods some of them with similar
functionalities and so the library becomes more difficult to understand.

Changeability. Both libraries present internal reusability up to some extent,
but their solutions are not optimal. In the case of BC, some dependencies among
packages arise and makes changes more difficult to implement (see [11] for de-
tails). This coupling also impacts on other attributes. In the case of JCF, some
methods of its abstract classes are implemented using only the interface of the
class (avoiding coupling) but as a consequence they are not as efficient as possi-
ble, and the size of each category abstract class grows.

7 Conclusions

In this paper, we have proposed a framework based on the concept of qual-
ity model for assessing the quality of the prospective Ada Standard Container
Library. The quality model is based on the ISO/IEC 9126-1 quality standard
which fits well with the fact that Ada is an ISO standard too. The use of such a
quality standard to design an Ada Standard Container Library is an important
aspect to make easier the standardization of the new Ada language extensions
and evolutions. In the paper, we have tailored the highly abstract quality model
proposed in this standard to our specific needs, by adding some quality fac-
tors and exploring their relationships. Also, we have checked the applicability
of the model to a pair of existing libraries. For the sake of brevity, we have not
presented the whole quality model, but a (representative enough) part.

Our paper tries to be a contribution in the design and implementation of the
Ada Standard Container Library. It is our believe that the success of this poten-
tial library requires as a first step a deep knowledge of the features that must be
considered for their inclusion, the different ways on offering these features, and
also the consequences of including them. Mechanisms such as shortcuts [7], spe-
cific design patterns [8, 12] and others may be then more thoroughly evaluated.
The quality model may act as a cornerstone in these activities.

But adopting a quality-model-based approach in not only useful for assess-
ment. It provides a structured and precise way of describing the features of the
library, making its use more appealing. It also can be used as a first step for get-
ting a certification of the resulting product, issued by a third-party organization;
there are currently some organizations that use the ISO/IEC quality standards
for issuing such certifications. Last, a quality model supports traceability of de-
cisions taken during the construction of the library, which is specially interesting
when considering maintenance of the library.

References

1. K. Arnold, J. Gosling and D. Holmes. The Java Programming Language. Addison-
Wesley, 3rd edition, 2000.

2. Application Standard Components Library (ASCL). http://ascl.sourceforge.net/.
3. G. Booch, D.G. Weller and S. Wright. The Booch Library for Ada 95 (version

1999). Available at http://www.pogner.demon.co.uk/components/bc/.
4. M. Heaney. Charles Container Library. At home.earthlink.net/∼matthewjheaney/.
5. J.P. Carvallo, X. Franch and C. Quer. Defining a Quality Model for Mail Servers. In

Proceedings of the 2nd International Conference on COTS-Based Software Systems
(ICCBSS), volume 2580 of LNCS. Springer-Verlag, 2003.

6. X. Franch and J.P. Carvallo. Using quality models in software package selection.
IEEE Software, 20(1), 2003.

7. X. Franch and J. Marco. Adding Alternative Access Paths to Abstract Data
Types. In Challenges of Information Technology Management in the 21st Century
(IRMA’2000), pages 283-287. Idea Group Publishing, 2000.

8. N. Gelfand, M. T. Goodrich and R. Tamassia. Teaching Data Structure Design
Patterns. In Proceedings of ACM SIGCSE ’98, 1998.

9. ISO/IEC Standards 9126-1 Software Engineering – Product Quality – Part 1:
Quality Model, June 2001.

10. B. Meyer. Reusable Software: the base object-oriented component libraries. Prentice
Hall, 1994.

11. J. Marco and X. Franch. Reengineering the Booch Component Library. In Reli-
able Software Technologies Ada-Europe 2000, volume 1845 of LNCS, pages 96-111.
Springer-Verlag, 2000.

12. J. Marco and X. Franch. Shortcuts for the Ada Standard Container Li-
brary. Presented at the Workshop for Standard Container Library for Ada.
Held during the Ada-Europe 2002 Conference, Wien (Österreich). Available at
http://www.auto.tuwien.ac.at/AE2002/resources.html.

13. K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

14. D.R. Musser and A. Saini. STL Tutorial and Reference Guide. Addison-Wesley,
1996.

